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Monomial ideals are easiest: I = 〈mi|i ∈ A〉 ⊂ k[x1, . . . , xn] = S. Monomials are m = xα =
xα1

1 · · ·xαn
n . We can look at the staircase diagram that comes from α.

So we want to look at the dimension of R = k[x1, . . . , xn]/I = ⊕∞i=0Ri a k-vectorspace. Note
that RiRj ⊂ Ri+j .

Now, dimk(R) = and dimk(Ri) is the number of monomials of degree i in S not in Ii.

Now say J is a more general ideal. We’re going to find a monomial ideal I such that all
monomials not in I form a basis for S/J as a k-vector space. This will prove the Hilbert basis
theorem. It will also eventually allow us to decide whether an element of S lives in J. If J is
homogeneous, I’ll also be able to find the dimensions of the graded pieces. If J is a homogeneous
ideal 〈f1, . . . , fn〉, then S/J is a graded vector space ⊕∞i=0Vj . We have a very important function
H : p → dim)k(S/J)p. It turns out that this agrees with a polynomial except at finitely many
values.

Now if J were a monomial ideal, then counting this dimension would be easy. So how do you
find this monomial ideal? You essentially want to pick monomials out of the polynomials you
have. So you need some sort of ordering.

Now you need your monomial ideal to contain a monomial from each generator polynomial of J.

Definition 1. Given an order on the variables, a monomial order on S = k[x1, . . . , xn] is a
relation � on xα such that

(1) � is a total ordering
(2) � is compatible with ·, so that xα � xβ implies xγxα � xγxβ(� xγ

(3) � is a well-ordering (redundant with the end of the previous line)

Exercise 1. Show that any selection function to give the monomial ideal I must be a monomial
order.

Exercise 2. Show that there is only one monomial order on k[x], the order by degree.

Typically a monomial order will refine the degree. Now say you are in k[x1, . . . , xn]. Here are
some orders:

• lex: Here, xα � xβ if the leftmost nonzero entry of α− β is positive.
• Grlex: Grade first by degree, i.e., by α � β if |α| > |β| and then if |α| = |β| you grade

by lex.
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• This is a bad order, but is the best possible for doing computations. You can eliminate
variables. revlex: xα � xβ if either |α| > |β| or |α| = |β| and the rightmost nonzero
entry of α− β is negative.

Exercise 3. There is one order refining degree in two variables.

So compare x3y6 with x3y4z, then x3y6 is greater in glex. This is also largest in revlex.

On the other hand, for xz and y2 we have xz larger in glex and y2 larger in revlex.

There are other orders you can build, which have some geometric interpretation. You look at
some weighted functional related to a polytope in some way.

Definition 2. If f ∈ k[x1, . . . , xn] and � is a monomial ordering, then the initial m�(f) is the
largest monomial in f with respect to � .

Exercise 4. (1) If mlex(f) ∈ k[xs, . . . , xn], then f ∈ k[xs, . . . , xn]. If f is homogeneous then
the same is true for mGrlex.

(2) If mrevlex(f) ∈ (xs, . . . , xn), then f ∈ (xs, . . . , xn). Note that this is an ideal whereas in
the first case it was a subring.

Lemma 1. Dickson Lemma
Any set of monomials has only finitely many minimal elements in the partial order given by
divisibility. Equivalently, every monomial ideal is finitely generated (by a subcollection of any
set of monomial generators)

Now take your favorite ideal J ⊂ S and a monomial ordering � . Now take from each polynomial
in J the initial monomial to get the initial ideal of J, m�(J) = 〈m�(f)|f ∈ J〉. With the
Dickson lemma this will give us the Hilbert basis theorem. That is, m�(J) will be a monomial
ideal. Then a subcollection 〈m�(g1), . . . ,m�(gm)〉 will generate m�(J) and we can get that
〈g1, . . . , gm〉 generates J. Then J is finitely generated. If you want to be really picky, this works
not just over a field, but over any Noetherian ring. Now such a set {g1, . . . , gm} is called a
Gröbner basis.

This shouldn’t really be called a Gröbner basis because Gröbner didn’t really work with these.
His student did. Other people were already working with things like these, in, say, power series
rings.

This is essentially Gordon’s proof of Hilbert’s basis theorem. The standard proof was by induc-
tion and was nonconstructive. Hilbert put the German mathematicians looking for these things
out of business by saying that these were always finitely generated. But he gave no way to find
the generators. Gordon gave you a way to find it.

You use this stuff to prove that k[x1, . . . , xn]σn = k[y1, . . . , yn] by yi → σi, where these are the
symmetric polynomials of degree i.

Now I’m going to give you an algorithm. A lot of these are no good from a computer scientist
standpoint. If you work in Grlex, the degree of the Gröbner basis will be doubly exponential
in the number of variables, whereas with revlex the degree will be roughly comparable with the
number of variables.
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By the way, this also solves the problem of ideal membership. I give you a finite polynomial
basis and I want to know if another polynomial, say 1 for instance, is in their span. You look
instead at the initials. It is a combination if and only if the initial term is in the initial ideal.

Now let’s prove Dickson’s lemma.
We’ll proceed by induction on the number of variables. If n = 1 then the ideal is 〈xα

1 |α ∈ A ⊂
N〉 = 〈xαmin

1 |αmin = min{α|α ∈ A}〉 So if n = 1 then the ideal is principally generated.

For the induction step, I’m going to use x to refer to the monomial factor in the first n − 1
variables. Now, we want to look at (I : x∞n ) by which we mean 〈xα|∃mα, xαxmα

n ∈ I〉. This is an
ideal J ⊂ k[x1, . . . , xn−1] which is finitely generated (by {xα1 , . . . , xαs} by induction. So take
first xαixmi

n For each k < max{mi} let Jk = (I : xk
n) = 〈xα|xαxk

n ∈ I〉 ⊂ k[x1, . . . , xn−1]. This is
finitely generated by {xαk1 , . . . , xαks}. Then my Gröbner basis will be {xαixmi

n , xαkj xk
n}. So you

just show that these generate I, which is fairly straightforward.

The only thing missing is that you can always get a subcollection. Say I = 〈xα, α ∈ A〉. We
pick a Gröbner basis {xβi}; each of these must be a multiple of some xαi . Then this collection
of corresponding xαi generates I as well.

This triviality is called Macaulay’s theorem:

Theorem 1. A basis of S/I is formed by all monomials not in m�(I).


