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Last time the idea was that we can model, irreducible representations of the Poincaré group,
ISO(3, 1), were labelled with nonzero mass and spin s or zero mass and helicity. We won’t talk
about this until quantum mechanics but later on we talk about states, instead of functions
on a cotangent bundle being vectors on a Hilbert space. So then you’ll see more directly
the connection between s and what you might think spin means, basically the idea of a ball
spinning on its axis so that this is the analogue of angular momentum. This has a discrete
number of states and this keeps track of how many. But, so, we were getting to classical
field theory, either by loooking at particles working in background fields, or by looking at
representations of the Lorentz group and saying that a classical field is a map from spacetime
into some target, be it R, cC, or whatever, a section of a line bundle, and so on. The one
we’re going to takes values in, there’s the associated U(1) bundle where the Maxwell field
sits, and so on. So this one looked locally like a one-form. There can be gerbes that looked
locally like a two-form.

You can take a Spin(3, 1) bundle over R3,1-bundle and you get Ψa a Dirac Spinor. Here
you would have a spinor index, this transforms in a certain way, then the one-form we’re
talking about transforms in a certain way, these structures are things that you tack on to
this. There are sections over Minkowski space, and some subspace corresponds to irreducible
representations.

If you have functions on the real line those give you translations on the real line by differen-
tiation. In the same way we have sections over Minkowski space being representations of the
Poincaré group. This acts on this by right composition. That gives us a big representation.
Then you look at the direct components.

So okay, maybe we can have another discussion about that, the more correct mathematical
statement, but for now let’s move on to electromagnetism. What we did previously, we looked
at the point particle action in curved background and a one-form background. Let me do
the massive case. I don’t want to deal with the einbeins. The action was

Spoint particle =
∫

dλ{1
2
gab(x)ẋaẋb + qAa(x)ẋa}
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Since I don’t want a curved background I’ll simplify my life and take a flat background,
Minkowski background, gab = mηab.

Then we derived the momentum conjugate to xa, which was pa = mẋa + qAa(x). This
implies, of course, that ṗa = mẍa + qδbAaẋb. The equations of motion, which is, this thing
differentiated with respect to x and then take the time derivative. So you say ṗa = ∂L

∂xa =
q∂aAbẋ

b. So we get
mẍa = qFabẋ

b

where Fab = ∂aAb−∂bAa. I started with, this was designed to give the correct nonrelativistic
limit.

Now I can point out that were I to change the one-form to a different one-form related to
the first by a total derivative, Aa(x) 7→ A′

a(x) = Aa(x) + ∂aα(x).

If I were to put it in your language the statement would be obvious, I’m doing
∫

x∗(A), so
if you change A by dα that integral doesn’t change. So F = dA. This means A is defined
everywhere, which I don’t always want to assum. Another way of saying this thing about
changing the forms is that this change doesn’t change the field strength, so it’s a gauge
symmetry. If I wrote A′ = U−1AU + U−1 + U−1dU, in the Abelian limit, you would get this
change.

Now this is just a recap of what we talked about before, these are point particles in a fixed
background. What about dynamics for Aa? So we can try to just use intuition from the
point particle. There we needed second order in derivative equations of motion to give it the
right observable properties. Also if you have too many derivatives you will have problems
with forward time propagation of Cauchy data. It’s at lowest order linear in the coordinate
of the particle. We defined an action in the classical case, can we do something similar here?

We have translation invariance, covariance with respect to Lorentz transformations, and
gauge invariance. This says that at least one of the components is zero, by changing coordi-
nates. You can set A0 = 0 but you break Lorentz invariance. You could instead constrain
the divergence ∂ · A = 0. You could remove one degree of freedom when you describe the
vector field. If the dynamics of A don’t describe this in the same way, I would have an extra
degree of freedom. A physicist thinks that the dynamics Aa should keep gauge invariance.

What about
L = ∂aAx∂aAb?

This is quadratic in A and second order in derivatives but it doesn’t satisfy gauge invariance.

The obvious thing to do is write this in terms of F. This is linear in ∂ and A and gauge
invariant. So what about L = − 1

4FabF
ab. That should work. In fact, it will turn out to be

the only thing that will work. So this is − 1
4F ∧ ∗F.

Okay, so we define

S =
∫

dλ{m

2
ẋ2 + qAa(x)ẋa} − 1

4

∫
d4gFab(A(g))F ab(A(g))
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Okay, so now I need to do something a little bit painful. Let me make my life easier. Since
we already know all the equations of motion, let me just do the parts for A. So let me qust
do the piece that looks like

q

∫
dλAa(x)ẋa − 1

4

∫
d4gF 2,

where F 2 means with respect to the inner product.

Now I need to rewrite this over all of spacetime. So∫
dλAa(x)

dxa

dλ
=

∫
dλAa(x)

dxa

dλ

∫
d3gδ(3)yb − xb(λ))

=
∫

dλd3yAa(y)
(

q
dya

dλ
δ(3)(y − x(λ))

)
︸ ︷︷ ︸

ja(y)

.

Great, now I want to parameterize so that I have the right coordinates, and I can write it as∫
d4yAa(y)ja(y).

That’s what I’m doing. So the action is

S =
∫

d4(x)
{

Aa(x)ja(x)− 1
4
FabF

ab

}
.

So J is a distribution of current, a current density that doesn’t prima facie depend on a
particular point in space. That’s the sense in which this thing is localizing on the physical
world line. It’s a current because it depends on the derivative, it’s moving charge. q is charge
and the velocity is the derivative next to it.

Let’s move on. The equations of motion are

δS

δAa(x)
= 0.

Here this gives

ja(x)− 1
2

∫
d4y

(
∂c

δAd(y)
δAa(x)

− = partiald
δAc(y)
δAa(x)

)
F cd

Then I can combine the two terms because F cd is antisymmetric, so I get

ja(x)−
∫

d4yδc

(
δ{(4)}(x− y)

)
F c

a .

I assume that any field vanishes sufficiently rapidly at infinity.

Then I can integrate by parts and I get ja+∂cFca. The equation of motion is then ∂bFab = ja.
Okay?
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Next time we’ll write this in a more familiar way, to Maxwell’s equations. This is two of
them. Remember the assignment efore was to take mẍa = qFabẋ

b and define Ei = −F 0i and
Bi = 1

2εijkFjk So you can do ~F ( ~E + ~v × ~B). Plug in E and B to work this out. You get the
other two from ∂[aFbc] = 0.
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