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There is a new homework assignment, but I don’t have the right number of copies.

So, let me remind you what we are doing. We are talking about representations of Lie groups
and Lie algebras. We have two problems.

1. Decompose V into a direct sum of irreducibles. When is this possible?

2. Classify the irreducible representations (irreps)

Problem number two is much too hard for us at the moment. For almost every interesting
case it requires tools we have not yet studied. So the only way to answer the second problem
is by using Lie algebras. Today I would rather talk about the first problem. Assume you
already have a classification of irreducibles. How do you decompose? This problem is possible
to answer. Let’s consider a case. Remember that all my representations are finite dimensional
and complex unless otherwise stated.

Definition 1 V is unitary if there is a positive definite inner product which is G-invariant
((ρ(g)v, ρ(g)w) = (v, w)), or equivalently, ρ(g) ∈ U(V ).

Example 1 Let V = F (S), complex valued functions on a finite set S. Let G be a finite
group acting by permutations on S, then there is a pretty obvious G-invariant inner product.
This is (f1, f2) =

∑
s f1(s)f̄2(s). This is a very special example.

Why are we so interested in unitary representations? There is the following important result:

Theorem 1 Each unitary representation is completely reducible, i.e., can be decomposed into
a direct sum of irreducibles.

The proof is pretty obvious, and goes by induction on the dimension. Either V is irreducible,
and we’re done, or V has a subrepresentation W. Then V = W ⊕W⊥, and I claim that W⊥

is a subrepresentation as well.

1



Say that v ∈ W⊥; then (v, w) = 0 for all w in W. By the unitary condition (gv, gw) = 0 for
all w ∈ W, g ∈ G. Then since g is invertible gw : w ∈ W consists exactly of all the elements
of w.

So what do we do now?

Theorem 2 Any representation of a finite group is unitary.

Start with some inner product (, ). We want (gv, gw) = (v, w). This isn’t likely, so we average.
Define a new inner product (, )∼ as 1

|G|
∑

g∈G(gv, gw). I claim that this inner product is G-
invariant. This is because (gv, gw)∼ = 1

|G|
∑

h∈G(hgv, hgw), which is exactly (v, w)∼ because
hg runs over G as h does.

There is one more thing to check, which is that this is positive definite. But this is positive
definite as the sum of positive things.

Corollary 1 Any representation of a finite group is completely reducible.

Is there some way of getting the same result for some Lie group? For a Lie group we still
have the notion of a unitary representation. But the existence of the inner product does
not work in the same way because you can’t take the sum. The obvious answer is that you
replace the sum by the integral.

Theorem 3 If G admits a Haar measure, i.e., a measure dg such that
∫

G
dg = 1 and dg is

left, right invariant, then every representation of G is unitary.

Define (v, w)∼ as
∫

G
(gv, gw)dg. We can discuss why this should be left and right invariant,

instead of just right invariance. Let me leave it as a big question mark. Whether you can
relax this condition, it seems you can but it can cause some problems. But anyway, given
the hypotheses, we know that every representation is unitary, even if we can’t calculate the
integral.

Theorem 4 Every compact Lie group admits a Haar measure. You can generalize this to
compact topological groups with some additional conditions.

For manifolds, there is a relation between top level differential forms and measures. If you
have a manifold Mn and ω ∈ Ωn(M) a top level differential form which is nowhere vanishing,
then |ω| is a measure.

So the problem of finding the measure can be solved if you can find a top level differential
form.

Lemma 1 To define a volume form on a group, you define it at the origin. At the origin this
corresponds to something at the level of the Lie algebra. Any w ∈ ∧ng∗ is Ad G-invariant up
to a sign.
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This fails for noncompact groups. So ∧ng∗ is one dimensional; then the action of G on it
gives you a morphism G → R×. But the group is compact, so its image is compact; then
the image is a compact subgroup of R×, which must be contained in {1,−1}. So it is {1} or
{±1}. The group can only act on it by ±1.

Here the action of G on ∧ng∗. The group acts on g by the adjoint action, basically conjugation.
This gives you an action on the dual. Then there’s an action on tensor products of it. Once
there’s an action on tensor products, then the action preserves symmetric and skew-symmetric
tensors. So it’s actually rather simple. But basically all these structures are functorial so
you’ll always get induced morphisms.

So how do you extend this from the identity to the whole group? Choose your ω ∈ ∧ng∗ and
extend it to a left-invariant differential form on G. Then I claim that this thing will also be
right invariant up to a sign. This is because the difference between left invariance and right
invariance is just the adjoint action.

Thus |ω| is bi-invariant measure. But then you just renormalize by the measure of the group.
So dg = |ω|R

G
|ω| is the Haar measure.

As an immediate corollary we have the following:

Corollary 2 Every finite dimensional complex representation of a compact Lie group is com-
pletly reducible.

So the compact groups are very nice. But it’s only an existence result.

Example 2 Consider S1, which I think of as R/Z = {|z| = 1}. This is a compact group.
What is the invariant measure? It’s dφ.

So what are the irreducible representations of this group? That’s a slightly more difficult
question. This is a commutative group so by the Schur lemma every irreducible representation
is one-dimensional. Start with an easier question. What are one dimensional representations
of R? Representations of it are the same as representations of the Lie algebra R with zero
commutator. So what are representations of this? These are lines through the origin. x → αx
for α ∈ C. In the language of Lie groups it gives you the map exp(tx) → exp(tαx). So this
takes x to eαx.

So now to find the representations of S1, which is not simply connected, watch which ones
descend to the quotient. These are representations φ → eαφ such that integer values of φ
yield the identity. So we want enα = 1, which means α = 2πik for k ∈ Z.

So one dimensional representations of S1 are parameterized by k ∈ Z and φ → e2πikφ. It’s a
general principle that if you have a compact group then the irreducible representations are
always discrete, i.e., there are only countably many.

Example 3 Explicitly decomposing a representation of S1 as a direct sum. Let V = F (S1),
complex valued functions on S1.
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This is an infinite-dimensional space so not everything will apply. S1 will act on itself a
rotation. How do you define a rotation invariant inner product? You can just integrate the
product of two functions over S1. That’s the most obvious thing. (f, g) =

∫
S1 fḡdφ. The

general theory suggests that it should be possible to decompose this into the direct sum of
irreps. But what does that mean in the infinite dimensional case?

I claim that the answer is yes. I say that V =
⊕

k∈Z Vk where Vk is an irreducible one
dimensional representation of S1 on which φ acts by e2πikφ. Here Vk = Ce2πikφ. So this is a
Fourier series. This explains why Fourier series show up; you want to see how things behave
under the action of rotation. So you decompose it into things where the action of rotation is
very simple.

So for example a rotation invariant differential operator must have these functions as eigen-
functions. And of course you know that Fourier series are used in many other places. The
direct sum cannot really be used, because it’s infinite. So we restrict ourselves to trigono-
metric polynomials with finite degree and finitely many terms. Or you can switch to the
study of infinite dimensional representations and Hilbert spaces. This explains why study of
Lie groups is referred to as noncommutative Fourier transforms. That’s all I wanted to say
today. Let’s go to the office and I’ll make copies of the homework. It will be due on October
12.
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