Math Physics
 October 19, 2006

Gabriel C. Drummond-Cole

October 20, 2006

So this is another one in the series of what William said.
He's been talking about the representation theory of the Poincaré group.
We're working with M^{n}, which is affine Minkowski space over a Lorentzian inner product space V. Let x^{0}, \ldots, x^{n-1} be an affine, orthonormal set of coordinates. So g is $d x^{0} \otimes d x^{0}-$ $d x^{1} \otimes d x^{1}-\ldots-d x^{n-1} \otimes d x^{n-1}$.

No we have that $\frac{\partial}{\partial x^{0}}$ is timelike, meaning $\left\|\frac{\partial}{\partial x^{0}}\right\|^{2}>0$, and the other coordinates $\frac{\partial}{\partial x^{i}}$ is spacelike, meaning $\left\|\frac{\partial}{\partial x^{i}}\right\|<0$.

So on V you have the light cone C which we use to define certain subgroups. Let $S O(V)$ denote the identity component of $O(V)$ with respect to the Lorentzian metric. So these are $\{A \in O(V) \mid \operatorname{det} A=1$ and A preserves the components of $C\}$.

So then there's the Poincaré group P_{n}, which is the identity component of $\operatorname{Isom}\left(M^{n}\right)$, which is in the short exact sequence

$$
1 \rightarrow V \rightarrow P_{n} \rightarrow S O(V) \rightarrow 1
$$

Physicists prefer to work with representations of the lie algebra. Let $\mathfrak{p}_{n}=\operatorname{Lie}\left(P_{n}\right)$. Then we have the short exact sequence

$$
0 \rightarrow V \rightarrow \mathfrak{p}_{n} \rightarrow \mathfrak{s o}(V) \rightarrow 0
$$

[How is V a Lie algebra?]
It's the Lie algebra of the Lie group V. It's Abelian. It's not like Bill Gates, who's Abelianaire
Anyway, William wants to talk about representations of \mathfrak{p}_{n}. Before that he talked about the structure of this group. He did this in a very physics way. All right. So P_{n} acts on M^{n}. It also acts, in a natural way, on $T^{*} M^{n}$. I'm doing this because this is how William was presenting this. He was using Poisson brackets, so I need to do this in the symplectic case.

If $A \in P_{n}$, then $A(x, p)=\left(A x,\left(d A^{-1}\right)^{*} p\right)$. With respect to the coordinates that we're using, we have coordinates on $T^{*} M^{n}$ which are $\left\{x^{0}, \ldots, x^{n-1}\right\}$ and then the $\left\{p_{0}, \ldots, p_{n-1}\right\}$ where $p_{j}: T^{*} M^{n} \rightarrow \mathbb{R}$ via $p_{j}\left(d x^{i}\right)=\delta_{j}^{i}$, with the form $\omega=d x^{i} \wedge d p_{i}$. We have this symplectic structure so we have the Poisson bracket $\{f, g\}=\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{j}} \frac{\partial g}{\partial x_{j}}$. We have this explicitly because we've chosen coordinates.

Recall that if G is a Lie group that acts as symplectomorphisms of (M, ω), then there is a map from $(\mathfrak{g},[]$,$) into \left(C^{\infty}(M),\{\},\right)$. That map is the Noether charge, where you take j to the Noether charge of j, which is a smooth function.

William was essentually using this paradigm when he was talking about the Poincaré group. Any questions so far? Well, let's see. the Noether charge for travel along the e_{i} direction is p_{i}. The basis element e_{i} gets sent to the function $p_{i} \in C^{\infty}\left(T^{*} M^{n}\right)$. Here e_{i} corresponds to x^{i}.

So William was using the fact that translations are represented by momentum functions. So in particular, if you want to track how translatinons act on $C^{\infty}\left(T^{*} M^{n}\right)$, if f is such an object, then $\operatorname{Lie}\left(\frac{\partial}{\partial x^{i}}\right) f=-\left\{p_{i}, f\right\}$. Okay?

So those are the translations. What about $\mathfrak{s o}(V)$. What does this Lie algebra look like, more or less? Say $a \in \mathfrak{s o}(V)$. Then I can infinitessimally exponentiate this to $\exp (t a)$. Then $g\left(\exp (t a) v, \exp t_{a} w\right)=g(v, w)$. So differentiating you get $g(a v, w)+g(v, a w)=0$. So this algebra should be naturally isomorphic with $\wedge^{2} V$, where $v \wedge w \mapsto g(v) \otimes w-g(w) \otimes v$, where here g is a map $V \rightarrow V^{*}$.

This brings us to $\left\{e_{i}\right\} \leadsto\left\{e_{i} \wedge e_{j}\right\}$, a basis for $\wedge^{2} V$, which leads to $\left\{e^{i} \wedge e_{j}-e^{j} \wedge e_{i}\right\}$. Now define $M_{i j}$ to be the Noether charge for $e_{i} \wedge e_{j}$. Did we compute this? The answer was $x_{i} p^{j}-x_{j} p^{i}$.

