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Today we’re talking about characters and the Peter-Weyl Theorem.

Recall that every finite dimensional complex representation of a compact Lie group is unitary
and thus completely reducible.

Lemma 1 1. Say V and W are irreducible with V � W, and f : V →W.
Then

∫
G
gfg−1dg = 0.

2. If f : V → V then
∫
gfg−1dg = tr(f)

dim V id.

Proofs. Let f̃ be the initial integral. This commutes with action of g, i.e., hf̃h−1 =∫
G

(hg)f(hg)−1dg.

Then the Schur lemma gives that f̃ = 0 for W 6= V and f̃ = λid for W = V. Applying this
in the particular case we get the second part of the lemma.

Let ei be an orthonormal basis for a G-invariant inner product (, ). Take f to be Eij , i.e.,
the operator which maps ei to ej , and everything else to 0. Then gfg−1ek = g−1

jk gfej =
g−1
jk gei =

∑
glig

−1
jk el. Then when you plug in you get

(
∫
gfg−1dg)ek = (

∑
l

∫
glig

−1
jk dg)ek.

But on the other side this is easy to find because it is a multiple of the identity. So this is
δij

dim V ek. So what’s the point? The point is that if I compare formulas I get the following
important relation: ∫

glig
−1
jk dg =

δijdeltakl
dim V

.

So because of inner product considerations we know g−1 = ḡt so we can write this∫
gliḡkjdg =

δijδkl
dim V

.
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This gives you something a lot like orthonormality. What we’ve got is the following result.

Theorem 1 1. Let V be irreducible and finite dimensional with basis {ei}. Then the
(dimV )2 functions gVij are orthogonal and

|gVij |2 =
1

dim V
.

(Here V is upper index to show that g is acting by matrix on V. They’re orthogonal and
almost orthonormal.

2. If V,W are nonisomorphic and irreducible then gVij and gWkl are orthogonal. So each
irreducible representation gives you (dim V )2 which are all orthogonal.

In particular, they are all linearly independent.

So why is this of any use? Matrix elements alone are not nice objects because they depend
on choice of basis. But there is one combination of them which doesn’t depend on choice of
basis.

Definition 1 Let V be a representation. A character of V is χV ∈ C∞(G) defined by
χV (g) = trV g. This is the trace of the representation, not of the original g if it was a matrix.

Example 1 1. V = C, the trivial representation. Then χV = 1.

2. χV⊕W = χV + χW

3. χV⊗W = χV χW That’s not so good, since V ⊗W is a very large space.

4. χV (ghg−1) = χV (h).

The third one one you can prove basically by diagonalizing your group element. Then you
find eigenvalues of the product as products of the eigenvalues.

So why is it of any use? It’s canonically defined. If I were to choose a basis I could define it
in terms of matrix elements χV (g) =

∑
gVii .

So from here to find my characters I can use a one-line manipulation.

Theorem 2 1. If V,W are nonisomorphic irreps, then (χV , χW ) = 0. Here the inner
product is

∫
χV (g)χW (g)dg. This is because they are the linear combinations of matrix

elements, which are individually orthogonal.

2. |χV |2 =
∑

|gVii |2 = 1.

So this is a tool in computing irreducibles. If you have V = ⊕niVi, then (χV , χVi
) = ni.

This tells you the multiplicity from the character. So what’s the catch? It’s not a very easy
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manipulation to do. Even in the rare cases when you can describe the measure, integration
is no easy thing. It’s rather difficult combinatorics to do this for, say, SU(n). I don’t want
to integrate over a compact group.

There are cases where you can do this, like for a finite group, where this is a finite sum. In
general this is a nice answer in theory but not in practice.

Let me just finish by saying the following. There is a question about whether you can write
these functions in a basis-independent way. The other question is whether you get “all”
functions on the group.

Basis-independent description of matrix elements:

First of all, what is gVij? It is 〈gej , ei〉. So instead of considering elements of the first kind,
consider 〈gv, v∗〉, for v ∈ V, v∗ ∈ V ∗.

Theorem 3 The map
⊕

V V × V ∗ → C∞(G) which takes v ⊗ v∗ to 〈v, v∗〉.

This is a coordinate independent way of describing the space generated by my elements. The
map has the following properties:

1. It preserves 〈, 〉. What is the inner product we’re using on the tensor product? Choose
an inner product on V. Then it defines a measure invariant inner product on V ∗. So
you define the inner product the only way you can, as

〈v1 ⊗ v∗1 , v2 ⊗ v∗2〉 =
1

dim V
〈v1, v2〉〈v∗1 , v∗2〉.

So the statement is that this would preserve the inner product. And of course the
summands are orthogonal.

2. We didn’t say something before when we were talking about the group in terms of ma-
trices.

There are actions on the group, including left, right, and adjoint multiplication.

We have obvious actions on the tensor. So we can take the action of g on both, or
only on one factor of the product. So there are several possibilities. There is an exact
correspondence between these choices and the actions on C∞G.

So under this map, the action of G on V corresponds to the action of G on C∞(G) by
(gf)(h) = f(hg), the action on V ∗ to the action by (gf)(h) = f(g−1h).

The action by both corresponds to (gf)(h) = f(g−1hg).

3. This map is injective. I should direct sum over isomorphism classes of irreducible
representations. I am talking just about the algebraic direct sum.

So let me say a little bit about the proof. Suppose you have some vectors v and v∗. These
correspond to the function f(h) = 〈hv, v∗〉. So if I take gv ⊗ v∗, what do I get here? I get
f(h) = 〈hgv, v∗〉 = f(hg).
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So okay, now we need to move from finite to infinite direct sums. So you just do the norm
completion with respect to the inner product norm. Then you do the same thing in C∞(G),
with the L2 norm we’ve been using.

Theorem 4 Peter-Weyl theorem The map
⊕

V V ⊗V ∗ → L2(G, dg) (direct sum in the sense
of Hilbert spaces) is an isomorphism.

That’s a relatively hard theorem. The easy part is that the map exists, preserves norm,
intertwines with the action of the group, and is injective. But it is hard to see why it’s
surjective. So if you look at the space of functions on the group as a representation, it splits
into a direct sum of finite dimensional irreducibles, each with finite multiplicity. This is
unexpected. But it works. I’m not even going to prove this.

Let me give you just one example.

Example 2 Let G = S1 = R/Z Then the representations are of the form Vn = C Where
ψ → e2πinψ for n ∈ Z. The right hand side is L2(S1). The left hand side is the direct
sum ⊕n∈ZVn ⊗ V ∗n . If I consider the right action of the group on itself, then I get that this is
⊕n∈ZVn. So what is the guy who corresponds to Vn? Well, 1 in Vn corresponds to the subspace
Ce2πnφ. And, of course, L2 is the direct sum of spaces spanned by functions of this form. So
in this example this is the Fourier series, nothing more.

So that’s it. Okay, unfortunately for other groups it’s more complicated. We haven’t answered
the question about irreducibles for any compact group except S1. We know the characters
are orthogonal, but that doesn’t help you find them. So how will we find them? We’ll get
into that next time.
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