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1 Chris Douglas

[We’d like to start, Chris Douglas will tell about his stuff.] So anyway, I wanted to, Peter
and Stephan talked about field theories. They didn’t talk much about it but I wanted to
focus on the twisting. One of the key ideas, the reason half of us are here is because we’re
interested in geometric models for cohomology theories, and field theories are good for that

∗ = 0 ∗ = n
H∗ 0-d FT twisted 0-d FT
K∗ 1-d FT twisted 1-d FT
Ell∗ 2-d local FT twisted 2-d local FT

Twisting is not like adding the super, it’s like twisting a bundle. I’ll start in one dimensional
field theories, then I’ll talk about twisting them, then talk about two dimensional local field
theories, twist those, and then three dimensional local field theories, and then pay back
technical debts, about internal higher categories and then in the two dimensional case we’ll
encounter nets and I’ll tell you what those are, and in the end I’ll give supporting evidence
for why this is a good idea, coming from periodicity and the string group.

Okay, let’s start at the beginning, just briefly talking about 1 dimensional field theories. To
remind you, it’s still early, a one dimensional field theory over X is a symmetric monoidal
functor Bord1

0(X) → V ect so to each point we get a vector space and to each path a map
of vector spaces. Stephan talked about thinking of this as a vector bundle over X (elements
in K0(X). But let’s dwell for a minute, maybe we wanted everything to be Z2-graded, so
there’s an even part and an odd part, and the K theory element is the difference. and then
we can ask, when is this vector bundle 0 in K0(X)? It’s if there is an isomorphism between
the positive and negative, so an odd operator e : V ⊕W → V ⊕W and it’s of the form

0 F
F−1 0 such that e2 = 1. So this is the same as saying that there is a Cl1-action on

V ⊕W where this is generated by odd e such that e2 = 1.
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In fact we can write this whole K group as vector bundles over X modulo those with a Cl1
action. Suppose we look at K0(X, A); now the Cl1 action is part of the data. An element is
a vector bundle V over X together with a Cl1 action over A, the triviial part.

Suppose we look at K̃−1(X), which is K̃0(ΣX) which is K0(CX,X), so we start to see
Cl1-module bundles over X.

We have Clifford algebras looking like they’re related to the other K groups. Let’s leave the
discussion there and move on to the twisted story.

So now I’ll get to answer the question of what exactly I mean by a twisting. Let’s talk more
generally about what a twisting is. First you have to say what twisting is. Suppose you are
trying twist maps X → G. I want a twisted notion. This can be reformulated in terms of the
trivial G-bundle over X and talk about sections of that bundle, that’s the same as functions
X → G. A twisted map X → G is a section of an arbitrary G-bundle over X.

I will specify τ and say that this is a τ -twisted map:

G // E

��

VV
// EG

��
X

==

τ
// BG

My model for EG is the paths starting at a fixed point in BG and the projection is the
endpoint. So X is sent to PathBG(∗, τ) So x is taken to a path from ∗ to τ(x).

Now let’s think about twisting field theories. A field theory is a functor Bord1
0(X)→ V ect.

so I want to twist by τ : Bord1
0(X) → BV ect so this will lead to a functor Bord1

0(X) →
PathBV ect(∗, τ).

So BG is a thing so that ΩBG ∼= G. So V ect is a category, so BV ect is a two category so
that ΩBV ect ∼= V ect. This is just HomBV ect(∗, ∗). What star do you take? You can take
BV ect to be the two category CL2 of Clifford algebras. The objects are Clifford algebras
over C, the morphisms are bimodules, and the 2-morphisms are maps of bimodules.

[Is there a categorical notion that justifies the use of the letter B?]

Sort of, this ΩBV ect ∼= V ect is a justification. This isn’t a connected thing, why didn’t I
take just one object? It turns out better to build a larger deloop. I think, I needed to have
these Clifford algebras, that’s one reason to guess this is a good deloop. So now we have a
monoidal unit, the trivial Clifford algebra, which is our base point.

