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I’m going to start kind of inspired by some of this publicity about Perelman, discussing
covering spaces and the fundamental group, and study how they control two-dimensional
manifolds, and how in dimension three because of the Poincaré-Thurston geometrization
conjecture, proven by Thurston, Hamilton, and Perelman, also controls in dimension three.
If you try to study higher dimensional spaces, two dimensional complex algebraic varieties,
you need more than the fundamental group, and you start introducing more tools of algebraic
topology.

I skipped a step, but that’s the historical development at the beginning of algebraic topology
a hundred years ago. It continued. In the twentieth century, the methodology of algebraic
topology, I’m going to draw a picture. You might have a lot of things, draw them as points, so
there might be equivalences, which you draw as a path. Sometimes the paths or equivalences
are themselves equivalent. If you keep going this way, that’s the basic picture of digging into
a space and getting the algebra out of, but also in algebra derived from geometric discussions.

Let’s start. Now many of you here have heard of the fundamental group, but I’m going to
emphasize the basic instruction in this first part because it has a lot of other applications.
The idea of algebraic topology is to attach algebra to some spaces. I have a list of spaces.
Typical spaces we want to start thinking about are, well, nonlinear spaces:

• Riemann surfaces

• Manifolds

• Solutions to algebraic equations in Cn

• Algebraic varieties

• Mapping spaces, like the space of all continuous maps of the circle into a different space.
This is an infinite dimensional space, but it’s nonlinear.

That’s kind of a good list of spaces. At first blush algebraic topology doesn’t apply to linear
spaces.
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The first piece of algebra is that if you have two paths in a space, then you can sometimes
combine them. You still get a map from 0 to 1 by splitting the path in half and speeding up
each half to double speed. This partial composition, simple as it is, is pretty profound.

I want to do now the construction of covering spaces using paths. Just to keep those people
interested, who, if you modify this construction slightly you can get all bundles with a, well,
connection and a holonomy construction. So this has more juice in it than I’m using now,
and that will come up later in the year.

So if X is some topological space, and we have to assume that it’s locally path-connected
and locally simply connected. This means every point has a neighborhood so that a path
can be drawn between two points in the neighborhood and that in every neighborhood there
is a smaller neighborhood where two any two paths between two points can be “filled in.”
You can drop this assumption but then some of the results won’t be true.

Choose a basepoint ∗ ∈ X, and this is very important. We’re going to construct all the
covering spaces of X and in particular the universal covering space. If I use my notes I can’t
think. Now consider, let R be an equivalence relation on all paths from the base point to
some point x ∈ x defined by setting two such paths γ1, γ2 equivalent if going along γ1 and
then backwards along γ2, which we denote with a bar: γ̄2, then this falls in some given subset
of closed paths starting and ending at the basepoint. This should be closed under inverse,
so we want it to be invariant under γ 7→ γ̄. We want it to be transitive, so that a, b ∈ S
implies a ∗ b ∈ S. Our big assumption to connect to covering spaces is that S contains all
nullhomotopic loops. Then if you have a closed loop, there would be a map of the disk, well,
a map of the square which sends [0, 1]×{0, 1} to the basepoint. If this extends over the disk,
then we say it’s nullhomotopic.

We’ve made all these assumptions, now to make the construction. The advanced remark
related to this is that Milnor and some physicists like to describe theories on spaces of maps
like this. They use a less brutal equivalence, that if you leave along a path and return along
the same path, a nullhomotopy of zero area, you get into the holonomy discussion. Milnor has
a nice paper at the end of the fifties. He showed that if you mod out by one of these relations,
and also keep only a finite number of these excursions, you end up with a topological group.

Remember R was this equivalence relation. Let Fx be the set of equivalence relations. Take
all the different equivalence classes of paths between the basepoint and x, and you put over
x all of these equivalence classes. If you have another path from x → x′, you can send
equivalence classes of paths Fx to Fx′ . Now if you have any path between two such points,
you can compose and get a path to the next one. There is a map from the fiber of one point
to the fiber of another. This is the result of choosing short paths. As you move the other
point along the path, it moves around and finds another version of itself. Because of the
way we have a big equivalence relation, if you move the path by a hometopy, then this won’t
change. So if you take one of these neighborhoods which come from the assumption, if you
take another point here, then there’s a unique path, shortest, so that there is a canonical
equality.

Exercise 1 There is a natural topolagy on ∪xFxz and is homoemorphic to UxFx.
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Two paths are close if their endpoints or, I need to put a topology on functions.

[The compact open topology comes from taking as a basis the set of maps from compact
subsets to open subsets of X.]

My mind is blank now. If the space is defined by a metric, then two paths are close if they
are close metrically. Does anyone know how to define this correctly?

The advanced version for people too advanced to do this one is to try to discuss bundles
with connection. If you don’t know what this is, that’s okay. Replace this nullhomotopic
condition with the zero area nullhomotopic condition.

