
Math Physics

October 24, 2006

Gabriel C. Drummond-Cole

October 24, 2006

So, uh, are there any questions? There should be a lot of questions. Last week Jerry tried
to explain what I was explaining in terms of, we talked about the Lorentz group and then
talked about the commutation relations that defined the Lorentz algebra. I was trying to
do this from the point of view of classical mechanics extended. I wroted down this explicit
formula

MSab = xapb − xbpa.

We worked out the Poisson bracket and found out that

{Mab,Mcd} = ηc[aMb]d − ηd[aMb]c = gef
ab,cdMef ,

which I described as the structure constants of SO(3, 1). Here the η are signed Kroenecker
deltas; if they had been actual δs then this would have been SO(4). Really what I was after
was a general statement about representations of SO(3, 1), which are maps g : G → GL(V ).
So then I went back to look and see what these things look like on Poisson brackets with
f. So {Mab, f(x)}P.B. 7→ [M̂ab, f(x)], where M̂ab = xa

∂
∂xb − xb∂∂xa. This will give the exact

same structure constants. So here I’m actually picking V to be smooth functions on the
manifold. So if we pick V = C∞(M), then this is what I was calling a field representation.
This is SO(3, 1) because I have Mef .

What else can we take, we can use R3,1 for our manifold, but what else can we do? We
could take V = R3,1. So here we had M̂ab = xaδb − xbδa. Since this acts on vectors, this
needs indices which are vectorlike. So we have (M̂ab)c

d. Then va 7→ 1
2ωcd(Mcd)a

bvb. As a
homework assignment I said to check that if you put in i(δc

aηbd − δc
bηad), you get the same

structure constants. So the transformations, raising and lowering indices, is what you’d
expect, wa 7→ ( 1

2ω · M)b
awb. So you can extend this to tensor products in a natural way,

taking V = M⊗n.

Now I want to give a homework assignment. This seems to always be a confusion. Take a
complex vector space V = C4, and define γa acting on V for a ∈ {0, 1, 2, 3}. This being four
dimensions, range over {1, 2, 3, 4}. We want to satisfy γaγb + γbγa = −2ηabI. Physicists call
this a Clifford algebra. It’s not the same as what mathematicians call a Clifford algebra. So
now define (M̂ab)β

α = i[γa, γb]βα. The claim is that this is a representation of SO(3, 1) in the
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sense that the vectors for a representation of SO(3, 1), and the M maps obey the relations of
the Lorentz algebra. This representation is called the spinor representation. The thing that
this acts on is something Ψα, which is called a spinor.

If you’re interested in this, take γ0 = −
(

0 I
I 0

)
where these are two by two blocks, and

then

γi =
(

0 σi

σi 0

)
,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
check that these satisfy the desired relations for the γs. So there are representations of
ISO(3, 1). Here is a fact. The first fact is if you have a combination of generators that
commute, let me say what the generators are. These are the momenta and the Mab. You
can think of taking these things and monomials in them. How many of these things, I want
to find things that commute with pa and Mab. I want the smallest number of operators
that commute with the generators. p2, for instance, commutes with p, and also commutes
with Mab because this is a scalar. You can check this explicitly at home. So p2 commutes
with both of these. Obviously there are infinitely many of these, but there are rk G such
commuting operators.

So for ISO(3, 1), this should be rank two. One is p2, which is the Casimir element, which
is T iTi where T i generate the Lie algebra. So this is one of them. Physicists call this
the “quadratic” Casimir operator. I think that you can probably write all the Casimirs
as quadratic ones. As physicists we don’t want to do this because it might break Lorentz
invariance.

Here is a quartic Casimir operator. First let me define the Pauli-Lubanski (pseudo-)vector
wa = − 1

2εabcdM
bcpd. So first, [ωa, pb] = 0, because the momenta commute with each other,

and rotations take momenta to one another. What is obviously not the case is [ωa,Mbc] 6= 0.
We know that one-forms are not invariant under rotations and boosts. So we need to define
w2, which is order four in the generators. We squared w to make it commute with M. I
can’t make a transformation to make w2 look like p2. We have two commuting operators
(“Casimirs”). So p2 and w2 are obviously linearly independent, and there are two of them.
The claim that I didn’t prove is that I have a complete set when I had two of these things.
So what’s the point? These commute with every generator of the Lie algebra. Then Schur’s
lemma says that on any irreducible representation these things have to be proportional to the
identity. So p2 is proportional to the identity, and we’ll just say that p2 has as its constant
m2. There might be a minus sign. So p2 = λpI, and we know that p2 = −m2 was the
mass shell condition. So where I’m going with this, we can use this Casimir set to label a
representation. Now, whether they’re the masses or the angular momenta or whatever, I
don’t know. So p2 is −m2. We also went to the rest frame and found that p0 was e. If we go
to the rest frame, then positive energy is pa = (E, 0, 0, 0) So we could switch the energy to
negative. To go into your representation, you need the Hamiltonian to be bounded below,
you need positive energy, a vacuum state. So a positive energy requirement gives you this
mass sign. By physical requirements, suffice it to say, the number λp is −m2. What about
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w2 = λwI. This is ±m2 ~J~̇J, where ~J i = 1
2εijkMjk. If you have λp you have the rest frame,

you can always do a boost so that pa is (m, 0, 0, 0), and then just plug it in. You get a factor
of m when the other factors are spatial. So you coan see how wa is basically mJ. Then this
eigenvalue is called spin. Actually it’s s(s + 1), and the s is called the spin. So you can plug
in explicitly the vector representation, and you find that s(s + 1) is 2, so that photons are
spin one. When the mass is zero these things are not linearly independent, but if these were
massive this would be spin one.

With m = 0 the problem is that p2 = 0 = w2 so they’re not linearly independent. But it’s
clear from what we said before that pw = 0. Then by some other brilliant guy’s lemma, that
means p is proportional to w, so that wa = λpa. Then λ is called the helicity, which is the
same thing as spin, but for massless particles. So then you go through your thing again and
find out that this is like spin.

So take the momentum, it moves on a line. You’re projecting onto your direction of motion.
It’s the projection of the angular momentum along the direction of motion. Normally you
could say that’s meaningless because you could change the direction. Since it’s light you
can’t do that, so once you’ve computed this it stays that way. This is a property of the
photon, not the reference frame.

Now I was going to start talking about fields. We went through this thing where, we came
to this notion of fields like Aa, the one form, and the metric, gab. These didn’t have any
dynamics. We worked out Lorentz’s law. So then we stopped and went back to the Lorentz
group, went to its algebra and its representation, I didn’t mention it explicitly, these should
be thought of as functions on M that transform like these representations. So these would
be vector fields. The natural place to go now would be fields in general and their dynamics.
Now we want to promote to the kinematics of these fields themselves, so that we don’t fix
them as backgrounds, but study their properties. We’ll work on electromagnetic fields. We
found that the particle obeyed a force law Fa(x) = qFab(A(x))ẋb. We took a massive free
particle with action

(
m

2
ẋ2 + qAa(x)ẋa)dλ.

And I’m saying that mẍa = qF abẋb, where here Fab(A(x)) = ∂Ab

∂xa − ∂Aa

∂xb = δaAb − δbAa. So
here you got ~Femq( ~E + ~v × ~B), where Ei = −F0i and Bi = 1

2εijkFjk. You can see that E
and B obey certain principles themselves. We take a small number of derivatives, Lorentz
invariance, and we get relations among these, Maxwell’s invariants.
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