Given a τ : Bord1
0 → CL2, a two-twist functor, then a τ -twisted one dimensional field theory

(over X) is a transformation from the unit functor to τ in CL2:

Bord
1

0(X)
τ

22
1

,,⇓ CL2

This is all joint with Bartels and Henriques, motivated by Segal.
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We need some specific things, some specific twistings, called degree twistings. So we have
Cl1, and then Cln = Cl⊗n

1 . There is a functor −n : Bord
1

0(X)→ CL2 which takes ∗ 7→ Cln.
Everything here is Z2-graded, so the tensor product puts in the anticommutativity. My sign
for Clifford algebras is that the generators square to +1.

The line over the bordisms means that this is a two category, that two morphisms are
isomorphisms of one morphisms (one-manifolds)

So now we have the idea of a (−n)-twisted one dimensional field theory over X. Take Cln
as a bimodule for the 1-morphism.

Let’s think about what these twisted things look like. We have these transformations

Bord
1

0(X)
Cln

22
Cl0

,,⇓ CL2

To a point in x we have a Cln-module. So these are related to Cln-module bundles over
X. Indeed those are related to K-theory, so Karoubi, Wood, and others showed that Cln
module bundles over X modulo some equivalence gives K−n(X). Now what Peter and
Stephan proved is that indeed

Theorem 1 Stolz-Teichner
{EFT−n

1|1 (X)}/ ∼= K−n(X)

[Stephan: you need infinite dimensional Cln-bundles]

Let’s move on to the two dimensional case. What’s a two dimensional nonlocal field theeory?
We have Bord2

1(X)→ V ect, but we want it to be a local field theory. This was one of Peter
and Stephan’s first key observations, that we want this to be a 2-category Bord2

0(X) and we
need, as Stephan says, something larger, and there ar various choices, I like vN2; Peter and
Stephan seem to have broken up with van Neumann algebras, but we still like them.

[van Neumann algebras are the Banach algebras with a weak topology; that made Alain
Connes happy in a different context, so we should be happy here.] A twist should be some-
thing like τ : Bord

2

0(X) → BvN2. So maybe I’ll just say, if we have such a twist, we can
look at

Bord
2

0(X)
τ

22
1

,,⇓ BvN2

and then these will be our twisted two dimensional local field theories.

But what is this deloop BvN2? This was our first contribution to this story, which suggested
that BvN2 should be CN3, the 3-category of conformal nets. The objects are conformal nets,
the morphisms topological defects, the two-morphisms sectors, and the three-morphisms
intertwiners. I’m going to defer what all of these are. But now it makes sense to define
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Definition 1 A τ -twisted 2 dimensional local field theory is a transformation

Bord
1

0(X)
τ

22
1

,,⇓ CN3

When we build this we’ll use all of the [unintelligible]but we don’t need anything other than
the type one factors. We’re in the type one factors.

[Are we in the hyperfinite (injective) world too?] Yes.

In order to keep going, we need a notion of degree twists. Oh, I forgot something. This is
what happens when you prepare the night before.

[As opposed to the morning?] Well, more like the week before. Okay, let’s go back, the basic
idea behind the two dimensional local field theories, if you take these over X and mod out
by equivalence relations, do you get TMF 0(X)? Implicit is a bunch of stuff, smoothness and
supersymmetry and so on.

Now we want to contact TMF . It is possible to make something precise for LFT2(X),
but there are lots of different things to write here and it’s not yet clear which one will be
TMF . Now what are the degree twists? We have these Clifford algebras. The first thing is
the analogues to Cl1 and Cln. There exists a conformal net Fer1 ∈ CN3, called “the free
fermion” and we can define n free fermions Fern to be Fer⊗n

1 , and then a calculation shows
that there exists a functor Bord

2

0(X)→ CN3 which takes ∗ → Fern, and this can be called,
again, −n. This now exists, and now I can talk about a −n-twisted two dimensional local
field theory, and now I can ask the following question. If I take −n-twisted local field theories
over X and mod out by an appropriate equivalence relation, do I get TMF−n(X)? That’s
the moral story.

