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No class next week. I’ll be at MIT.

I want to convince you that primary decomposition and localization are friends.

Let M be finitely generated over Noetherian R. Say (0) = ∩n
i=1Mi is a primary decomposition,

minimal and irredundant. Let p1, . . . , pn be the associated primes. Because of irredundancy all
the primes are associated; because of minimality each occurs once.

Now pi ⊃ ann(M) is minimal (minimal associated prime). The Mi corresponding to p is uniquely
determined. So the Mi primary with respect to the associated primes are uniquely determined
as the kernel of the localization map M →Mp.

The rest are not unique, and the reason is simple. The nonminimal primes are essentially
complements. You intersect them with the associated primes and get zero. If you don’t have
minimal ones then the complement is not unique.

So the only thing that is frozen is the geometric information. All I keep, all I think about, is the
collection of pi.

What else is frozen? If I take the intersection of all top dimensional components, that’s perfectly
well-defined. If you want to be as general as possible, there is a more general tool that captures
what is unique in such a picture, and it is called “local cohomology.”

Now, let me say in a word, every time you take the Mi and look for the pi that are not contained
in a given locus, that is still well-defined.

Let me define, for an ideal R which we think of as an algebraic set, H0
I (M) = {m ∈ M |Inm =

0forn >> 0} ⊂ M. This is the zeroth local cohomology of M with support in I. What is this
gadget? It looks kind of far-fetched. This is a functor from modules to modules. It has the
following nice property; this is an exercise:

Exercise 1. If 0→M ′ →M →M ′′ → 0 is exact then 0→ H0
I (M ′)→ H0

I (M)→ H0
I (M ′′)→?

is exact.

So H0
I (·) is left exact.

In a certain sense the long exact sequence that is the obstruction to exactness of this functor is
like sheaf cohomology. Hi

I(M) is just like the i− 1 cohomology of M.

This depends not on I but on
√

I; you care what the zero locus is.

Exercise 2. H0
I (M) = H0

J(M) if
√

I =
√

J.
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H0
I (M) = (0 :M I∞) = ∪n≥0(0 :M In) is another way to write this.

Proposition 1. (1) Bits and pieces are proved in Eisenbud and Matsamura and so on.
Let I ⊂ R,A = {p ∈ Ass(M) : p ⊃ I}. If I have a primary decomposition then H0

I (M) =
∩j|pj /∈AMj . This is independent of the choice of the decomposition.

What is the connection with localization. Primary decomposition and localization are
morally equivalent. How much so?

(2) There exists f ∈ I such that p ∈ A if and only if P ∈ Ass(M) and f ∈ p; H0
I (M) =

ker(M →Mf ).

[When M is projective is there a better result?]

Well, over a polynomial ring those will be free.

It’s not very hard to prove; maybe I’m going to sketch it.

For the first part it’s rather simple. What is H0
I (M)? It’s (∩n

i=1Mi :M I∞) = ∩(Mi : MI∞). We
know that M/Mi is pi-coprimary so the associator is pi and a power of pi vanishes it.

So either pi ⊃ I so that (Mi :M I∞) = M. Then I can put it in the intersection without harm.
So remember that pi ⊃ I if and only if pi ∈ A, so I can drop these.

What about pi + I. Then I claim (Mi :M I∞) = Mi. This is because I contains a nonzero divisor
modulo Mi. So this colon cannot be M and has to be Mi.

So this looks to the components which do not sit in the zero locus of I. This infinite colon does
this.

For the second part, which is also easy, the f is, well, it’s the same argument as before, but let
me tell you what f is. I have a collection pi /∈ A implies pi + I implies I /∈ ∪pj /∈Apj by prime
avoidance. If I is in a union of pj it is in one of them.

Then I can find an f ∈ I\ ∪pj /∈A pj . So the first part is clear. Now look at the kernel N of
M →Mf . This is (0 :M f∞).

I claim that the same proof as before shows that N = ∩pj /∈AMj .
Exercise 3. This is useful in some situations, not in what we did. Amuse yourself to
take Ass(H0

I (M)). This is finite length.

Show that this is A.
(1)(2) Ass(M/H0

I (M)) = Ass(M)\A.

