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So, today I want to essentially say a couple of words about Artinian rings, but from a more
applied point of view. It will require a little bit of topology; if you don’t know the topology then
take it on faith.

In what follows, k will be a field, most of the time C and sometimes R.

One way to get a local ring is to localize, at a prime ideal (subvariety) or a hypersurface defined
by a function.

There are other rings which become local, essentially by fiat.

Proposition 1. k[[x1, . . . , xn]] (any field), k{x1, . . . , xn} (convergent power series over R or C,
i.e., On), k[x1, . . . , xn](x1,...,xn) are local rings

The second one here is exactly germs of holomorphic functions. If you put together all the germs
you get a sheaf. So this is a local manifestation of the sheaf; it’s a natural ring to look at. This
is a local ring, as opposed to O(U).

You also have an inclusion k[x1, . . . , xn](x1,...,xn) ⊂ k{x1, . . . , xn} ⊂ k[[x1, . . . , xn]. The first of
these is in some sense the algebraic-geometric localization, the second the analytic localization,
the third the formal localization.

The unique maximal ideal is (x1, . . . , xn) in all of these. Say g /∈ (x1, . . . , xn); Then up to a
constant this is g = 1 + h, h ∈ (x1, . . . , xn). So the inverse of 1 + h is usually

∑
(−h)i. When h

a formal power series has no constant term, this sum does not involve infinitely many terms in
any variable, so if g is a formal power series not in (x1, . . . , xn) then g is a unit.

The same is true for the ring k{x1, . . . , xn}; the inverse converges for a small enough disk around
the origin.

Finally, in the smallest ring, you have something like f
g = f(

∑
(−h)i) which shows that you

have an inclusion. No one cares about the formal power series but the other two are very
important. The second one contains more information because it includes functions which are
not polynomials.

What are the typical things in which we are interested? Take an ideal in the polynomial ring
which vanishes at the origin; you localize to find the multiplicity of its vanishing.

Let’s try an example, then I’ll put definitions.

Let I = (x2 + x3, y2) ⊂ C[x, y].
This is the zero locus of two polynomials. Let A = k[x, y]/I,dimk A = lt(A) = 6.
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V (I) = {(−1, 0), (0, 0)} ⊂ C2. In particular this ideal is not radical, and shows you that the
vanishing happens with multiplicity.

How do I calculate the multiplicity of these points in such a way that the multiplicities add to
the dimension? This is how things work in one variable.

If I ⊂ k[x1, . . . , xn],#V (I) < ∞ and 0 ∈ V (I) then

multI(0) = dimk k[x1, . . . , xn](x1,...,xn)/Ik[x1, . . . , xn](x1,...,xn) =

dimk k{x1, . . . , xn}/Ik{x1, . . . , xn} = dimk k[[x1, . . . , xn]]/Ik[[x1, . . . , xn]].
The last two equalities are lemmas. To do it off the origin, you localize at the ideal of that point.

The computation of this particular example is very easy. I won’t prove it, but I will try to give
evidence for a result of Milnor in ’68 that is useful for exotic spheres among other things.

We have mult0(I) = dimk k[x, y](x,y)/(x3 + x2, y2)k[x, y](x,y) = k{x, y}/(x2 + x3, y2)k{x, y}. I’m
claiming these are equal.

So x2(x + 1) is the first generator, but x + 1 is invertible with inverse 1− x + x2 + · · · . So the
dimension is the dimension of dimk k[x, y](x,y)/(x2, y2)k[x, y](x,y).

What is the inverse of 1+h? Look to h3? Any polynomial is divisible by either x2 or y2 so is zero
in this ring. Since this is a local ring, the Gr obner basis will transfer from one ring to another,
which proves the lemmas. The basis for these is 1, x, y, xy so we have multiplicity four.

So let’s compute for the other zero; let’s do it by changing coordinates. Instead of localizing at
x + 1, y call these u, v and localize k[u, v](u,v)/((u− 1)2 + (u− 1)3, v2)k[u, v](u,v).

The polynomial in u is u3− 2u2 + u = u(u2− 2u + 1). Since u2− 2u + 1 is invertible you get the
ideal (u, v2) in the local ring and (1, v) is the basis. So the multiplicity here is two and we get
six total, as we should.

Theorem 1. Let I ⊂ k[x1, . . . , xn], k = k̄,#V (I) = {p1, . . . , pm} < ∞. Then

dimk(k[x1, . . . , xn]/I) =
m∑

i=1

dimk(Oi/IOi) =
∑

mI(pi).

Here Oi is one of the three localizations at pi.

