
ALGEBRA III
SEPTEMBER 21, 2004

GABRIEL C. DRUMMOND-COLE

Next time we’ll be meeting in the computer lab. You all have played with unix, or linux, yes?
Well, you may want to look at some documentation for Macaulay beforehand.

So do you remember the Gr obner basis? We were working in the ring S = k[x1, . . . , xn], and �,
a term order. For f ∈ S you can pick out the leading term in�(f) = lt�(f). From I you can get
in�(I) = 〈in�(f)|f ∈ I〉, which is finitely generated. Now, a system of generators f1, . . . , fm of
I whose leading terms generate the appropriate monomial ideal is called a Gr obner basis.

Lemma 1. If J ⊂ I as ideals in S, then in�(J) = in�(I) implies J = I.

This is extremely powerful. You’ll use it over and over again. Assume you have f ∈ I with f /∈ J.
Take it so that the in�(f) is the smallest of {in�(g) : g ∈ I\J}. Then in�(f) ∈ in�(I) = in�(J).
Then there is g ∈ J with in�(f) = in�(g). Then f − g is in I but not in J. But the initial term
is strictly smaller than that of f, a contradiction.

Most of the proofs about Gr obner bases are of this type, mainly bookkeeping.

Corollary 1. A gr obner basis generates the ideal.

Proof: J = (f1, . . . , fm) ⊂ I has in�(J) = in�(I).

Corollary 2. If I ⊂ S is an ideal, then I is finitely generated.

Proof: Pick a term order, find a finite set of generators of in�(I) {in�(f1), . . . , in�(fm)}. Then
{f1, . . . , fm} are a Gr obner basis for I, and so generate it.

Lemma 2. Macaulay’s Lemma
Let I ⊂ S, and � a monomial order. The set of monomials not in in�(I) form a basis over k
for S/I.

This is as a vector space, and of course depends a lot on the order. This was the promise. Find
a monomial ideal so that the monomials not in it form a basis for the quotient, and we did it.

So let’s prove this, and let’s construct a Gr obner basis. Can we make this basis unique? As we
did it there is no uniqueness.

Now, how do we prove this lemma? First we have to show independence. Let the “basis” set be
B. If we have

∑
uimi = 0 with ui ∈ k,mi ∈ B, this means the sum p is in I.

We can assume that all ui are nonzero. Then in�(p) ∈ in�(I). This is just nimi for some i.
But then mi ∈ B, a contradiction since B consists of the monomials not in in�(I).

1



2 GABRIEL C. DRUMMOND-COLE

Now to show that B generates S/I, we have to show that anything mod I can be written as a
combination of the b′s. So I want to show that B and I generate the whole polynomial ring.
So by contradiction we assume that B and I do not generate S as a vector space. So suppose
we have f not in the span of B and I, and choose such an f with the smallest initial term out
of the set of such. Now in�(f) is either in B or in in�(I). If this sits in B then I can subtract
it yielding a new vector f − in�(f) not in the span of B and I with a smaller initial term, a
contradiction.

If on the other hand, if in�(f) ∈ in�(I), then there is a g ∈ I with in�(g) = in�(f). Then
again there is a contradiction with the element f − g, which is not in the span of B and I but
has a smaller initial.

So most of the proofs here will be of this type. They’re not so hard once you have the idea.

Okay, there are two things I want to talk now. How do we generalize division? Second, how do
you compute a Gr obner basis. I won’t prove that. I’ll tell you where you can see the proof, for
instance in Eisenbud’s book, but it’s generally like this and will take half an hour.

So when you have one variable, division gives you a remainder which is smaller than what you
had.

Proposition 1. Say you have g1, . . . , gt, f ∈ S. This will be division of f by the gi. In one
variable it will be division by the gcd. Then there exists an f =

∑t
i=1 higi + f ′ such that none of

the monomials in f ′ is in 〈in�(g1), . . . , in�(gn)〉, and such that the initial of f is at least equal
to in�(higi) for all i.

This is not unique. The choices will have to do with ordering. So what’s the proof? You look
to the initial term in�(f). If it’s not divisible by in�(gi) then you’re done. Then f is its own
remainder. Otherwise, in�(f) = in�(gi)mi. This is not unique. Then you can subtract λmigi

and repeat the process with a smaller polynomial. Keep going. This process terminates finitely.
Once it terminates, you have the remainder.

There is a way to make the remainder unique. Let me state this. We’ll put slightly stronger
conditions here; the proof is as before. So the alternative is to write f =

∑
higi + f ′ with the

property that the monomials of hj lie in the set of monomials n of S such that n in�(gj) /∈
〈in�(g1), . . . , in�(gj−1)〉 and such that the monomials of f ′ do not lie in 〈in�(g1), . . . , in�(gn)〉.
This is slightly stronger. It’s called determinant division. You prove it by picking, every time,
the smallest i such that you can write in�(f) = in�(gi)mi.

Exercise 1. Show that with determinant division the remainder is unique.

Here’s a special case. So what happens if I divide an f by a Gr obner basis g1, . . . , gt for
〈g1, . . . , gt〉? Then the remainder of f by division is unique. It’s called the normal form of
f, Normalg1,...,gn(f).

For the proof, look to f̄ in S/I. Then the normal form is exactly the expression of f̄ in the basis
B of monomials not in in�(I).

So now we can answer one of our questions, how I can check ideal membership.