Okay, so maybe before, well, just to summarize, we have the notion of field theory that we’re
looking at and the cohomology theory we were hoping to get

FT cohomology theory
one dimensional Bord1

0 → V ect K0

twisted one dimensional Bord
1

0(X)
Cln

22
Cl0

,,⇓ CL2 Kn

two dimensional Bord2
0 → vN2 TMF 0 (we hope)

twisted two dimensional Bord
1

0(X)
Fern

22
Fer0

,,⇓ CL2 TMFn (we hope)

[What is the assumption on n in the theorem of Koroubi?] There it might be n positive.

[Without Bott’s theorem, you wouldn’t know that this is a cohomology theory yet.]
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But it should be easy to see periodicity here because of the Clifford yoga. Once you know
you’re getting K-theory you can use Clifford yoga to see periodicity.

Now let me talk a bit about 3-dimensional local field theories. Some people use the word
extended, some people omit it entirely, I like the word local.

[In the absence of a theorem, is it possible that the left hand side is just empty? Are there
examples?] Yes.

[For those of here who haven’t been toiling a lot with the extended idea, it was alluded to by
Mike Hopkins and referred to by Stephan. Local corresponds to point, interval, et cetera. It
hasn’t been brought in as evidence.]

Roughly speaking, Bord3
0 is a three category whose objects and n-morphisms are n-manifolds

(with corners). So a three dimensional local field theory is a functor Bord3
0 → CN3. The

philosophy here is that because we’ve gone local, everything should be determined by what
happens on points.

[Are you talking topological field theories now?] Yes.

[Why is this notion good for locality?] You can take, well, what is the initial idea? You can
cut your manifold into pieces, cut it up, and now I can chop that in a different direction
and get smaller pieces, and whatever I’m left with, by construction, I can build up more and
more complicated things just with the data. That brings up a natural question, which values
(for the point) are okay.

So let me bring back up the Baez Dolan hypothesis, which was mentioned yesterday, local
field theories with values in Cd should be in correspondence with fully dualizable objects in
C.

Let me write out cases by way of advertisement. So I’m going to focus on two cases. One
is the framed case in dimensions two and three, and then the topological case in dimension
two and three. We worked out the first three, BDH, and Hopkins, Lurie had also done that.
Now Schummer Pries had done the n = 2 topological case and he and I did the n = 3 case,
and now it looks like Hopkins-Lurie have done all n, Jacob will talk about that.

So n = 2, a 2-dualizable object, I’m going to do something confusing. They have a target
C2. I’ll call a target in C2 by its coimage in Bordn

0 . So this is an object • so that there exists
another thing •− so that there exist one morphisms ⊂ and ⊃ from • t •− to the empty set
and vice versa. Then there are two morphisms, cap, cup, up saddle, and down saddle, which
have a relation I can draw geometrically. This corresponds to the F → FGF → F we saw
yesterday.

I’m going to abbreviate the points as m and n, I’ll project the 1-morphisms and look at the
singular points, projected to one fewer dimension. So the cup, cap, and saddles all look like
∪ and ∩. Then the relation smooths something looking like a cubic to a line.

So let me tell you the three dimensional analog. So a three dualizable object is m so that
there exists n, a one morphism •, the caps and cups, morphisms © → ∅,�→‖, and then
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something that kills a bump.

So I have relations. If I create and kill a bump, that’s the identity on the line, if I kill and
create a bump, that’s the identity on a bump. If I move from a cup to a circle with ‖→�
and then kill the circle, that’s the identity on ∪.

There are two more relations. If I start with a cup, introduce a bump on the left, and then
on the right kill that bump, that’s the identity, and if I start with a bump over a cap, switch
it to a line and a cap, and then switch back to get the opposite bump over the opposite cap,
that’s the same as doing it in the other order. The fourth one here is called the swallowtail
relation, and you will see it again in Jacob’s case.

