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All right, so I want to finish this up today, so I'll try to buzz along. So remember we’ve
been talking about electrostatics on N = E3. I turned this into a PDE course. If you've ever
taken a physics class, electromagentism, it always turns into a PDE class. There are a couple
of things you do initially. You want to solve Poisson’s equation for the electric potential
¢ € QO°(N). This satisfies A¢ = *p for electric charge density p € Q2(N).

Along the way, we’ve used Green’s second formula to prove this lemma:

Lemma 1 Let U be a connected open set with bounded closure; two continuous functions a,b
from U harmonic on U, Aa = Ab = 0. If these guys satisfy the same boundary conditions,
then they are equal on U.

This gives us solutions to the Dirichlet boundary value problem.
For fixed f € C*°6U) solve A¢p =0 on U with ¢|sy = f.
Such a solution, if it exists, is unique.

How do we solve this? So we want A¢ = 0 in U. We won’t have any charge sitting in U.
Then the charge is sitting outside of U In order to find the field inside U we have to solve
the Dirichlet problem. The field ¢ inside U doesn’t, only depends on the charge distribution
outside U up to the extent that it determines ¢y.

We’ve proved uniqueness in this roundabout way, using this lemma. The method also gives
us solutions, so the method also implies uniqueness, and is a more “physical” approach. So
that’s what we’ll get going on now. Recall Green’s first formula, that for a,b € Q°(U) we

have
<da,db>U/ a*db—/ a A xAb.
sU U

So we're going to use Green’s first formula. Denote C°°(U) as continuous functions on U
that are smooth on U. T'll call C§°(U) the elements a of C°°(U) such that a|sy = 0. Then
Harm(U) are elments b € C*°(U) that are harmonic on the interior.



I chose a and b to satisfy these conditions, and then Green’s first formula tells us that these
are orthogonal to one another. Then dC§° L dHarm with respect to (, )y

In particular, if v € C§° N Harm, then v must be zero. Green’s first formula implies more.
That is, dC*® = dC§°® & dHarm. So what does this decomposition imply for us? For any
f € C%, we can write df = da + db uniquely for a € C§° and b € Harm. Then there is a
projection operator dC*° — dC§° with 7 (df) = da and (1 — 7)(df) = db.

This gives us a way to solve the Dirichlet boundary value problem. Let me remind you
what we want. We want ® smooth on the interior and continuous on the closure, such that
D|su = ¢ and AP = 0. Take any f € C* with f|dU = ¢. Take ® as b up to a constant. With
a very little bit of functional analysis we were able to solve this problem. To solve Poisson’s
equation you need more functional analysis.

One thing I want to point out is these minimization principles. You know that harmonic
functions should minimize distance of one-forms. What does this have to do with harmonic
forms with the boundary conditions here. Notice that

l1df[[E; = lldal[t; + [ld®][ = [1d2][.

Thus ® minimizes the function f — ||df||?, among f that restrict to certain boundary values.
This is step with what we know.

T’ll just point out, we’ll see that the modulus squared can be interpreted physically, so that
11|d®||> = L||E||?, so in this sense what happens is that ® minimizes the modulus squared,
the energy.

Define K(N x N)\A — R via K(z,y) = ﬁm for xz,y € N. I can write this for any

two elements of N but it’s only defined off the diagonal. For now fix x, and note that
*dK (z,-) = ﬁﬁm, where this is the volume form for the two-form centered at x.

[Is that a (]

Yeah, (3, ahh, (.

[What’s the joke?)

It’s from the Simpsons. Everyone leaves and Snake, he robs the house, and he’s stealing their
VCR and they have a g

[-a betamax—]
and he says [laughing] “ahh, beta.”

So onyway. The identity we derived last time was
1 xda 1 *Aa

/6U(a*dK(:c,.)+K(x,.) * da) _/ «K (z,)Aa.

U

So this is



From the Dirichlet boundary problem, for fixed 2 € U, the function K(z,-) is smooth on
the boundary so I know there exists a unique harmonic function h(x,-) such that hy(x,y) =
—K(z,y) for all y.

Lemma 2 1. The function hy : U x U\A — R is continuous and differentiable in y on
U.

2. For fized x, Ayh, = 0.
3. Gu(z,y) = K(x,y) + hy(z,y) =0 for all y € §U.

This is not hard to prove, but we’ll see if we have time later.

I want to say some nice things about G. The second one,
Lemma 3 G(z,y) = G(y, x).

Take a ball of radius € centered at both z and y. Apply Green’s second formula to U minus
these balls. The functions we consider are a = G(z, ) and b = G(y, -). Now, both a and b are
harmonic on the domain, and both vanish on th boundary §U. So we get

/535(95) G(z,)*dG(y, .)+/(SBE(y) G(z, )*dG(y,) = /(SBE(I) G(y, )+dG(z, _)+/ Gy, )dG(x, ).

0B (y)

We claim that the left hand side goes to G(z,y) as ¢ — 0 and by symmetry the right hand
side goes to G(y, z).

The second term of the left hand side, plugging in, is faB‘(y) G(z,-)*dK (y, ')+f53€ @) G(z,)*

dh(y,-). The second term here goes to zero, since these functions are both smooth on the
whole ball. Then the first half gives G(z,y) because dK (y, -) is 3.

What about the other half? You can imagine that we’re going to expand a G in terms of h
and K. You get
[ Kwo)xdGwo)+ [ )6,
0B (x) 6Bc(x)
The first term here is zero for the same reason as before. The first term is ﬁ féB @) *dG(y, ),
which is )

— d*dG(y,-).
4me B () ( )

Let’s just kill this bird. G has these nice properties, it’s harmonic one variable at a time,
and so on. For any a € C*°(U), apply Green’s second formula again, wher b = G(z, ). We’ll
do this on the domain U\ B.(z). So we have

/ a*dG(x,~)—/ a*dG(x,~)+/ G(x,~)*da:—/G(:c,-)*Aa.
U 0B (z) 0B (z) U



So expanding the left hand side I get

1
/ K(z,-) *da—f—/ h(z,:)*da = — *da—l—/ h(z,-) * da.
5B, (z) 5B. () ame JsB. (z) 5B. ()

The first term is of order € and the second of order €2, so both of thsee go to zero. The other
terms, well, we also have the *dG terms, which gives us a(z), and we’re left with for any
interior smooth, closure continuous function

CL(J?)Z/IJG(x,-)*Aa+/5UCL*dG($,~).

Using Green’s functions, we can find the value of a smooth function at any point by looking
at its Laplacian and its boundary values. So if A¢p = pg, and ¢lsy = 0, then ¢(z) =

Jor %Gz, y)po(y).

If you have G, you also have a way to solve the boundary value problem, so that if ¢|sy = f
and A¢ = 0 then ¢(z) = [5,; f(y) * dG(z,y).