Let $\xi_{i j}$ be the vector field of $T^{*} M^{n}$ induced by $e_{i} \wedge e_{j}$, then $\operatorname{Lie}\left(\xi_{i j}\right) f=-\left\{M_{i j}, f\right\}$. Here

$$
\xi_{i j}=x^{i} \frac{\partial}{\partial x^{j}}-x^{j} \frac{\partial}{\partial x^{i}}
$$

The Poincaré group acts, I claim, on the tangent space, this is homework. The homomorphism we have from $\left(\mathfrak{p}_{n},[],\right) \rightarrow\left(C^{\infty}\left(T^{*} M^{n}\right),\{\},\right)$ is injective. Therefore, to look at the structure in \mathfrak{p}_{n} it suffices to look at its image in $C^{\infty}\left(T^{*} M^{n}\right)$. Physicists think of symmetries as functions, associate them with charges. This is a very physics-y thing to do. Should it be physicsie?
[Like Dixie?]
[Dixie is spelled with a y.]
No it's not, you should know, you're from Texas. Texas, with its football, and its..., presidential candidates, and its death penalty for retards.

We've picked a basis. For translations we have e^{i} and for rotations we have $e^{i} \wedge e^{j}$. So let me say that again. A basis of V, which are the e^{i}, determine a basis for the Lie algebra \mathfrak{p}_{n},
where translations have as basis $\left\{e_{i}\right\}$ and as rotations $\left\{e_{i} \wedge e_{j}\right\}$. This works because there is a natural splitting of the short exact sequence on the level of Lie algebras (into a semidirect product $\mathfrak{s o}(V) \rtimes V)$, where $[a, v]=a v$.
[What is William's curly δ ?]
It's the Lie derivative. Physicists usually are thinking about one particular vector field all the time when they say that.

Okay, so the whole point was that William starts with a basis on V. This gives me a basis on the Lie algebra, and then we have $\mathfrak{g},[$,$] , and a basis \left\{T_{i}\right\}$. Then $\left[T_{i}, T_{j}\right]=\Gamma_{i j}^{k} T_{k}$, and these are called the structure constants of \mathfrak{g} with respect to the basis $\left\{T_{i}\right\}$.
[How do those transform with change of basis?]
How it transforms depends on where it lives, so it's in $\wedge^{2} \mathfrak{g}^{*} \otimes \mathfrak{g}$, which explains how it transforms with respect to automorphisms of \mathfrak{g}.

Because William works with a basis, he expresses everything in terms of structure constants, and does it on the function side.
[What about representations?]
William hasn't talked about those yet much. The map into $C^{\infty}\left(T^{*} M^{n}\right)$, that's a representation. If you want it to act on vectors, you choose some matrices in $\mathfrak{g l}(n)$ with the same structure constants. You have V and its tensor algebra, you get those actions of $\mathfrak{s o}(V)$ for free. If you want the Lie algebra action to be unitary, you get into quantum field theory.

There's a theorem that for noncompact groups there are might not be a finite dimensional unitary representations. Those functions are fields in physics language.
[Are the functions Lie algebras of an obvious Lie group?]
Hamiltonian diffeomorphisms.
Okay, I was going to say, now we can write $\delta f(x)$. Of course, with respect to some set of constants $\omega^{a b}$ which are describing something about the Lorentz transformation. So ω^{01} would be some kind of boost, and ω^{12} would be a rotation around the z axis.

So

$$
\delta f(x)=\left\{\frac{1}{2} \omega^{a b} M_{a b}, f\right\}
$$

where $M_{a b}=x_{a} p_{b}-x_{b} p_{a}=x_{[a} p_{b]}$. So this whole thing is

$$
\frac{1}{2} \omega^{a b}\left\{x_{[a} p_{b]}, f(x)\right.
$$

of which only one term can survive, which is

$$
\frac{1}{2} \omega^{a b} x_{[a}\left(-\frac{\partial p_{b]}}{\partial p_{c}} \frac{\partial f}{\partial x^{c}}\right)=-\frac{1}{2} \omega^{a b}\left(x_{a} \delta_{b}^{c} \frac{\partial f}{\partial x^{c}}-x_{b} \delta_{a}^{c} \frac{\partial f}{\partial x^{c}}\right.
$$

$$
=\frac{-1}{2} \omega^{a b} \underbrace{\left(x_{a} \frac{\partial}{\partial x^{b}}-x_{b} \frac{\partial}{\partial x^{a}}\right)}_{\xi_{a b}} f
$$

So you can replace $M_{a b}$ with $\xi_{a b}$ and $\{,\}_{\text {P.B. }}$ with [,].
I think we went over again.
[But only by a minute.]
I should say that if you compute $\{M, M\}=f M$, you'll get the same f with $[\xi, \xi]=f \xi$. That's the point. They're isomorphic as Lie algebras.

