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Recall, for the classical groups we have the maps exp : gl(n) → GL(n) and log : GL(n) →
gl(n). For G a Lie group we have g = T1G. We want some kind of analogue to the exponential
map.

Last time we showed

Theorem 1 Given x ∈ g there exists a unique γx(t) : R → G such that γ̇x(0) = x and
γx(0) = 1.

Note that γx(t) = γx/λ(t · λ).

Definition 1 exp(tx) = γx(t). This gives the map exp : g → G.

Theorem 2 1. exp is a diffeomorphism from a neighborhood of 0 in g to a neighborhood
of 1 in G.

2. exp((t + s)x) = exp(tx) exp(sx)

3. If f : G1 → G2 then f∗ : g1 → g2 satisfies the following:

g1
f∗ //

exp

��

g2

exp

��
G1

f
// G2

4. This diagram commutes: g1
Ad g //

exp

��

g2

exp

��
G1

h→ghg−1
// G2
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5. Flow along the left invariant vector field defined by x over time t is g = g(1) → gFt(1) =
g exp(tx).
Along the right invariant vector field it is exp(tx)g.

The first of these is pretty easy. It is smooth because it is defined as the solution to a
differential equation.
We certainly have exp(0) = 1, and exp∗ : T0g → T1G, which can be identified as exp∗ : g → g,
is the identity because d

dtexp(tx) = x. The others I won’t go through in detail. For the fifth
one, you multiply on the right for a left-invariant vector field just because that’s the action
which commutes with the left invariant vector field. This is a little confusing at first. That
isn’t necessary at the moment, but will become quite useful.

Let’s see what this looks like in various examples.

1. If G ⊂ GL(n), then g ⊂ gl(n), and the exponential map agrees with the map that
was previously defined: exp(x) =

∑
xk

k! . This will give a 1-parameter subgroup so by
uniqueness this is the (only) solution.

2. If G = R, then g is R and the exponential is the identity. You can embed G in GL(2) as

{
(

1 r
0 1

)
} and then g = {

(
0 r
0 0

)
}. Then the exponential is just exp(X) = I + X

which gives the result directly.

3. If G− S1 = R/2πZ or z = eix then g is still R. The exponential map depends on how
you write the elements: it is x → x mod 2π or x → eix.

Note that the exponential map is generally neither injective nor surjective. It is not surjective
even for compact groups.

Corollary 1 1. If G is connected, then G is generated by the elements exp(x) for x in
some neighborhood of 0 in g.

2. If a1, . . . , an ∈ g is a basis, then G is generated by {exp(t1a1), . . . , exp(tnan)}, where
tn run over all sufficiently small real numbers.
Locally, (t1, . . . , tn) → exp(t1a1) · · · exp(tnan) is a diffeomorphism, so that you can pick
the word order.

3. Say G1 is connected; then Hom(G1, G2) → HomR(g1, g2) is an injection.

Proofs:

1. The neighborhood is taken to a neighborhood of the identity, which we showed generates
the connected component of the identity.

2. This follows easily from the theorem. I don’t want to go into detail, you can check it
for yourself. You combine it with the exponential map to get a neighborhood of the
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identity in G, and then that generates the whole group. The hitch is that the product
of the exponentials is not the same as the exponential of the sum. They’re not the
same maps but they have the same derivative at the origin, which is all that matters.

3. Suppose you have a morphism of Lie groups. Then this is determined by f∗ uniquely
by the third part of the previous theorem.

Look at SO(3). Its Lie algebra so(3) = {a : a|a + at = 0}. I will choose the basis

Jx =

 0 0 0
0 0 −1
0 1 0

 ; Jy =

 0 0 1
0 0 0
−1 0 0

 ; Jz =

 0 −1 0
1 0 0
0 0 0


Leaving aside the reason I chose this basis, it’s pretty obvious that these form a basis.
Therefore in this sense they generate SO(3). What is exp(tJx)? This is rotation around the
x-axis,

 1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)


You can do this explicitly, or you can take the derivative at t = 0 and see that you get Jx,
which by uniqueness tells us that it is the exponential. Then the others are rotations about
their respective axes. These generate the Lie algebra so(3). So it suffices to give the value of
any morphism from SO(3) on these three generators. So if you want to describe the action of
SO(3) on a vector space, it is enough to describe how these vectors act, which is why these
are used a lot by physicists. The general formulae are difficult, but the writing the images
of the generators is not too hard.

I’ll do this properly next time, but note that I never talked about any special structure on g.
We don’t really expect equality at the level of Hom, so how can we preserve the multiplication
of G on g. For x, y ∈ g we can write exp(x) exp(y) = exp(f(x, y)). This map f : g × g → g
completely encodes multiplication locally. If you just compute the linear term then I claim
you get f(x, y) = x+y+β(x, y)+ . . . , where the rest of the terms have degree three or higher.
So this is the beginning of the Taylor series for f at 0 where β is bilinear and skew-symmetric.

It is common to write β(x, y) = 1
2 [X, Y ] to define the bracket.

Since f(x, y) = α1(x)+α2(y)+Q1(x)+Q2(y)+β(x, y)+. . . assuming you want f(0, 0) = 0. So
how do you define these linear and quadratic terms? f(x, 0) = x so α1(x) = x and Q1(x) = 0;
similarly α2(y) = y and Q2(y) is zero. So all that is needed to check is that the form is skew-
symmetric. All you need to check is that β(x, x) = 0. Then f(x, x) = 2x + β(x, x) + . . . On
the other hand, plugging in we get exp(x) exp(x) = exp(2x) so that β(x, x) = 0 and thus β
is skew-symmetric. The punchline is that if I keep only the terms of degree 2 I get a skew
symmetric form which makes g an algebra.

Next time we’ll talk more about the commutator, what it actually means, how to compute
it.
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