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So this is another one in the series of what William said.

He’s been talking about the representation theory of the Poincaré group.

We’re working with Mn, which is affine Minkowski space over a Lorentzian inner product
space V. Let x0, . . . , xn−1 be an affine, orthonormal set of coordinates. So g is dx0 ⊗ dx0 −
dx1 ⊗ dx1 − . . .− dxn−1 ⊗ dxn−1.

No we have that ∂
∂x0 is timelike, meaning || ∂

∂x0 ||2 > 0, and the other coordinates ∂
∂xi is

spacelike, meaning || ∂
∂xi || < 0.

So on V you have the light cone C which we use to define certain subgroups. Let SO(V )
denote the identity component of O(V ) with respect to the Lorentzian metric. So these are
{A ∈ O(V )|det A = 1 and A preserves the components of C}.

So then there’s the Poincaré group Pn, which is the identity component of Isom(Mn), which
is in the short exact sequence

1 → V → Pn → SO(V ) → 1

Physicists prefer to work with representations of the lie algebra. Let pn = Lie(Pn). Then we
have the short exact sequence

0 → V → pn → so(V ) → 0

[How is V a Lie algebra?]

It’s the Lie algebra of the Lie group V. It’s Abelian. It’s not like Bill Gates, who’s Abelianaire

Anyway, William wants to talk about representations of pn. Before that he talked about the
structure of this group. He did this in a very physics way. All right. So Pn acts on Mn.
It also acts, in a natural way, on T ∗Mn. I’m doing this because this is how William was
presenting this. He was using Poisson brackets, so I need to do this in the symplectic case.
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If A ∈ Pn, then A(x, p) = (Ax, (dA−1)∗p). With respect to the coordinates that we’re using,
we have coordinates on T ∗Mn which are {x0, . . . , xn−1} and then the {p0, . . . , pn−1} where
pj : T ∗Mn → R via pj(dxi) = δi

j , with the form ω = dxi ∧ dpi. We have this symplectic
structure so we have the Poisson bracket {f, g} = ∂f

∂xi

∂g
∂pi

− ∂f
∂pj

∂g
∂xj

. We have this explicitly
because we’ve chosen coordinates.

Recall that if G is a Lie group that acts as symplectomorphisms of (M,ω), then there is a
map from (g, [ , ]) into (C∞(M), { , }). That map is the Noether charge, where you take j
to the Noether charge of j, which is a smooth function.

William was essentually using this paradigm when he was talking about the Poincaré group.
Any questions so far? Well, let’s see. the Noether charge for travel along the ei direction is
pi. The basis element ei gets sent to the function pi ∈ C∞(T ∗Mn). Here ei corresponds to
xi.

So William was using the fact that translations are represented by momentum functions.
So in particular, if you want to track how translatinons act on C∞(T ∗Mn), if f is such an
object, then Lie( ∂

∂xi )f = −{pi, f}. Okay?

So those are the translations. What about so(V ). What does this Lie algebra look like,
more or less? Say a ∈ so(V ). Then I can infinitessimally exponentiate this to exp(ta). Then
g(exp(ta)v, exp taw) = g(v, w). So differentiating you get g(av, w) + g(v, aw) = 0. So this
algebra should be naturally isomorphic with ∧2V, where v ∧w 7→ g(v)⊗w− g(w)⊗ v, where
here g is a map V → V ∗.

This brings us to {ei} ; {ei ∧ ej}, a basis for ∧2V, which leads to {ei ∧ ej − ej ∧ ei}. Now
define Mij to be the Noether charge for ei ∧ ej . Did we compute this? The answer was
xip

j − xjp
i.

Let ξij be the vector field of T ∗Mn induced by ei ∧ ej , then Lie(ξij)f = −{Mij , f}. Here

ξij = xi ∂

∂xj
− xj ∂

∂xi

The Poincaré group acts, I claim, on the tangent space, this is homework. The homomor-
phism we have from (pn, [ , ]) → (C∞(T ∗Mn), { , }) is injective. Therefore, to look at the
structure in pn it suffices to look at its image in C∞(T ∗Mn). Physicists think of symmetries
as functions, associate them with charges. This is a very physics-y thing to do. Should it be
physicsie?

[Like Dixie?]

[Dixie is spelled with a y.]

No it’s not, you should know, you’re from Texas. Texas, with its football, and its. . . , presi-
dential candidates, and its death penalty for retards.

We’ve picked a basis. For translations we have ei and for rotations we have ei ∧ ej . So let
me say that again. A basis of V, which are the ei, determine a basis for the Lie algebra pn,
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where translations have as basis {ei} and as rotations {ei ∧ ej}. This works because there is
a natural splitting of the short exact sequence on the level of Lie algebras (into a semidirect
product so(V ) o V ), where [a, v] = av.

[What is William’s curly δ?]

It’s the Lie derivative. Physicists usually are thinking about one particular vector field all
the time when they say that.

Okay, so the whole point was that William starts with a basis on V. This gives me a basis on
the Lie algebra, and then we have g, [ , ], and a basis {Ti}. Then [Ti, Tj ] = Γk

ijTk, and these
are called the structure constants of g with respect to the basis {Ti}.

[How do those transform with change of basis?]

How it transforms depends on where it lives, so it’s in ∧2g∗ ⊗ g, which explains how it
transforms with respect to automorphisms of g.

Because William works with a basis, he expresses everything in terms of structure constants,
and does it on the function side.

[What about representations?]

William hasn’t talked about those yet much. The map into C∞(T ∗Mn), that’s a represen-
tation. If you want it to act on vectors, you choose some matrices in gl(n) with the same
structure constants. You have V and its tensor algebra, you get those actions of so(V ) for
free. If you want the Lie algebra action to be unitary, you get into quantum field theory.

There’s a theorem that for noncompact groups there are might not be a finite dimensional
unitary representations. Those functions are fields in physics language.

[Are the functions Lie algebras of an obvious Lie group?]

Hamiltonian diffeomorphisms.

Okay, I was going to say, now we can write δf(x). Of course, with respect to some set of
constants ωab which are describing something about the Lorentz transformation. So ω01

would be some kind of boost, and ω12 would be a rotation around the z axis.

So
δf(x) = {1

2
ωabMab, f},

where Mab = xapb − xbpa = x[apb]. So this whole thing is

1
2
ωab{x[apb], f(x),

of which only one term can survive, which is

1
2
ωabx[a(−

∂pb]

∂pc

∂f

∂xc
) = −1

2
ωab(xaδc

b

∂f

∂xc
− xbδ

c
a

∂f

∂xc
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=
−1
2

ωab (xa
∂

∂xb
− xb

∂

∂xa
)︸ ︷︷ ︸

ξab

f.

So you can replace Mab with ξab and { , }P.B. with [ , ].

I think we went over again.

[But only by a minute.]

I should say that if you compute {M,M} = fM, you’ll get the same f with [ξ, ξ] = fξ.
That’s the point. They’re isomorphic as Lie algebras.

4


