Math Physics
 November 9, 2006

Gabriel C. Drummond-Cole

November 14, 2006

All right, so I want to finish this up today, so I'll try to buzz along. So remember we've been talking about electrostatics on $N=\mathbb{E}^{3}$. I turned this into a PDE course. If you've ever taken a physics class, electromagentism, it always turns into a PDE class. There are a couple of things you do initially. You want to solve Poisson's equation for the electric potential $\phi \in \Omega^{0}(N)$. This satisfies $\Delta \phi=* \rho$ for electric charge density $\rho \in \Omega_{c}^{3}(N)$.

Along the way, we've used Green's second formula to prove this lemma:
Lemma 1 Let U be a connected open set with bounded closure; two continuous functions a, b from \bar{U} harmonic on $U, \Delta a=\Delta b=0$. If these guys satisfy the same boundary conditions, then they are equal on U.

This gives us solutions to the Dirichlet boundary value problem.
For fixed $\left.f \in C^{\infty} \delta U\right)$ solve $\Delta \phi=0$ on U with $\left.\phi\right|_{\delta U}=f$.
Such a solution, if it exists, is unique.
How do we solve this? So we want $\Delta \phi=0$ in U. We won't have any charge sitting in U. Then the charge is sitting outside of U In order to find the field inside U we have to solve the Dirichlet problem. The field ϕ inside U doesn't, only depends on the charge distribution outside U up to the extent that it determines ϕ_{0}.

We've proved uniqueness in this roundabout way, using this lemma. The method also gives us solutions, so the method also implies uniqueness, and is a more "physical" approach. So that's what we'll get going on now. Recall Green's first formula, that for $a, b \in \Omega^{0}(U)$ we have

$$
\langle d a, d b\rangle_{U} \int_{\delta U} a * d b-\int_{U} a \wedge * \Delta b
$$

So we're going to use Green's first formula. Denote $C^{\infty}(U)$ as continuous functions on \bar{U} that are smooth on U. I'll call $C_{0}^{\infty}(U)$ the elements a of $C^{\infty}(U)$ such that $\left.a\right|_{\delta U}=0$. Then $\operatorname{Harm}(U)$ are elments $b \in C^{\infty}(U)$ that are harmonic on the interior.

I chose a and b to satisfy these conditions, and then Green's first formula tells us that these are orthogonal to one another. Then $d C_{0}^{\infty} \perp d$ Harm with respect to \langle,\rangle_{U}

In particular, if $u \in C_{0}^{\infty} \cap H a r m$, then u must be zero. Green's first formula implies more. That is, $d C^{\infty}=d C_{0}^{\infty} \oplus d$ Harm. So what does this decomposition imply for us? For any $f \in C^{\infty}$, we can write $d f=d a+d b$ uniquely for $a \in C_{0}^{\infty}$ and $b \in H a r m$. Then there is a projection operator $d C^{\infty} \rightarrow d C_{0}^{\infty}$ with $\pi(d f)=d a$ and $(1-\pi)(d f)=d b$.

This gives us a way to solve the Dirichlet boundary value problem. Let me remind you what we want. We want Φ smooth on the interior and continuous on the closure, such that $\left.\Phi\right|_{\delta U}=\phi$ and $\Delta \Phi=0$. Take any $f \in C^{\infty}$ with $f \mid \delta U=\phi$. Take Φ as b up to a constant. With a very little bit of functional analysis we were able to solve this problem. To solve Poisson's equation you need more functional analysis.

One thing I want to point out is these minimization principles. You know that harmonic functions should minimize distance of one-forms. What does this have to do with harmonic forms with the boundary conditions here. Notice that

$$
\|d f\|_{U}^{2}=\|d a\|_{U}^{2}+\|d \Phi\|_{U}^{2} \geq\|d \Phi\|_{U}^{2}
$$

Thus Φ minimizes the function $f \rightarrow\|d f\|_{U}^{2}$ among f that restrict to certain boundary values. This is step with what we know.

I'll just point out, we'll see that the modulus squared can be interpreted physically, so that $\frac{1}{2}\|d \Phi\|^{2}=\frac{1}{2}\|E\|^{2}$, so in this sense what happens is that Φ minimizes the modulus squared, the energy.

Define $K(N \times N) \backslash \Delta \rightarrow \mathbb{R}$ via $K(x, y)=\frac{1}{4 \pi} \frac{1}{\|x-y\|}$ for $x, y \in N$. I can write this for any two elements of N but it's only defined off the diagonal. For now fix x, and note that $* d K(x, \cdot)=\frac{1}{4 \pi} \beta_{x}$, where this is the volume form for the two-form centered at x.
[Is that a β.]
Yeah, β, ahh, β.
[What's the joke?]
It's from the Simpsons. Everyone leaves and Snake, he robs the house, and he's stealing their VCR and they have a β
[-a betamax-]
and he says [laughing] "ahh, beta."
So onyway. The identity we derived last time was

$$
a(x)=\frac{1}{4 \pi} \int_{\delta U}\left(a \beta_{a}+\frac{* d a}{r_{x}}\right)-\frac{1}{4 \pi} \int_{U} \frac{* \Delta a}{r_{x}} .
$$

So this is

$$
\int_{\delta U}(a * d K(x, \cdot)+K(x, \cdot) * d a)-\int_{U} * K(x, \cdot) \Delta a .
$$

From the Dirichlet boundary problem, for fixed $x \in U$, the function $K(x, \cdot)$ is smooth on the boundary so I know there exists a unique harmonic function $h(x, \cdot)$ such that $h_{U}(x, y)=$ $-K(x, y)$ for all y.

