ALGEBRA III DECEMBER 7, 2004

GABRIEL C. DRUMMOND-COLE

So, uh, let me review a couple of things. The plan for this week is to talk about Dedekind rings, rings of Krull dimension one. The standard example is

Among other things O_{K} is an integral extension. People have been concerned with these because they are natural. One example is $\mathbb{Z}[i]$. You could have $\mathbb{Z}\left[\frac{1+\sqrt{-5}}{2}\right]$. So this is $O_{\mathbb{Q}(\sqrt{-5})}$.

What happens in a ring like this? The Gaussian integers are a UFD, but the second ring is not because $3 \cdot 3=(2+\sqrt{-5})(2-\sqrt{-5})$.

You have $z^{n}=x^{n}+y^{n}$, so the hope is to factor these in a UFD somewhere. So you go to an algebraic extension. But unique factorization doesn't hold. So how far is this from a UFD? What are its properties? This gets more complicated with nth roots. But what can we say about this ring?

One consequence of going up and incomparability is that O_{K} has the same Krull dimension as \mathbb{Z}, that is, one.

I had a homework for you, I should have said that. I'll start talking about such rings in a moment, I'd like to give this:

Exercise 1. We talked about what it means for $R \hookrightarrow S$ to be an integral extension, an element satisfies a monic polynomial. But instead start with $I \subset R$ and look to $\bar{I}=\{x \in R: x$ satisfies a monic polynomial $x^{n}+a_{1} x^{n-1}+\cdots+a_{n}-0$ with $a_{j} \in I^{j}$ for all j.
(1) We had the lemma with four points, equivalent conditions for integrality. Use the same methods to show that \bar{I} is an ideal.
(2) If I is radical then I is integrally closed in R.
(3) This has to do with convex geometry. This is due to Caratheodory. If $I \subset k\left[x_{1}, \cdots, x_{n}\right]$ is generated by a set of monomials Γ, then $\tilde{\Gamma}$, the collection of exponents of the monomials in Γ. This is in $\mathbb{N}^{n} \subset \mathbb{R}_{+}^{n}$. Take the cone Λ these generate (their convex hull), defined as $\tilde{\Gamma}+\mathbb{R}_{+}^{n}$. Then the monomials with generators in Λ are the generators of \bar{I}.

Try to solve this: it is easy and instructive.

Okay, so how do we characterize O_{K} ? What is special about these? The Krull dimension is one, and these are domains, which is equivalent to the statment that every nonzero prime ideal is maximal. I will show that every ring with this property has unique factorization of ideals.

Proposition 1. Let R be a Noetherian domain such that every nonzero prime ideal is maximal. Then every nonzero ideal can be uniquely expressed as a product of primary ideals whose radicals are all distinct.

I don't have unique factorization into primes of various powers; instead I get primary ideals for each prime.

Let's prove this. It's some unique factorization statement. This is better than nothing. This is specific to this situation; it wouldn't hold in general. For almost two centuries people believed that this would prove Fermat. Kummer got a little progress, but it didn't pan out.

This is the subject of basic algebraic number theory, but also basic arithmetic algebraic geometry.
How do we prove this? Take $I \subset R, I \neq 0$. How do I get this decomposition? What decompositions did we learn, in general for any Noetherian ring? Primary decomposition, so $I=\cap_{i=1}^{n} q_{i}$, where q_{i} are primary. I don't know if it's unique or not. I would know that $\cap q_{i}=\prod q_{i}$ (from the Chinese remainder lemma) if I knew that $q_{i}+q_{j}=(1)$ for all $i \neq j$. So $p_{i}=\sqrt{q_{i}}$. So the radical is bigger than the ideal $p_{i} \supset q_{i} \supset I \neq 0$ so p_{i} is maximal. So if I take a minimal decomposition, I can assume these are distinct maximal p_{i}. If you have two maximal ideals then $p_{i}+p_{j}=1$. This is not quite what I want, I want this for q_{i}, q_{j}. It is enough to show that $\sqrt{q_{i}+q_{j}}=1$; this is $\sqrt{\sqrt{q_{i}}+\sqrt{q_{j}}}=\sqrt{p_{i}+p_{j}}=\sqrt{1}=1$.

Now why is this unique? Is primary decomposition unique? What was unique in a primary decomposition? This is not so long ago? The unique ones were the isolated, minimal ones. But here all the p_{i} are minimal associated primes, so all the q_{i} are unique.

Now let's make a change. I don't want to assume only this, I want to assume a little more. Let's make a little, let's start with R a Noetherian domain with Krull dimension one. What's missing is that every primary ideal is a power of a prime.