We proved this, actually. Let me convince you. The quotient is an Artinian ring; it’s the direct
sum or product of local rings, since a finite length module is a direct sum of localizations at
maximal ideals. The maximal ideals in such a quotient are the maximal ideals of the polynomial
ring which contain I; then these are precisely the points. What we proved was that the quotient
was

∏
Oi/IOi.

Corollary 1. I =
√

I if and only if mI(pi) = 1 for all pi ∈ V (I).

That is because the dimension of the quotient k[x1, . . . , xn]/I is at least the dimension of the
quotient by the radical. But for a radical ideal the dimension is the number of points so for the
sum of the multiplicities to be equal to the sum of copies of the number one, it is necessary that
every multiplicity be one.

If you just want to do convergence, you have to make sure that the things you invert are
convergent, if you want to do your computation in the convergent ring.
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The books will talk about analytic algebras, which are precisely Oi/IOi.

The initial terms in some order will be the smallest power terms. All of the Gr obner basis stuff
works in these rings, but with different kinds of orders. The bases are the same, morally, but
somehow different.

Macaulay cannot compute in local rings but another program, Singular, does. I’ll show you
maybe next time we go there.

Why are we interested in multiplicities? Say I have a germ of a holomorphic function f ∈ On+1.
I look at the germ (X, 0) = ({f = 0}, 0). Say f = y2 − x3 ∈ k{{x, y}}. Then ({f = 0}, 0)
is not a submanifold; it is a cusp, since the partials vanish here. I don’t need to localize for
k[x, y](x,y)/(3x2, 2y)k[x, y](x,y) since its variety is the single point 0.

I’m looking at µ(f) = k[x0, . . . , xn](x0,...,xn)/Jfk[x0, . . . , xn](x0,...,xn) which only gives you some-
thing meaningful for Jf singular.

If ε is small and I look to Bε around 0 in affine space, then its boundary is a 2n + 1 dimensional
sphere of radius ε.

If f is a polynomial I can see f as a function Cn+1 → C.

There is some finite set in C such that if you look over the complement, then f : Cn+1\f−1(Bf ) →
C − Bf is a locally trivial fibration. The idea is that if you remove the origin, all of the fibers
will look the same.

What Milnor proved was that S2n+1
ε ∩ {f = 0} is a 2n − 1 dimensional submanifold. If n = 1

then this is a collection of circles, i.e., a link.

If f is irreducible in On+1 (This is a UFD, which I didn’t prove; it is different than polynomial
irreducibility, an example is y2 = x2(x + 1). At the origin this factorizes as (y− x)(y + x).) then
f is a knot, not a link. The number of factors in the convergent power series is the number of
components of the link. These are examples of fibered links. The intersection of the ball is the
cone over your link.

If in the sphere you get rid of your link then you’ve got a map S2n+1
ε ∩X = Kε, a link. Then

I can talk about the complement (you have to do things a little different if you’re working over
germs of holomorphic functions), where f takes nonzero value. Then you can map to the sphere
by x → f(x)

|f(x)| . Then this looks like a bouquet of spheres, with a number of spheres equal to µ(f).

Take a branch for one part of a link; take a branch for the other; the multiplicity of their
intersection is the linking number. So there is a very nice interpretation of this. It’s a story that
can be read from a very nice text from ’68 or ’69. It has this theorem, that the number of circles
in the bouquet is equal to µ(f).

So I’m in S3, the boundary of the ball, and for ease I’ll take ε = 1. Where would you do
a stereographic projection? You want (1 − t) + ta0 = 0 which gives you t = 1

1−a0
. So the

projection gives (a0, . . . , an) → ( a1
1−a0

, . . . , an

1−a0
). So with two variables this goes (x, y, z, t) →

( y
1−x , z

1−x , t
1−x ) = (u, v, w).
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Do a note. Look to f = xy. This has two branches. I have two lines V (f) = {x = 0} ∪ {y = 0}.
If I intersect one line with the sphere I get a circle {u = 0, v2 + w2 = 1}.

For the second line I get the same thing; {u ∈ R, v = w = 0}∪{∞}. This is a Hopf link. Look to
the complement. This fibers over S1. I’ll let you decide what the surfaces are. I claim that the
fibers are one sheeted hyperboloids, which shrink to a circle. The other example I did, which is
a lot more interesting, was to take f = x2− y3 = 0; you can parameterize this by x = t3, y = t2.
So (x, y) ∈ S3 if |t|6 + |t|4 = 1, so you get (λ3e3iθ, λ2e2iθ), the (3, 2) torus knot, the trefoil.

This is topology more than algebra, but it is topology that can be computed very nicely by
algebra.