This is not fundamental, it’s just to test you know the definition.

Derived functors involve taking injective resolutions and then the cohomology. Do 0 → M →
I0 → · · · ; Here each Ii is injective and this is exact except at I0, which has kernel M. Such a
thing always exists, using injective hulls.

So in general when you have a funny functor, injectives will give you the right answers, but
projectives will not.

Then Hi
I(M) is the ker(H0

I (J i) → H0
I (J i+1))/im(H0

I (J i−1 → H0
I (J i)). This is a cohomology,

not a homology; it has a cup product.
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I don’t want to get into this, it’s complicated stuff and has to be built carefully.

So let’s go back to simple things, integral dependence. Remember we argued something like
Rf = R[x]/(xf − 1). I’m not going to remind you of the conditions. You attach something to R
which satisfies something of degree one with coefficients in R. What happens to elements that
satisfy an algebraic equation over I. When I have a finite covering, like a function, a branched
cover. This boils down to looking, well, I have R ⊂ S. Then x ∈ S is integral over R if it satisfies
a monic polynomial with coefficients in I, p(X) = Xn +

∑n−1
i=0 aiX

i.

So Z ←↩ Z[i]. Then i is integral over Z since it’s a solution to x2 + 1. Many rings in number
theory are integral over other rings.

It generalizes localization and many other things. There is another phenomena. You want to
add, starting from R, to its field of fractions Q(R). From here you’d like to add everything that’s
integral. Why? Look to Z[2i]. This is a nice ring. It’s not the Gaussian integers; it’s contained
in them. So Z[2i] is not a UFD.

From the point of view of algebraic geometry, this usually tells you you have simple geometry;
if you are factorial you have no interesting Picard group. Typically this improves geometry.

What makes this very much interesting is that the collection of all elements in S integral over
R it forms a subring.

We’ll come back but I need to make a detour. Let’s rewrite the Cayley Hamilton theorem.

Theorem 1. Cayley-Hamilton Let R be a ring, commutative with unit, I an ideal in R, M an
R-module that can be generated by n elements.

Let φ : M → M satify φ(M) ⊂ IM. Then there exists a monic polynomial p(X) of degree n
where pj ∈ Ij such that p(φ) = 0.

Hard to recognize this as the Cayley Hamilton theorem.

So M is generated by m1, . . . ,mn. Also φ(mi) ∈ IM so it can be written
∑

aijmj , with aij ∈ I.

So I can write (δφ− aij)

 m1

...
mn

 = 0.

I could replace φ by x and say this is true if M is an R[x] module and x acts on M by φ.

So now let’s multiply this matrix, which we call N by N∗, so that det(δx − aij) applied to
anything yields zero. Then p(φ) = 0. So p is a characteristic polynomial. It’s monic up to a sign
because δ is ±1.

So this is a polynomial whose coefficients are the traces of the wedge products.

Why is this important? It’s one of the cheapest tricks for some of the most important lemmas,
such as the Nakayama lemma, which is used maybe every second day in algebra.

Corollary 1. If M is finitely generated, I ⊂ R such that IM = M then there exists x equal to
1 mod I such that xM = 0.
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Let φ = id. Then φ(M) = M ⊂ IM, so that (1 +
∑

pi)M = 0. So this is 1 mod I.

Corollary 2. (Nakayama’s lemma)
Suppose IM = M and moreover that I ⊂ ∩m maximalm, the Jacobson radical of R, then M is 0.

There is an x congruent to 1 mod I that multiplies M to zero. Now x does not lie in a maximal
ideal because then 1 would lie in that maximal ideal, since I+1 does. So the element is invertible
and multiplies M to zero, so M is zero.

This will tell you that there is a rank for any module, and if you have a module over a local ring,
and you reduce to a vector space, generators you find will be generators for the original thing.

The same situation is here. Take an epimorphism φ as above. Then it is an isomorphism. There
are a number of funny consequences. Again, no class next Tuesday. So we meet in a while. I
recommend for those who want to read a little bit about Cayley-Hamilton, page five or six of
Atiyah and MacDonald. It’s half a page.

Some of you gave me some homework, but some of you did not. If you’re registered for the class
you should try to do something.