I’ll come back a little later and give at least one example of a field theory. Now I’ll try
to start repaying my debts. Dennis has asked what all these things mean. I want to talk
a little bit about internal higher categories. Let’s start at the beginning with 1-categories.
A 1-category has objects and one-morphisms, which together form a strict one category. If
we didn’t know better, we might have done this vertically and thought of them as zero and
one cells and thought of it as a weak one-category, but that’s the same. Let’s go to two-
categories. It has objects, one morphisms, and two-morphisms. I could also look at things
like two cells. One-cells compose weakly, up to two-cells. So that’s called a bicategory. I’ve
drawn it to suggest that there’s something in the middle. I can position vertically and say
that what’s a category in Cat? C0 is a category of objects, C1 a category of 1-cells. Then
there’s a composition functor, an identity one-cell, and then a bunch of ways for these to
be related, like if I compose in the two orders, there’s a natural transformation, and there
are identity transformations. This is all the data of a category object in categories, and it
satisfies a bunch of axioms. Using this notation it’s fast to see the axioms. One comes from
composing two identities, three from composing an identity with two other things, and then
one for composing four morphisms, which is the pentagon.

Well, I’ll keep going, what happens in the case of three-categories? We can draw the same
picture. We have 3-categories (0-categories in them), weak 3-categories (tricategories in sets)
and then in between categories in 2Cat and bicategories in Cat. A category in 2Cat has
objects and one-cells which are 2-categories.

An example of a category in Cat is algebras. So we have algebras, maps of algebras, bimodules
and maps of bimodules. That’s a category in Cat.

So examples, C, V ect, 2V ect, and 3V ect. You have functors of modules over the bicategory
of vector spaces. Let me fill things in. To go down, there are good reasons to write BC as
a deloop of C, we can deloop many times. I told you that Alg is a good category object in
categories. Tensor categories are a good category object in two-categories:

C V ect 2V ect 3V ect
BC Alg TensCat
B2C Nets
B3C
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The punchline is that this gives you a very nice way to deal with the symmetric monoidal
structure. I can just work in a bicategory in SymMonCat or something.

Let’s go to nets, let me describe the Fermion. If I have the interval, I can look at L2(I)
and then form a Clifford algebra on L2(I). This is functorial. So you see that this way of
taking an interval and producing an algebra is Fer which gives motivation for the following
definition. A net is a cosheaf of von Neumann algebras on the category of intervals (with
maps being inclusions. You extend a function on an included interval by zero) A precosheaf
is a covariant functor. cosheaf means it satisfies gluing properties. What are the six things?

For nets, this is

nets maps of nets
defects maps of defects

representations (sectors) maps of sectors

Maybe in the last few minutes I should say a word about evidence. Let me talk about
periodicity. In one dimension, K−n(X) was Cln module bundles up to equivalence. It only
depends on Morita equivalence classes of Cln and then Atiyah Bott Shapiro proved that
Cl8 ∼= Cl0 so as a corollary is that K-theory is 8-periodic (real). In the complex case it’s true
with period two. What’s the idea in the two dimensional case? We have the two category
of conformal nets. So now we have for the purpose of elliptic cohomology the moduli space
of tori, and maps from that into CN3. The homotopy of that mapping space is controlled
by the homotopy of CN3 and the cohomology of this moduli space. In my fantasy land, the
question of the periodicity of the free Fermion has to do with π0(CN3). So we could have
Z24 and we might see Z12 and Z2 in H∗Mtori, and they could have a party and maybe in
the morning we might see Z576, the periodicity of TMF . I should have said, twenty-four
suddenly appeared. Here’s what we can prove. If Fern

∼= Fer0, then 24|n, so this was the
first thing we figured out. Conformal nets weren’t the first thing we tried, we started with
tensor categories. We never found a 24, so we’ve only seen that in conformal nets. That’s
periodicity.

