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Let’s try to pick up where we left off. We’re using space time diagrams to construct in a
geometric way the Lorentz transformations and deduce physical consequences without any
algebra. After we get past this we’ll see everything in terms of linear algebra and then things
will go faster. So if you have questions about the physical aspects you should ask them
because after this it will be pretty abstract.

So we’re talking about Spacetime diagrams, which should be thought of in (341) dimensions,
so there are horizontal spatial axes and a vertical time axis. The speed of light is one.
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So we want to look at another observer.

We found out that according to this other second observer, the time=0 was the reflection of



this path through the ¢ = 1 axis.

So we found the ¢t = 0 axis of &’. At time —t, the observer sends out two light pulses to
equidistant mirrors; at time 0 the light hits the mirrors, and at time ¢ the observer sees the
light pulses return. So the event A at the location of the observer and B of the light hitting
the mirror occur at the same time according to €”, but not according to &. In fact, according
to O, tp > t4 strictly.

Any questions so far?

Now we’re going to recalibrate. We’ll define something called the invariant interval. We’ll
start by defining an interval. This is ds? = —dt? 4+ dZ - dZ. The important thing is if ds®> = 0
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in @, then ds? = 0 in all ¢”. That’s essentially because, if you plug it in, you get ‘fl—f =1.
[Is z a particle or an axis?]

It doesn’t have to be, here it’s just coordinates in spacetime. Use the origin as a reference if
you have problems anywhere else.

[Is light the only thing that moves at that speed?]

No. The claim is that light all travels at the same speed and we all agree on that speed. It’s
the same statement for any particle that has no mass.

Those of you who know about tensors, this is a case of the statement that a tensor which is
zero in one coordinate system is zero in all coordinate systems.

Now we come to the Fundamental Theorem of Special Relativity: If ds? = £ is a
constant in @, then ds’? = ¢? in any 0.
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relativity, you replace this flat constant metric with a more general bilinear form, gq;(x)dz®®
dz. So the statement is just that this is a tensor. So Lorentz transformations are precisely
SO(3,1), precisely the things that preserve this form.

I'm actually defining a tensor ds?> = ngpdz® @ dab, where 14, = ( ) . In general

Let’s prove this geometrically.



1. ds? = o) ds?. Since these things differ by a constant velocity, it should be
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conformal factor
clear that the new coordinates have to be related to the old ones linearly (affinely),
meaning (z)® = A¢a® + €. This could be written @ = AZ + € but that suggests three
dimensions. This is called a Poincaré transformation, or an imhomogeneous Lorentz
transformation. Poincaré saw that Maxwell’s equations [unintelligible]symmetry group
of any Euclidean [unintelligible]. Einstein thought that maybe Newton’s laws were an
approximation with ¢ = oo. Lorentz wrote down the transformations that preserved
Maxwell’s equations.

The e is trivial because everything is invariant under shifting so I can forget it.

So now I need, because of this, the most general expansion is ds? = My,dz®dx® =
Moodt? + 2Mo;dtdz’ + M;;dzdx?. Go back to the special case where ds'? = 0. From
linear algebra, if this is true for any direction %, this implies that My; = 0 nad M;; =
—(5ijM0(). Then ds’Q = —Moo(—dt2 + dx - dﬂ’_f) = (ZSdS2 where qb = —Mo().

2. ¢(¥) = 1. How do we get this? Well, it’s rotationally invariant so ¢(¥) = ¢(|7]).

If you rotate so that ¢ and &’ are in the same plane, then you can put events in
perpendicular to the plane spanned by them, which are simultaneous in both frames.
The point is that if the boost, the boost doesn’t affect any of the lengths orthogonal
to the boosts. The length of the rod perpendicular to their plane, according to &,
squared, is ¢(¥) times the length squared according to &. It will change according to
the size of the velocity, but it shouldn’t depend on the direction.

Now we want to define an " frame. So &’ has the property that it is moving at
velocity v relative to @. Define & as moving at velocity —v with respect to &. This
might look funny. S now ds”? = ¢(—v)ds"? = ¢(—vecv)p(¥)ds?. So these are both equal
to ¢(|7]) so this is ¢p?ds? = ds?, meaning ¢> = 1. Now ¢ has to be plus one so that the
length is a positive number.

So ds"? = ds?, so it’s called the invariant interval. We'll see that this thing is not
general, I didn’t say the form of Af.

Now what? Now we can consider invariant hyperbolae. Anything where ds? is a constant is
preserved here. In particular, t> — 22 = 1 is preserved. This is a hyperbola. also t? —z? = —1,
and so on. In particular, you have a picture, well, you have hyperboloids for ds? constant.
These are called mass shells. Only the two-sheeted ones are mass shells. In general they’re
all called mass shells. The invariant distance restricted to them is constant. You can rotate
any point on a one-sheeted hyperboloid to any other. So here ds? = 0 and this is called
spacelike seperation. If you're in the two-sheeted, you have ds? < 0 and you are timelike. So
there’s a concept of forward and backward. One is known as the causal future of the origin.

Any light ray emitted from the origin goes forward on the cone, and is called lightlike.

So, um, back to the question of why SO(3,1) instead of O(3.1). If I chose O(3,1) I could
get some things that take my future to my past. Discrete Lorentz transformation are not
connected to Lorentz transformations. Also, we have the forward and backward light cones.
The causal future is also called the interior of the forward light cone.



This is all words, but we’ll probably get to use them. It’s called causal because no signals
can propagate from one place to another faster than the speed of light.

Now I want to show the graphical construction for the calibration of the axes. Showing it in
pictures is pretty easy.

Now we can say how time is ticking on his clock. The invariant interval ticks in the same way
on any one of his shells. I have my one second according to me. So in this case, I'm sorry, I
should say one more thing. There’s an alternative concept dr? = dt? — dz? = —ds?. If you
go to O’s rest frame, then at the origin z = 0 and dz = 0 so dr? = dt2. If dr? is one second,
then this is invariant and behaving like a time. This is called proper time. It’s an invariant
property under Lorentz transformation. So one second is on this hyperbola for him.

[A question about boosts.]
A rotation takes space to space. Boosts mix space and time.

What are the effects of this? The two observers disagree on what they call time and what
they call space. Okay, so, time dilation. So ¢ seconds, according to &, took & just sitting
still to another time. Then there’s a hyperboloid passing through B. Put A at the origin.
Then ¢ = —t? + 22, Then what is (At)ap? We want (At')ap = c. So at B, we have ¢? =
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What I have then is tp = ———c. This factor is 7. Since v € [0, 1), we have v € [1,00). The

V1—v2
time intervals that the & frame is seeing are always larger. If someone is approaching the

speed of light, their time is not moving at all.

0" is doing something simple, just measuring when an event happens. You're doing something
complicated, comparing two times on two different clocks. Nevertheless, if your sitting on
earth and your twin goes off to space, you’ll see him aging slowly.

For Lorentz contraction, I get the 2’ axis and consider a rod that’s at rest with respect to
0'. As this rod passes €, what does it look like? It’s going to lie in t = 0, so it’s shorter. So
then mctfxB = % Similarly, ;% = v. We found that ¢ = «£. So you put it all together and
you get that according to &, the length xp is %. The length according to & is shorter by a
factor of ~.

If that wasn’t too fast, next time we’ll go to algebra. This is the basic stuff that everyone
talks about. Maybe we’ll give you some homework.



