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Recall that last time, we talked about actions of G onM, homogeneous spaces M = G/H, left,
right, and adjoint actions of G on G, and left-invariant, right-invariant, and adoint-invariant
vector fields.

Today we’ll talk about classical groups and the exponential map. So first of all, what are the
classical groups? This is used for the subgroups of the general linear group; for simplicity I’ll
talk over R.

• GL(n, R)

• SL(n, R)

• O(n, R)

• SO(n, R)

• U(n)

• SU(n)

• Sp(2n, R) = {A : R2n → R2n|ω(Ax,Ay) = ω(x, y)} Here ω(x, y) is the unique (up to
basis) skew-symmetric form

∑n
i=1 xiyi+n−yixi+n. Or you can write it as (Jx, y) where

J =
(

0 −In

In 0

)
. There is a closely related group Sp(n) which are the quaternion

unitary transformations.

My main claim is that each of these classical groups is a Lie group, and we can find its
dimension. We showed it for GL(n) and SU(2). For the general case you need tools. We’ll
use the exponential map. Now, SO(n, R) is a subset defined by finitely many (n2) equations.
We want to show that they define a smooth manifold. You’d have to check the derivatives
and their ranks and it would be a mess. We have an easier way.

Recall that exp : gl(n) → GL(n) takes x to exp(x) =
∑∞

0
xk

k! . Here gl(n) is the set of all
matrices. There’s a locally defined inverse map which takes a neighborhood of the identity
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in GL(n) into a neighborhood of 0 in gl(n). This takes 1 + X to
∑∞

1
(−1)k+1Xk

k . Most of the
properties are the same as for numbers; there are some differences. Note that this works for
both the real and complex cases.

Theorem 1 1. log(exp(x)) = x; exp(log(X)) = X whenever they are defined.

2. exp(x) = 1 + x + . . . This means exp(0) = 1 and d exp = id.

3. If xy = yx then exp(x + y) = exp(x) exp(y). If XY = Y X then log(XY ) = log(X) +
log(Y ) in some neighborhood of the identity. This shows that exp is into GL(n).

4. As a special case of the previous identity, if you consider t → exp(tx) for some fixed x,
then this agrees with the group operation. That is, exp((t+s)x = exp(tx) exp(sx). This
transforms addition on the real line to multiplication of matrices, i.e., is a morphism of
Lie groups. The images are very useful and are called one-parameter subgroups, which
is bad terminology because they many not be submanifolds.

5. It agrees with many other operations, most importantly change of basis. That is,
exp(AxA−1) = A exp(x)A−1.

I won’t prove these. You usually do it by formal power series analysis. For the first, you just
compute coefficients, and find the identity. The second is trivial. For the third, you just look
at coefficients in the power series. The fourth follows from the third, and the fifth follows
from (AxA−1)n = AxnA−1.

So that’s all very nice and reasonable, but how are we going to use it? We identify some
neighborhood of the identity in GL(n) with some neighborhood of 0 in a vector space. Here
is the key result about the classical groups.

Theorem 2 For each classical group G ⊂ GL(n), there exists a vector space g ⊂ gl(n) such
that

(U ∩G)
log

,,
mm
exp

(u ∩ g)

for some neighborhood U of 1 in GL(n) and some neighborhood u of 0 in gl(n), where each
of the two (smooth) maps is a bijection.

So for instance if G = GL(n) then g = gl(n).

Corollary 1 1. Each classical group is a Lie group.

2. The tangent space at the identity TeG = g.

Let’s prove this corollary first because it’s very easy. Well, near 1 you are associated with an
open set in a vector space. So it is immediate that near 1, G is smooth.
If g ∈ G then g · (U ∩G) is a neighborhood of g, which is therefore also smooth.
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For the second part, how do we prove that? So you have the exponential map. Look at exp∗
or d exp, which will map from T0g to T1G. Now, since g is a vector space, it is its own tangent
space, and since exp is invertible so is exp∗ . Since exp(x) = 1 + x + . . . , the derivative is the
identity, so that the map is the identity.

How do we prove the theorem? It’s done case by case.
For GL(n) there’s nothing to be done.
Suppose X ∈ SL(n). Then X = exp(x) for some x. How do we write the condition that
X ∈ SL(n)? This means det X = 1. So det exp(x) = 1 if and only if etr(x) = 1, i.e., if and
only if tr(x) = 0 (put x in upper triangular form).

What about O(n) and SO(n)? For On you need XXt = I. Then these commute. Since the
exponential map agrees with transposition, write these as exp(x)exp(xt) = I. Then x and
xt should commute, so that exp(x + xt) is I, so that x + xt = 0. Then the relationship is a
linear condition xt = −x.

What about for SO(n)? You have the same condition, but then you require that the deter-
minant is 1. You get tr(x) = 0, which is unnecessary, because x + xt = 0 implies that there
are zeroes on the diagonal. So they share the same condition. This might seem confusing
until you realize that SO(n) = O(n)/Z2.

You repeat a similar argument for the unitary group, except you replace transpose with
adjoint.

For symplectic groups you have to do a couple more lines of work, which is what I ask you
to do in the homework for n = 4.

This gives you more; it gives you dimension of the Lie groups because it gives you the tangent
space at the identity.

G GL(n, R) SL(n, R) O(n, R) SO(n, R) U(n) SU(n) Sp(2n, R)
g gl(n, R) tr x = 0 x + xt = 0 x + xt = 0 x + x∗ = 0 x + x∗ = 0, tr x = 0 ?

dim G n2 n2 − 1 n(n−1)
2

n(n−1)
2 n2 n2 − 1 ?

π0(G) Z2 {1} Z2 {1} {1} {1} {1}
π1(G) {1} {1} Z2(n ≥ 3) Z2(n ≥ 3) Z {1} Z

You should fill in the rest of the table.

Now we know that the universal cover has the structure of a Lie group. The universal cover
of SO(n, R) is called the spin group and is denoted Spin(n). The easiest way to describe it
is as the universal cover; since π1(SO(n, R)) = Z2, this is a twofold cover.

The cover of the symplectic group is called the metaplectic group. This is a Z-fold cover.
This answers many of the questions we had about the classical groups.

Now we move to another question. Is there exp : g → G for a general Lie group (here
g = TeG)? You can’t use a power series because we don’t have multiplication. What can we
say? The answer to the question is yes. To show this we have to go back to the properties
of the exponential map, to see which could define this more general map.
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The key idea is the one-parameter subgroup, which for the original exp was just exp(tx) as
t ran over the real numbers.

Proposition 1 Let x ∈ g. Then there exists a unique morphism of Lie groups γx : R → G
with d

dtγx|t=0 = x.

We bein with uniqueness. Now intuitively you’d like to write d
dtγx|t = ”γx(t) · dx

dt (0)” =
”γx(t) · x”. This is precisely (Lγ(t))∗x. It is equally obvious but slightly more cumbersome
to write this as a right translation. This essentially gives you a differential equation for the
map. Let v be a left-invariant vector field such that v(1) = x. Then γ is an integral curve
for v.

For existence, let Ft : G → G be the flow for time t along the vector field v. Since my vector
field is left invariant, my flow operator is also left invariant. Then Ft(g1g2) = g1Ft(g2). Now
let γ(t) = Ft(1). Then γ(t + s) = Ft+s(1) = Fs(Ft(1)) = Fs(γ(t) · 1) = γ(t)Fs(1) = γ(t)γ(s),
as desired.
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