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All right, so I want to finish this up today, so I’ll try to buzz along. So remember we’ve
been talking about electrostatics on N = E3. I turned this into a PDE course. If you’ve ever
taken a physics class, electromagentism, it always turns into a PDE class. There are a couple
of things you do initially. You want to solve Poisson’s equation for the electric potential
φ ∈ Ω0(N). This satisfies ∆φ = ∗ρ for electric charge density ρ ∈ Ω3

c(N).

Along the way, we’ve used Green’s second formula to prove this lemma:

Lemma 1 Let U be a connected open set with bounded closure; two continuous functions a, b
from Ū harmonic on U,∆a = ∆b = 0. If these guys satisfy the same boundary conditions,
then they are equal on U.

This gives us solutions to the Dirichlet boundary value problem.

For fixed f ∈ C∞δU) solve ∆φ = 0 on U with φ|δU = f.

Such a solution, if it exists, is unique.

How do we solve this? So we want ∆φ = 0 in U. We won’t have any charge sitting in U.
Then the charge is sitting outside of U In order to find the field inside U we have to solve
the Dirichlet problem. The field φ inside U doesn’t, only depends on the charge distribution
outside U up to the extent that it determines φ0.

We’ve proved uniqueness in this roundabout way, using this lemma. The method also gives
us solutions, so the method also implies uniqueness, and is a more “physical” approach. So
that’s what we’ll get going on now. Recall Green’s first formula, that for a, b ∈ Ω0(U) we
have

〈da, db〉U
∫

δU

a ∗ db−
∫

U

a ∧ ∗∆b.

So we’re going to use Green’s first formula. Denote C∞(U) as continuous functions on Ū
that are smooth on U. I’ll call C∞

0 (U) the elements a of C∞(U) such that a|δU = 0. Then
Harm(U) are elments b ∈ C∞(U) that are harmonic on the interior.
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I chose a and b to satisfy these conditions, and then Green’s first formula tells us that these
are orthogonal to one another. Then dC∞

0 ⊥ dHarm with respect to 〈 , 〉U

In particular, if u ∈ C∞
0 ∩ Harm, then u must be zero. Green’s first formula implies more.

That is, dC∞ = dC∞
0 ⊕ dHarm. So what does this decomposition imply for us? For any

f ∈ C∞, we can write df = da + db uniquely for a ∈ C∞
0 and b ∈ Harm. Then there is a

projection operator dC∞ → dC∞
0 with π(df) = da and (1− π)(df) = db.

This gives us a way to solve the Dirichlet boundary value problem. Let me remind you
what we want. We want Φ smooth on the interior and continuous on the closure, such that
Φ|δU = φ and ∆Φ = 0. Take any f ∈ C∞ with f |δU = φ. Take Φ as b up to a constant. With
a very little bit of functional analysis we were able to solve this problem. To solve Poisson’s
equation you need more functional analysis.

One thing I want to point out is these minimization principles. You know that harmonic
functions should minimize distance of one-forms. What does this have to do with harmonic
forms with the boundary conditions here. Notice that

||df ||2U = ||da||2U + ||dΦ||2U ≥ ||dΦ||2U .

Thus Φ minimizes the function f → ||df ||2U among f that restrict to certain boundary values.
This is step with what we know.

I’ll just point out, we’ll see that the modulus squared can be interpreted physically, so that
1
2 ||dΦ||2 = 1

2 ||E||
2, so in this sense what happens is that Φ minimizes the modulus squared,

the energy.

Define K(N × N)\∆ → R via K(x, y) = 1
4π

1
||x−y|| for x, y ∈ N. I can write this for any

two elements of N but it’s only defined off the diagonal. For now fix x, and note that
∗dK(x, ·) = 1

4π βx, where this is the volume form for the two-form centered at x.

[Is that a β.]

Yeah, β, ahh, β.

[What’s the joke?]