I’m over time, but let me say we can produce the string group from CN3 in a canonical way,
which is closely related to TMF, which is more good data. If you look at, well,

Theorem 2 (DH)
HomCN3(1Fern , O(n)) ∼= Stringn

2 Kevin Costello

Thanks, Dennis, I suppose what I want to talk about is how we could have discovered
Feynmann graphs and so on by thinking about rational homotopy. This should be easier
and more relaxed than my talk yesterday. I’m going to start off with something everybody
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knows. If M is a compact manifold, oriented, we’ll spend a lot of time considering some
quantum field theory but before that we’ll start simply and note that Ω∗(M) is a differential
graded algebra and according to Dennis’ work in the 70s, Quillen’s work, this encodes a huge
amount about the manifold M , the real homotopy type. What I’m going to do is start off by
showing how you can show something using the harmonic forms, which are finite dimensional
so much more practical.

Let’s pick a metric on M . We have operators d, the de Rham differential, and d∗, its adjoint,
and the Laplacian ∆ = [d, d∗]. From the Laplacian we can see the space of harmonic forms,
H = Ker∆ ⊂ Ω∗(M) which is the same as the homology.

We want a way to encode this differential graded algebra. So π : Ω ∗ (M) → H = H∗(M),
so H is an algebra. The algebra structure is h1 ∗ h2 = π(ιh1 ∧ ιh2). We see a problem
immediately, which is that the inclusion is not an algebra map. If we take the product of
two harmonic forms, it’s not harmonic. You have to project back down, this map is not an
algebra map.

Okay, so, does anybody have the eraser? [With that definition of ∗, does π become an
algebra homomorphism?] No, you can take two things in the kernel, and you might end up
with harmonic pieces.

Okay, the problem, the cohomology is not enough to encode everything, as a commutative
ring. What we’d like to define is some better structure on H which does encode everything.
We’re going to vary the algebra structure on forms by a homotopy parameterized by [0,∞].
At 0 we’ll have the original structure; at ∞ they will be a subalgebra, but the price we have
to pay for being able to do this is that the algebra structures we get will be A∞ structures.

So I’m going to define mt
2 : Ω∗(M) ⊗ Ω∗(M) → Ω∗(M) so mt

2(α, β) = e−t∆(α ∧ β), where
forms are completed to L2, and this e−t∆ preserves the smooth structure.

This makes things smoother and smoother and eventually harmonic. Now m0
2(α, β) = α ∧ β

and if h1, h2 ∈H ⊂ Ω∗(M), this is m∞
2 (α, β) = e−∞∆(α ∧ β) ∈H .

There’s an obvious problem with this which is that it’s nonassociative.

We can take α and β, let them collide, do the wedge product and then the smoothing operator.
Mike Douglas was saying that functions are like particles, let them collide, and then evolve
by time. Why is it not associative? I’ll draw the diagram for mt

2(α, mt
2(β, γ)). We take β and

γ, multiply them, and then evolve them for some time, and then hit that with α and then
evolve for some more time. Do you agree? On the other hand, what is mt

2(m
t
2(α, β), γ)? We

draw the same diagram but things are flipped around a little bit. First α and β meet, then
they evolve and meet with γ and then evolve, and these two things are just not the same.
This is where we find this clever trick of saying, it’s okay if it’s not strictly associative, as
long as it is associative with respect to a specified homotopy.

We need to find a specific homotopy mt
3 : Ω∗(M)⊗3 → Ω∗(M). We want this to be a chain

homotopy, and what we need is that when we commute this with the differential, and then
apply to α, β, γ, this should be the associator of the two ways of using mt

2 to combine the
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three arguments.

Okay, so, at least this is the first start, we’ll also need higher and higher homotopies. We
can produce mt

3. We should think, if we could take the long edge, squish it down, and pull it
out in the opposite direction, that would give the desired answer, that’s exactly what we’re
going to do.

We’re going to use this, can I erase this stuff? So to construct the homotopy we need
something for a family of trees. Let’s look at this integral

St =
∫ t

0

d ∗ e−τ∆dτ

well, [d, St] is, d commutes with everything except d∗ so this is
∫ t

0
[d, d∗]e−τ∆dτ =

∫ t

0
∆e−τ∆dτ =

1− e−t∆

Most of these pieces commute with the differential. Everything commutes with the differential
except St. Maybe by clever diagram reuse, I can say what’s going on. If we commute this
with m3, we replace the homotopy with 1 − e−t∆. So now the commutator of mt

3 with d is
the difference between the two ways of bracketing.

