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So, uh, let me review a couple of things. The plan for this week is to talk about Dedekind rings,
rings of Krull dimension one. The standard example is

Z //

⊂
��

OK

⊂
��

Q // K ⊂ C

Among other things OK is an integral extension. People have been concerned with these because
they are natural. One example is Z[i]. You could have Z[ 1+

√
−5

2 ]. So this is OQ(
√
−5).

What happens in a ring like this? The Gaussian integers are a UFD, but the second ring is not
because 3 · 3 = (2 +

√
−5)(2−

√
−5).

You have zn = xn + yn, so the hope is to factor these in a UFD somewhere. So you go to an
algebraic extension. But unique factorization doesn’t hold. So how far is this from a UFD?
What are its properties? This gets more complicated with nth roots. But what can we say
about this ring?

One consequence of going up and incomparability is that OK has the same Krull dimension as
Z, that is, one.

I had a homework for you, I should have said that. I’ll start talking about such rings in a
moment, I’d like to give this:

Exercise 1. We talked about what it means for R ↪→ S to be an integral extension, an element
satisfies a monic polynomial. But instead start with I ⊂ R and look to Ī = {x ∈ R : x satisfies
a monic polynomial xn + a1x

n−1 + · · ·+ an − 0 with aj ∈ Ij for all j.

(1) We had the lemma with four points, equivalent conditions for integrality. Use the same
methods to show that Ī is an ideal.

(2) If I is radical then I is integrally closed in R.
(3) This has to do with convex geometry. This is due to Caratheodory. If I ⊂ k[x1, · · · , xn] is

generated by a set of monomials Γ, then Γ̃, the collection of exponents of the monomials
in Γ. This is in Nn ⊂ Rn

+. Take the cone Λ these generate (their convex hull), defined as
Γ̃ + Rn

+. Then the monomials with generators in Λ are the generators of Ī .

Try to solve this: it is easy and instructive.
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Okay, so how do we characterize OK? What is special about these? The Krull dimension is one,
and these are domains, which is equivalent to the statment that every nonzero prime ideal is
maximal. I will show that every ring with this property has unique factorization of ideals.

Proposition 1. Let R be a Noetherian domain such that every nonzero prime ideal is maximal.
Then every nonzero ideal can be uniquely expressed as a product of primary ideals whose radicals
are all distinct.

I don’t have unique factorization into primes of various powers; instead I get primary ideals for
each prime.

Let’s prove this. It’s some unique factorization statement. This is better than nothing. This is
specific to this situation; it wouldn’t hold in general. For almost two centuries people believed
that this would prove Fermat. Kummer got a little progress, but it didn’t pan out.

This is the subject of basic algebraic number theory, but also basic arithmetic algebraic geometry.

How do we prove this? Take I ⊂ R, I 6= 0. How do I get this decomposition? What decomposi-
tions did we learn, in general for any Noetherian ring? Primary decomposition, so I = ∩n

i=1qi,
where qi are primary. I don’t know if it’s unique or not. I would know that ∩qi =

∏
qi (from the

Chinese remainder lemma) if I knew that qi + qj = (1) for all i 6= j. So pi =
√

qi. So the radical
is bigger than the ideal pi ⊃ qi ⊃ I 6= 0 so pi is maximal. So if I take a minimal decomposition,
I can assume these are distinct maximal pi. If you have two maximal ideals then pi + pj = 1.
This is not quite what I want, I want this for qi, qj . It is enough to show that

√
qi + qj = 1; this

is
√√

qi +√
qj =

√
pi + pj =

√
1 = 1.

Now why is this unique? Is primary decomposition unique? What was unique in a primary
decomposition? This is not so long ago? The unique ones were the isolated, minimal ones. But
here all the pi are minimal associated primes, so all the qi are unique.

Now let’s make a change. I don’t want to assume only this, I want to assume a little more. Let’s
make a little, let’s start with R a Noetherian domain with Krull dimension one. What’s missing
is that every primary ideal is a power of a prime.