Lemma 2 1. The function $h_{U}: \bar{U} \times \bar{U} \backslash \Delta \rightarrow \mathbb{R}$ is continuous and differentiable in y on U.
2. For fixed $x, \Delta_{y} h_{u}=0$.
3. $G_{u}(x, y)=K(x, y)+h_{U}(x, y)=0$ for all $y \in \delta U$.

This is not hard to prove, but we'll see if we have time later.
I want to say some nice things about G. The second one,

Lemma $3 G(x, y)=G(y, x)$.

Take a ball of radius ϵ centered at both x and y. Apply Green's second formula to U minus these balls. The functions we consider are $a=G(x, \cdot)$ and $b=G(y, \cdot)$. Now, both a and b are harmonic on the domain, and both vanish on th boundary δU. So we get
$\int_{\delta B_{\epsilon}(x)} G(x, \cdot) * d G(y, \cdot)+\int_{\delta B_{\epsilon}(y)} G(x, \cdot) * d G(y, \cdot)=\int_{\delta B_{\epsilon}(x)} G(y, \cdot) * d G(x, \cdot)+\int_{\delta B_{\epsilon}(y)} G(y, \cdot) * d G(x, \cdot)$.
We claim that the left hand side goes to $G(x, y)$ as $\epsilon \rightarrow 0$ and by symmetry the right hand side goes to $G(y, x)$.

The second term of the left hand side, plugging in, is $\int_{\delta B_{\epsilon}(y)} G(x, \cdot) * d K(y, \cdot)+\int_{\delta B_{\epsilon}(y)} G(x, \cdot) *$ $d h(y, \cdot)$. The second term here goes to zero, since these functions are both smooth on the whole ball. Then the first half gives $G(x, y)$ because $d K(y, \cdot)$ is β_{y}.

What about the other half? You can imagine that we're going to expand a G in terms of h and K. You get

$$
\int_{\delta B_{\epsilon}(x)} K(x, \cdot) * d G(y, \cdot)+\int_{\delta B_{\epsilon}(x)} h(x, \cdot) * d G(y, \cdot) .
$$

The first term here is zero for the same reason as before. The first term is $\frac{1}{4 \pi \epsilon} \int_{\delta B_{\epsilon}(x)} * d G(y, \cdot)$, which is

$$
\frac{1}{4 \pi \epsilon} \int_{B_{\epsilon}(x)} d * d G(y, \cdot)
$$

Let's just kill this bird. G has these nice properties, it's harmonic one variable at a time, and so on. For any $a \in C^{\infty}(U)$, apply Green's second formula again, wher $b=G(x, \cdot)$. We'll do this on the domain $U \backslash B_{\epsilon}(x)$. So we have

$$
\int_{\delta U} a * d G(x, \cdot)-\int_{\delta B_{\epsilon}(x)} a * d G(x, \cdot)+\int_{\delta B_{\epsilon}(x)} G(x, \cdot) * d a=-\int_{U} G(x, \cdot) * \Delta a .
$$

So expanding the left hand side I get

$$
\int_{\delta B_{\epsilon}(x)} K(x, \cdot) * d a+\int_{\delta B_{\epsilon}(x)} h(x, \cdot) * d a=\frac{1}{4 \pi \epsilon} \int_{\delta B_{\epsilon}(x)} * d a+\int_{\delta B_{\epsilon}(x)} h(x, \cdot) * d a .
$$

The first term is of order ϵ and the second of order ϵ^{2}, so both of thsee go to zero. The other terms, well, we also have the $* d G$ terms, which gives us $a(x)$, and we're left with for any interior smooth, closure continuous function

$$
a(x)=\int_{U} G(x, \cdot) * \Delta a+\int_{\delta U} a * d G(x, \cdot) .
$$

Using Green's functions, we can find the value of a smooth function at any point by looking at its Laplacian and its boundary values. So if $\Delta \phi=\rho_{0}$, and $\left.\phi\right|_{\delta U}=0$, then $\phi(x)=$ $\int_{U} * G(x, y) \rho_{0}(y)$.

If you have G, you also have a way to solve the boundary value problem, so that if $\left.\phi\right|_{\delta U}=f$ and $\Delta \phi=0$ then $\phi(x)=\int_{\delta U} f(y) * d G(x, y)$.