All right, now the example, the main example for today, I hope we get there, take S to be
just the nullhomotopic paths. Two paths are equivalent if going around one and then back
around the other, that’s nullhomotopic. So the X̃ for this is the so-called universal covering
space. And I should say that if, also, the fundamental group π1X at the basepoint ∗ is all
closed paths with composition modulo nullhomotopic paths. I should have added that over
here, in the general case, the π1(X) at the basepoint acts on the X̃. It acts on every covering
space, because if you have a basepoint, and then a point above x, then you go along a given
path, and then around the path you were given, to get to another point over x.

In a general cover, well, there’s action on this. All these fibers can be thought of as homo-
geneous spaces of this group, meaning that it acts transitively, but it doesn’t make the fiber
into a group.

I’m going to draw a group now, this is a group. You get cosets which give you partitions,
like a foliation, and you can take the set of equivalence classes. The group acts, say, on the
right for the left cosets. They are sets, not groups. Subcovers are in correspondence with
subgroups of the fundamental group. If you remember this path construction you’ll always
be able to recreate this theory for yourself.

The kernel is sometimes called the isotropy group. We don’t need all these words, it’s just
the construction.

Now this picture here, one fantastic property of this construction is that if X has some nice
property, say it was a manifold with some kind of structure, then X̃ picks up any local
properties that X has.

Let’s recall that, if you’ve heard it already, that

1. a d-manifold is a Haussdorff space with a countable covering by open sets Wα each
of which is homeomorphic to an open set Uα ⊂ Rd. There are interesting examples of
non-Hausdorff manifolds, and then there are also examples of things that don’t really
come up in math, like the long line, or its product with itself. It’s unknown whether
that product has a real analytic structure, I think. The homeomorphisms Wα → Uα

are called charts, and then the second thing to recall is

2. that given α, β, the overlap homeomorphism associated to this cover Wα,i s ϕαβ is
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defined between the images of Wα ∩Wβ into Uα, Uβ respectively.

3. X is an S-manifold for some structure on Rd, if the ϕαβ preserve the structure. For
example, S could be differentiable.

Being a topological manifold is unique, there is no additional structure. But being a differen-
tiable manifold you have to choose your charts carefully. There are many different structures
on any space, say, on the real line. They may be equivalent but there are many of them.
That’s another advanced structure.

We could have differentiable in the holomorphic category, and then S would be holomorphic
invertible with no zero derivatives.

We could also have, you could do symplectic, say that you have symplectic maps, ones that
preserve a standard symplectic structure. You can modify this structure on qα∪α and ask
that it be compatible over isomorphism. That lets you get Riemannian metrics, we don’t
need to worry about that.

Then the main thing is that any covering space of an S-manifold is an S-manifold. For
consistency I need to know the layers over a point are countable, but I can prove that.

So the covering space of a smooth manifold is a smooth manifold, similarly for a Riemannian
structure.

Now let’s define a Riemann surface. It’s a surface, a two-dimensional manifold whose overlap
maps in some chart are of the form z → f(z). Every place you have a φαβ it looks like this.
Another logical thing is to take a maximal set in the set of charts, you throw in all charts
that are compatible.

If you didn’t make the countability assumption but you made the Hausdorff assumption,
they proved that these are still paracompact.

Then there’s this celebrated theorem about Riemann surfaces, that there are only three
Riemann surfaces that are connected and simply connected, meaning that the fundamental
group is trivial. They are C, that’s one, H ⊂ C, everything above a line, not including
the line, and C ∪ ∞ = S2. Poincaré couldn’t quite prove this, Koebe had to help him.
And then this has roots in an older thing, Gauss showed that if you have a little piece of a
Riemannian surface, there is a covering, by “Gauss’ isothermal coordinates,” where the maps
are conformal but not distance-preserving. You can make the maps orientable, and then the
overlap homeomorphisms will be orientation preserving and conformal. So the matrices are
given by a single complex number. So any differentiable surface is a Riemann surface. Then
you can take its universal cover, I didn’t prove this but it’s simply connected, so it’s one of
these three things. Now then you get a corollary, which is, well, we can do some examples,
C− pt, and then z 7→ ez : C → C− pt is the universal cover, and this is called the cylinder.
This is also called C∗. What are the deck transformations? They are z 7→ z + 2πi, so this
is the deck transformation, and you can divide by this, and also, keeping this one, divide
by z 7→ z + λ, any complex number not purely imaginary, then C modulo these two things,
well, C modulo the first series of translations is the cylinder. If you mod out by the second
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set of translations, they’ll be independent, and then this will be the torus. You can vary
the λ parameter, so you get a number of tori. You also get C ∪ ∞, which is S2. These we
call the elementary Riemann surfaces. Putting this together, we get the theorem, there is a
one to one correspondence between nonelementary Riemann surfaces and discrete subgroups

without torsion of PSl(2, R), matrices
(

a b
c d

)
of determinant one, maps z 7→ az+b

cz+d with

real coefficients. These are holomorphic translations of the upper half-plane, because the
elementary ones exhaust the surfaces covered by S2 and C. There must be a subgroup,
without torsion for transitivity and discrete so that the space below can be evenly covered.
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