Assume that as well. Then every nonzero ideal is uniquely a product of prime ideals. This
sounds like unique factorization, but it is in ideals. Maybe I can do algebra with these, form
fractions or whatever. This is called the class group or for geometers the Picard group.

What can you say about such a ring? How special is it? I want to localize at a nonzero prime?
If I localize at a maximal ideal the chains are the same; it’s not very easy but you can show
that if you localize at a maximal ideal you get the same. Here, though, that’s easy. You get a
local ring with a unique nonzero maximal ideal. If something was a power of a prime to start
out with, it’s also a power of a prime after localization. Then every nonzero ideal is a power of
the single maximal ideal. This is quite special. It’s a local ring with every nonzero ideal equal
to (pRp)n for some n. This is called a discrete valuation ring.

This number n has nice properties; it will behave like a logarithm.

Definition 1. A discrete valuation on a field (here the field of fractions) is a function v : K∗ → Z
which is onto with the following property:
v(xy) = v(x) + v(y)
v(x + y) ≥ min{v(x), v(y)) with convention v(0) = ∞.
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So for each prime you get a different valuation defined by the n. You will sometimes see nondis-
crete valuation with values in a group R or something.

So Rv = {x ∈ K : v(x) ≥ 0}. I claim that this is a subring of K. It should contain 0 and 1.
I have to show that it’s closed under sums, differences, and products, which follow from these
properties.

So let me give some examples.

The one we started with we have Z ⊂ Q and I put a valuation which is the unique power of p
which can be factored out of a rational.

The big question is, what is Rvp? It is Zp. in this case.

How about another one. Let K = k(x) and f an irreducible element. Then evaluation is the
power of f in your fraction. Then Rvp

= k[x](f). If you look to rings of power series k[[x]]
in one variable, you can look to the smallest coefficient which is nonzero in the expansion
v(f) = min{i : ai 6= 0}.

Definition 2. An integral domain is called a discrete valuation ring (DVR) if there exists a
valuation v on K (the field of fractions) such that the original domain is the evaluation ring of
v.

For instance, Zp and k[x](f) are DVRs.

Did I prove that integral closure and localization commute? Assume I’m in this situation so that
R ⊂ K = Q(R) with v : K∗ → Z. Let x 6= 0 be in K. If v(x) is positive then x ∈ R. Say v(x) is
negative; then v(x−1) is −v(x) so x−1 ∈ R.

So now we will show that a discrete valuation ring is a local ring. The maximal ideal will be
{x ∈ K : v(x) > 0}. The sum of elements is there because of the one property; the product can
only increase the valuation. So what do I have to show? It contains the noninvertibles, which is
obvious.

It has even more interesting properties. Now let’s prove something about the Krull dimension.

Lemma 1. Let x, y ∈ R with v(x) = v(y). Then (x) = (y). This is equivalent to x and y differing
by a unit. So v(xy−1) = 0 and is thus a unit in R.

Once you get rid of discrete valuation you are really in general rings. You have heard of the
Hironaka theorem about desingularization. That’s very hard. I didn’t tell you what improved?
The object that keeps track of the improvement is a valuation, but not a discrete one. This is a
baby example because it is discrete.

Let’s state what are the ideals of a DVR?

Lemma 2. mn = {x : v(x) ≥ n} is an ideal for all n.

There is a descending sequence m1 ⊃ m2 ⊃ · · ·

Every ideal of I is one of these mn and mk = (m1)k.

From this lemma, the only chain is this one, so the ring is Noetherian.
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If I 6= 0 then take n which is minimal for v(x) for x ∈ I. This should remind you of proving k[x]
is a PID. Then mn = {y ∈ R : v(y) ≥ n} ⊂ I. If y ∈ R then yx−1 ∈ R so y ∈ (x) ⊂ I. Equality
is easy too. Then mn = (xn) for some x ∈ m.

Next time I’ll prove some identities and then we’ll go back to the nonlocal version.

Thursday we finish with Dedekind rings.