What we really want, if you read Stasheff’s thesis, having m3 is not really enough, you want
to be able to stick m2s in the middle of it. What we really need is a homotopy associative
structure, you need maps mn : Ω∗(M)⊗n → Ω∗(M) of degree 2 − n so that, there’s some
funny identity, and a very good reason for this identity. When we commute this mn with the
differential the same way as before, we find some stuff.

[d, mt
n] =

∑
r+s=n+1

±mt
r(· · ·mt

s(· · · ) · · · )

What is mt
n? We just mimic what we did for m3

n. It’s the sum over all trivalent rooted trees
(with sign) of, every time you see an internal edge you put a homotopy. The external edges
have fixed length, the incoming ones are decorated by αs, and then the root is decorated
with e−t∆. This is particles moving some distance and then moving proper time, and so on.
When t =∞ it’s the same formula, well, you find that it preserves the subspace of harmonic
forms. It’s the A∞ structure on harmonic forms. You can write this structure as a functional
integral.

Let’s figure out what happens when this commutes with the differential? When we commute
it, we find that everything respects the differential except the homotopies. So precisely one
homotopy is replaced with its differential. So we replace that one homotopy with 1− e−t∆.
This e−t∆ edge divides the tree into two pieces. So the boundary is a sum of the lower pieces.

I want to explain, there’s a version of this having to do with the Feynmann graph expansion,
only the classical part.

Let me make the functional integral, and then write a theorem and then maybe a break.
Take g a Lie algebra with an invariant pairing, and look at Ω∗(M)⊗ g, a Lie algebra. Then
we find that H ⊗ g is a homotopy Lie algebra structure. This is given by some maps exactly
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as before ln, we can write it on harmonic forms or on, well, ltn : (Ω∗(M)⊗g)⊗n → Ω∗(M)⊗g
The ltn are given by the same formula with Lie brackets instead of the product. I’d like to
give you a functional integral.

[When you say that Ω∗(M)⊗ g is a Lie algebra, it’s not skew symmetric?] It’s graded skew
symmetric.

So the formula is as follows. Let’s fix an α ∈ Ω∗(M) ⊗ g and let’s look at the following
expression:

∑
1
n! 〈l

∞
n (α, . . . , α), α〉, which is like the Taylor expansion of something on a

vector space, and you can write this as (this is the classical Chern Simons functional integral

lim
~→0

~ log
(∫

φ∈= d∗⊗g

exp(
1
~
(〈φ, dφ〉+ 〈[φ + α, φ + α], φ + α〉)

)
So we’re taking the limit as ~ → 0, which corresponds to selecting the graphs which are
trees, those that define the homotopy structure. Then there’s the rest of the expansion, what
happens if we don’t take this limit.

Theorem 3 One can renormalize this integral without taking ~ → 0 and the result is an
algebraic structure, we find some quantization of the rational homotopy type, or of the usual
∞ structure on H∗(M)⊗ g

So the simplest version of this would be dl2(α, β) =
∑

~l4(ei, ei, α, β)

3 Kevin Costello III

A lot of the things Mike and Peter and Stephan have talked about have been Segal axioms
for field theories in terms of higher categories and functors. In my point of view, can one see
anything like the Segal axioms. I’m going to start by talking about observables.

Imagine you’re a physicist. You have U in some spacetime manifold M and some quantum
field theory on spacetime. [What is that?] Who knows? You might imagine that whatever a
quantum field theory is, you can measure things, we can take our detector, put it in U , and
measure what happens in U . So there Obs(U) which is a vector space of measurements we
can make on U . In a minute I’ll give it a more precise definition, but for now it’s reasonable
to postulate that there might be such a vector space. Another way to think is that this
should be something like, some quantization of functions of the field ϕ which only depend
on ϕ’s behavior on U . ϕ might be a function on M or a section of a bundle. We should
have to do something clever to our function to turn it into a quantum observable. In a
minute I’m going to explain, well, in terms of yesterday’s lecture, let’s work with scalar field
theories again. Suppose, after yesterday, everything was determined by low energy effective
actions {Seff [Λ]} is a system of effective actions, defining a theory, so then you can ask
how do you see what the space of observables is in these terms. So observables are like first
order deformations, the tangent space to the moduli space of theories. Define the space of
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observables of U to be the space of first order deformations {Seff [Λ] + δO[Λ]} So δ is a
parameter, you can work modulo δ2. This is like, well, it will satisfy the renormalization
group equation modulo δ2, the quantum master equation modulo δ2, and there’s one more
axiom. Where’s my eraser?