Assume that as well. Then every nonzero ideal is uniquely a product of prime ideals. This sounds like unique factorization, but it is in ideals. Maybe I can do algebra with these, form fractions or whatever. This is called the class group or for geometers the Picard group.

What can you say about such a ring? How special is it? I want to localize at a nonzero prime? If I localize at a maximal ideal the chains are the same; it's not very easy but you can show that if you localize at a maximal ideal you get the same. Here, though, that's easy. You get a local ring with a unique nonzero maximal ideal. If something was a power of a prime to start out with, it's also a power of a prime after localization. Then every nonzero ideal is a power of the single maximal ideal. This is quite special. It's a local ring with every nonzero ideal equal to $\left(p R_{p}\right)^{n}$ for some n. This is called a discrete valuation ring.

This number n has nice properties; it will behave like a logarithm.
Definition 1. A discrete valuation on a field (here the field of fractions) is a function $v: K^{*} \rightarrow \mathbb{Z}$ which is onto with the following property:
$v(x y)=v(x)+v(y)$
$v(x+y) \geq \min \{v(x), v(y))$ with convention $v(0)=\infty$.

So for each prime you get a different valuation defined by the n. You will sometimes see nondiscrete valuation with values in a group \mathbb{R} or something.

So $R_{v}=\{x \in K: v(x) \geq 0\}$. I claim that this is a subring of K. It should contain 0 and 1 . I have to show that it's closed under sums, differences, and products, which follow from these properties.

So let me give some examples.
The one we started with we have $\mathbb{Z} \subset \mathbb{Q}$ and I put a valuation which is the unique power of p which can be factored out of a rational.

The big question is, what is $R_{v_{p}}$? It is \mathbb{Z}_{p}. in this case.
How about another one. Let $K=k(x)$ and f an irreducible element. Then evaluation is the power of f in your fraction. Then $R_{v_{p}}=k[x]_{(f)}$. If you look to rings of power series $k[[x]]$ in one variable, you can look to the smallest coefficient which is nonzero in the expansion $v(f)=\min \left\{i: a_{i} \neq 0\right\}$.

Definition 2. An integral domain is called a discrete valuation ring ($D V R$) if there exists a valuation v on K (the field of fractions) such that the original domain is the evaluation ring of v.

For instance, \mathbb{Z}_{p} and $k[x]_{(f)}$ are DVRs.
Did I prove that integral closure and localization commute? Assume I'm in this situation so that $R \subset K=Q(R)$ with $v: K^{*} \rightarrow \mathbb{Z}$. Let $x \neq 0$ be in K. If $v(x)$ is positive then $x \in R$. Say $v(x)$ is negative; then $v\left(x^{-1}\right)$ is $-v(x)$ so $x^{-1} \in R$.

So now we will show that a discrete valuation ring is a local ring. The maximal ideal will be $\{x \in K: v(x)>0\}$. The sum of elements is there because of the one property; the product can only increase the valuation. So what do I have to show? It contains the noninvertibles, which is obvious.

It has even more interesting properties. Now let's prove something about the Krull dimension.
Lemma 1. Let $x, y \in R$ with $v(x)=v(y)$. Then $(x)=(y)$. This is equivalent to x and y differing by a unit. So $v\left(x y^{-1}\right)=0$ and is thus a unit in R.

Once you get rid of discrete valuation you are really in general rings. You have heard of the Hironaka theorem about desingularization. That's very hard. I didn't tell you what improved? The object that keeps track of the improvement is a valuation, but not a discrete one. This is a baby example because it is discrete.

Let's state what are the ideals of a DVR?
Lemma 2. $m_{n}=\{x: v(x) \geq n\}$ is an ideal for all n.
There is a descending sequence $m_{1} \supset m_{2} \supset \cdots$
Every ideal of I is one of these m_{n} and $m_{k}=\left(m_{1}\right)^{k}$.
From this lemma, the only chain is this one, so the ring is Noetherian.

If $I \neq 0$ then take n which is minimal for $v(x)$ for $x \in I$. This should remind you of proving $k[x]$ is a PID. Then $m_{n}=\{y \in R: v(y) \geq n\} \subset I$. If $y \in R$ then $y x^{-1} \in R$ so $y \in(x) \subset I$. Equality is easy too. Then $m_{n}=\left(x^{n}\right)$ for some $x \in m$.

Next time I'll prove some identities and then we'll go back to the nonlocal version.
Thursday we finish with Dedekind rings.