It’s from the Simpsons. Everyone leaves and Snake, he robs the house, and he’s stealing their
VCR and they have a β

[–a betamax–]

and he says [laughing] “ahh, beta.”

So onyway. The identity we derived last time was

a(x) =
1
4π

∫
δU

(aβa +
∗da

rx
)− 1

4π

∫
U

∗∆a

rx
.

So this is ∫
δU

(a ∗ dK(x, ·) + K(x, ·) ∗ da)−
∫

U

∗K(x, ·)∆a.
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From the Dirichlet boundary problem, for fixed x ∈ U, the function K(x, ·) is smooth on
the boundary so I know there exists a unique harmonic function h(x, ·) such that hU (x, y) =
−K(x, y) for all y.

Lemma 2 1. The function hU : Ū × Ū\∆ → R is continuous and differentiable in y on
U.

2. For fixed x, ∆yhu = 0.

3. Gu(x, y) = K(x, y) + hU (x, y) = 0 for all y ∈ δU.

This is not hard to prove, but we’ll see if we have time later.

I want to say some nice things about G. The second one,

Lemma 3 G(x, y) = G(y, x).

Take a ball of radius ε centered at both x and y. Apply Green’s second formula to U minus
these balls. The functions we consider are a = G(x, ·) and b = G(y, ·). Now, both a and b are
harmonic on the domain, and both vanish on th boundary δU. So we get∫

δBε(x)

G(x, ·)∗dG(y, ·)+
∫

δBε(y)

G(x, ·)∗dG(y, ·) =
∫

δBε(x)

G(y, ·)∗dG(x, ·)+
∫

δBε(y)

G(y, ·)∗dG(x, ·).

We claim that the left hand side goes to G(x, y) as ε → 0 and by symmetry the right hand
side goes to G(y, x).

The second term of the left hand side, plugging in, is
∫

δBε(y)
G(x, ·)∗dK(y, ·)+

∫
δBε(y)

G(x, ·)∗
dh(y, ·). The second term here goes to zero, since these functions are both smooth on the
whole ball. Then the first half gives G(x, y) because dK(y, ·) is βy.

What about the other half? You can imagine that we’re going to expand a G in terms of h
and K. You get ∫

δBε(x)

K(x, ·) ∗ dG(y, ·) +
∫

δBε(x)

h(x, ·) ∗ dG(y, ·).

The first term here is zero for the same reason as before. The first term is 1
4πε

∫
δBε(x)

∗dG(y, ·),
which is

1
4πε

∫
Bε(x)

d ∗ dG(y, ·).

Let’s just kill this bird. G has these nice properties, it’s harmonic one variable at a time,
and so on. For any a ∈ C∞(U), apply Green’s second formula again, wher b = G(x, ·). We’ll
do this on the domain U\Bε(x). So we have∫

δU

a ∗ dG(x, ·)−
∫

δBε(x)

a ∗ dG(x, ·) +
∫

δBε(x)

G(x, ·) ∗ da = −
∫

U

G(x, ·) ∗∆a.
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So expanding the left hand side I get∫
δBε(x)

K(x, ·) ∗ da +
∫

δBε(x)

h(x, ·) ∗ da =
1

4πε

∫
δBε(x)

∗da +
∫

δBε(x)

h(x, ·) ∗ da.

The first term is of order ε and the second of order ε2, so both of thsee go to zero. The other
terms, well, we also have the ∗dG terms, which gives us a(x), and we’re left with for any
interior smooth, closure continuous function

a(x) =
∫

U

G(x, ·) ∗∆a +
∫

δU

a ∗ dG(x, ·).

Using Green’s functions, we can find the value of a smooth function at any point by looking
at its Laplacian and its boundary values. So if ∆φ = ρ0, and φ|δU = 0, then φ(x) =∫

U
∗G(x, y)ρ0(y).

If you have G, you also have a way to solve the boundary value problem, so that if φ|δU = f
and ∆φ = 0 then φ(x) =

∫
δU

f(y) ∗ dG(x, y).
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