So you remember when we defined quantum field theory, these had to satisfy a locality axiom,
and O should satisfy an axiom as well, as Λ goes to ∞, O[Λ] becomes supported on U . This
is the part that makes it not the tangent space.

Everybody reasonably happy with the definition of observable? Why should we imagine
observables are first order deformations? Suppose we start with S and do a first order
deformation. Then if we try to integrate we get∫

φ

e(S+δO)/~ =
∫

φ

eS/~ + δ

∫
φ

eS/~O + O(δ2)

So this is great, what properties would we expect observables to have, what do they have?

So firstly, if U ⊂ V then there’s a map Obs(U) → Obs(V ). This is because the third axiom
is weaker when V is an open set. This means that Obs(U) form a precosheaf, which is a
completely horrible word. They’re only vector spaces because, if you wanted to multiply
them, O[Λ]O′[Λ], well, the renormalization group equation is not preserved.

We saw this same thing in Mike Douglas’ talk. If U1 and U2 are disjoint, there’s an isomor-
phism between observables under union and observables under tensor product, Obs(U1) ⊗
Obs(U2) ∼= Obs(U1 ∪ U2).

I suppose I want to say, these axioms are not really sufficient. We have no restrictions. In
fact, they satisfy a stronger and slightly technical set of axioms of a factorization algebra.
I’ll just tease you with this. What can we do with this structure? Let me give a name to it.
Something satisfying these two axioms is a net of vector spaces. So what about nets?

What is a net on R? It’s not so different from an associative algebra.

In QM we have a net, observables on R. So Obs(a, b) is a vector space for all a < b and a
map (a, b) → Obs(c, d) if c ≤ a < b ≤ d, and a map Obs(a, b) ⊗ Obs(e, f) → Obs(a, f) if
a < b < e < f

This is a strict generalization of an associative algebra. Suppose we have some kind of net
on the real line where the inclusion is an isomorphism. Then all of our vector spaces are
canonically isomorphic. So we have only one vector space, which is isomorphic to Obs(a, b)
for any a, b. This is an associative algebra, because we get a bilinear map. It’s associative
because of the axiom I forgot to write down. We know what happens when we have two open
sets that are disjoint. We want all of the isomorphisms when we have three disjoint sets to
commute, so it’s associative.

Now what if these are quasiisomorphisms. We don’t have a product on the vector space, but
on something quasiisomorphic. We can turn this into a homotopy associative product.

[How do you get a differential on observables?] This is something you should know. It comes
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from the BV master equation. We take our observable. The fancy way to say it, is we can
look at homotopies of solutions, so make a simplicial set, and then observables are a simplicial
Abelian group. Then this is respected by the renormalization group equation.

[Your observables are classical observables?] No.

[How is this related to the naive quantum mechanics?] There’s something strange happening
here. The inclusion maps are quasiisomorphisms there. Let’s work with quantum mechanics.
Use the quantum mechanics of maps on the real line. So φ : R→ V a vector space with inner
product. This is a free theory so the action is just going to be

∫
R φ( ∂

∂t )
2φ and when we do

this construction with BV formalism we find that inclusions are quasiisomorphisms I’ll write
down the observables on the whole real line

Obs(R) =
∏
n≥0

Hom((C∞(R, V ) D→ C∞(R, V ))⊗n, R)Sn

The observables at a point (the inverse limit of open sets containing that point) Obs(x) =
Sym∗(C[ d

dt ]
D→ C[ d

dt ]). Only in dimension one, this has finite dimensional cohomology.