Corollary 3. Say I ⊂ S, f ∈ S. Does f ∈ I? Choose a term order �, compute a Gr obner basis
g1, . . . , gt with respect to � for I, and then Normal(g1,...,gt) = 0 if and only if f ∈ I.
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If the normal form is zero, then f is clearly in I.

Note that this doesn’t work with just a set of generators. The remainder can be nonzero even
though f is in I.

Two more things. How can you make Gr obner bases unique, and how many are there?

Lemma 3. If you have I ⊂ S, then I has only finitely many initial ideals.

There are infinitely many orders, such as the weighted orders xα � xβ if
∑

αiγi >
∑

βiγi.

This is related to Newton polytopes. These have a lot to say. It’s kind of the convex hull of the
exponents in Rn.

As a consequence, every ideal has a universal Gr obner basis, a Gr obner basis with respect to
any order. Put all of the finitely many finite Gr obner bases together; then you get a Gr obner
basis under any order.

Example 1. M =
(

x11 . . . x1n

x21 . . . x2n

)
. Let S = k[xij , i ∈ 1, 2 and j ∈ 1, . . . , n. Then the

universal Gr obner basis is the collection of 2× 2 matrices of M.

Definition 1. (g1, . . . , gt) is a minimal GB for I = 〈g1, . . . , gt〉 if in�(gi) is not divisible by
in�(gj) for j 6= i. Then this is a collection of minimal generators for in�(I).

Definition 2. (g1, . . . , gt) is a reduced GB if in�(gj) does not divide any monomial of gi for
i 6= j.

Up to monotonicity this is unique. I’m going to sketch the proof and leave the details as an
exercise.

Lemma 4. Reduced Gr obner bases exist and are unique.

Corollary 4. I = J if and only if they have the same reduced Gr obner basis.

To prove the lemma, let’s make a tiny definition.

Definition 3. g ∈ G is called reduced with respect to G if no monomial in g is divisible by
in�((G{g})).

There are two observations. If g is reduced for G and we modify G to G′ so that they have the
same initial terms, then g is still reduced with respect to G.

So start with a minimal G, with g ∈ G. Compute g′ which is the remainder with respect to
division by G\{g}. I claim that G  G′ = G\{g} ∪ {g′} yields a Gr obner basis, and that g′ is
reduced with respect to it.

Now, why is this true? Since G is minimal, the initial term is not divisible and stays as the initial
term of the remainder. So the monomials that come from G′ are the same as the monomials
from G.

Why is it unique? That’s what’s left to prove. This I’ll leave as an exercise.

Exercise 2. If G1 and G2 are minimal GB then in�(G1) = in�(G2).
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If G1 and G2 are reduced then their initials are the same. For g ∈ G1 there exists h ∈ G2

with in�(g) = in�(h). Then g − h is in I; what is its normal form with respect to G1? It’s zero
because this tests for ideal membership. Then the initial term of g − h is strictly smaller than
the initial term of g. Then it’s not divisible by anything in G1. Who can it be divisible by? The
monomials from g in the sum can’t be divisible by any of the other elements since G1 is reduced.
So the difference is 0.

You’ve seen these in linear algebra, not knowing it. Let I be linear forms 〈⊂ k[x1, . . . , xn]〉. Say

we have a system of equations
{

x1+ · · · −7x11 = 0
· · · · · · · · · · · ·

}
. There’s a row-echelon form, and

the reduced row-echelon form. The first is a minimal GB and the second is a reduced GB, for
the ideal generated by these linear forms. This is in lex.

Exercise 3. Show this

Now I’d like to show how you compute a Gr obner basis. There are other things, like how do you
compute the intersection of two ideals? How do you compute the colon? Lagrange multipliers
are good candidates for this sort of thing; this is why you can’t give hard problems on them to
calculus students.

So suppose g1 = x2, g2 = xy + y2, x > y and we’re in lex. Then the initials are x2, xy. Is this a
Gr obner basis? Look at the lcm or the gcd. So gcd(in(g1), in(g2)) = x, and the lcd is x2y. So
I look at (in(g2)/x)g1 − (in(g1)/x)g2; this kills the initials. This is yg1 − xg2 = −xy2. Now we
have a problem. This is an element of the ideal, and its initial is divisible by the initial of g2. So
I kill it by division, and I get −xy2 = −yg2 + y3. Now y3 is not in the monomial ideal generated
by in(g1), in(g2) so that the pair is not a Gr obner basis. So add in g3 = y3.

The algorithm is the following. The lcm/gcd trick is called the S-pair S(g1, g2).
This is in(g2)

gcd(in(g1),in(g2))
g1− in(g1)

gcd(in(g1),in(g2))
g2. This is called the Buchberger criterion. If S(gi, gj)

reduce to zero mod g1, . . . , gm, for all i 6= j, then (g1, . . . , gm) is a Gr obner basis.

It’s easy to show that the process terminates, if you start with a generating collection and adding
in new elements. Unfortunately it’s an exponential process. You don’t need to check all the S-
pairs. Essentially if the initial terms are relatively prime, then it reduces for free to zero. If you
want to see the proof of this, it’s a little bit time consuming, it’s in Eisenbud’s book.

Returning to our example, S(g1, g2) reduces now. We still have to check S(g1, g3) and S(g2, g3).

Now what is the point to each of the orders? Which Gr obner bases help me solve which
problems? So more next time. Next time we meet in S235.