The point of this, because of the quasiisomorphism property, we should get an algebra, which
algebra is it? It’s an algebra of observables, the Weyl algebra on (V ⊕ V ∗) generated by V
and V ∗ modulo [V,W ] = 〈V,W 〉~. The inner product has given an isomorphism between V
and V ∗.

[What was the master equation?] [unintelligible]. This is an associative algebra, the higher
products vanish.

What happens if we work with quantum theory for a manifold?

Let’s let M be a manifold with boundary N and let’s just like as in Peter and Stephan’s
talk choose a collar around the boundary. Then what we find is that to the boundary we
associate a net on the real line, so something like an algebra. The observables restrict to
N × [0, 1)→ [0, 1) via p and then we can define a net p∗Obs which gives U 7→ Obs(p−1(U)).
In this simple way we see that we have associated to the boundary something that looks like
an algebra. Let’s call this net AN .

Now this is a reasonable thing to do?

For quantum mechanics we have the algebra of observables, now we have the net of observ-
ables. Let me make a definition for the space of states. These are supposed to be the initial
conditions of your field. If M has boundary N then a state is a module for the algebra
associated to N , then an element in this module, probably nonzero. We see the usual states
are elements of a module over W (V ⊕ V ∗)

Firstly states are in a projective Hilbert space and secondly they can be added. Direct sum is
superposition. In quantum mechanics there is a unique irreducible module. In quantum field
theory there isn’t. The good states might be irreducible modules. In the usual formulation
of quantum mechanics the Weyl algebra you find is semisimple and has a unique irreducible
module.
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In quantum field theory, there’s many modules AN modules are in correspondence with
boundary conditions. If we consider a scalar field theory, maybe one other philosophical point.
Here we’ve associated to the boundary something like an algebra. The general philosophy is
that the space of, a quantum field theory with an action, the space of classical fields solving
the equation of motion defined near the boundary, this space is always symplectic. AN is
like a deformation quantization. Now we can see why there is more than one module.

So for example take the free field theory on M with boundary N and action S(φ) =
∫

φ∆φ.
So germs, the equation of motion is that φ is harmonic, and germs of solutions to equations
of motion on N will be two copies of the space of functions on N , so C∞(N) ⊕ C∞(N).
One is evaluating the field on the boundary, the other its inward normal derivative. One
boundary condition (there are two, Dirichlet and von Neumann), is that the φ|N = 0 and
the other that the inward pointing normal is zero, corresponding to the two Lagrangians of
the symplectic vector space.

[In this example, will An always be an algebra with ~?] [unintelligible]

These two modules will give two modules which are not isomorphic, and neither is, say,
a quotient of the other. They are separated by an infinite amount of energy. These two
Lagrangians cannot be homotoped to one another.

I’m getting a little incoherent. Maybe I should stop soon. Maybe I should just spend five
more minutes explaining what the manifolds do and then we could stop?

[Is there any sense in which [unintelligible]relates to the dualities you hear about?] I don’t
think so.

Another thing that comes up, here we have N1 and here N2 and some M in the middle, now
we have these AN1 , a net on the interval, and AN2 a net on the interval going the other way,
and in the middle a bimodule for these guys. The space of observables for M is an AN1 , AN2

bimodule with an element. The observables are a functor between the states on N1 and N2.

Because N1 has a map N1×[0, 1) ↪→M ←↩ N2×(2, 3], we have maps AN1 → Obs(M)← AN2 .
There is a canonical observable 1 ∈ Obs(M) always present. Take the identity in the two
algebras and then map it by inclusion and that’s the state.

We find that, e.g., Yang Mills theory from, say, Euclidean bordisms Bord4
3 to categories, this

is a twisted theory. You have another functor of boundary conditions, and there is a natural
transformation between these two fibered by vector spaces.

Bord4
3
boundary conditions

22
states

,,⇓ Cat

[What does it mean to be a module over a net?] You have something for every interval
containing zero, and you can multiply on the right, like that. [Picture]
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