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Even though all of you did this pretty well, you are doing more work than necessary. You
want to show that in the Lie algebra of a compact Lie group there is always an invariant
inner product. You don’t need to do this from scratch from the Haar measure. Just refer to
the theorem we proved in class.

Similarly, in another problem, you had a real Lie algebra and you had to show that the
Killing form was negative semidefinite if g admits an invariant positive definite form; then
with respect to an orthonormal basis the matrix is in su so you can use the first part of the
problem.

I said we were going to classify representations of semisimple Lie algebras. So let’s begin with
representations of s[(2,C). Of course I mean complex finite dimensional representations.

Recall that we have three commutation relations: [h,e] = 2e, [h, f] = —2f,[e, f] = h. Our
approach will be based on the following: Any action, in particular the action of h, has
eigenvalues. So let’s find the eigenspaces of h. The key lemma is as follows:

Lemma 1 If hv = v (We denote all such v by V) then ev € Vyyo and fv € Vy_s.

You compute hev = ehv+ [h, eJv = dev+2ev = (A+2)ev; hfv = fho+[h, flo = Afv—2fv =
(A=2)fv.

Corollary 1 So if V is irreducible then h is diagonalizable; V= @ \Vx, hly, = A -id.

Let W = @V, where V), is the kernel of h — Aid. This is a direct sum but this may not be
the whole space. But W is stable under the action of su(2) so it is the whole space; it cannot
be zero because h must have one eigenvalue.

My next goal will be classification of irreducible representations. Suppose V is irreducible.
Then write V = ®V). The terminology is that these are called weight subspaces, and elements
of V, are called vectors of weight A.



Choose A with maximal real part; we can always do this because there are finitely many
weights. Let v € V). Then evy = 0. The proof is trivial, because of the lemma. Such v aare
called highest weight vectors.

This is absolutely standard terminology. Why it is called highest instead of maximal, I don’t
know.

Okay, so what. The space spanned by v is stable under the action of e and h so we have no
choice but to apply f.

Lemma 2 So define v* = J,;—Tv

1. ho* = (X — 2k)v* This is trivial.
2. fok = (k+ 1)v**L. This is also trivial.
3. evk = (N +1—k)v*L for k>0

Only the last part requires proof.

Let’s do this by induction. First let k& = 1. Then v! = fv. So what is efv? it is fev 4+ hv =
hv = dv.

Now for the induction step, we see
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So we're almost done; maybe these vectors are linearly dependent. You have to get a zero
vector eventually; in a finite dimensional vector space you will have a minimal eigenvalue so
that eventually v* = 0. So let k& be maximal such that v* # 0. What can we say then?

Well, evk*1 = 0 but by our identity we have ev*+! = (A — k)v¥. Then A = k € Z,. Also,
v,v',...,v" are a basis in V. First of all, they generate because the subpace they generate
is stable under e, f,h. Why are they linearly independent? Because they have different

eigenvalues.

Theorem 1 If V is irreducible, then it has a basis v, ..., v with the action of sI(2) given
by the formulas of the lemma, with A\ € Z ..

So far, we have shown one direction; conversely for any nonnegative integer A you can con-
struct such a representation. To show it is irreducible, the only candidates are some subspace
spanned by some of the v;. But any such set generates the whole representation under e and
f- As a matter of fact, if you recall your homework this is the exact thing you got for the



k symmetric power of C2. These are unfortunately also called Vj. These are pairwise non-
isomorphic because of dimensional considerations. In the physical literature, you do not
classify by positive integers but by \/2, called spin. There are good reasons for the standard
representation to be spin one half.

That almost completes the story of s1(2, C). How do we classify all of them? If we know that
every representation is completely reducible, then every V = @®rez, ni Vi.

As examples, C =V, ad = V.

How do we know that representations are completely reducible. We could refer to the the-
orem from last time about semisimple Lie algebras. We could also compute the eigenvalue
of the Casimir element; it is k%/2 + k. In particular this has different values on different
irreducible representations. Therefore you can use the Casimir element to smooth your rep-
resentation. Even without using complete reducibility we know that V = @,V *) where V¥)
is a generalized eigenspace for C' with eigenvalue k2/2 + k.

For any representation you can split by the eigenspaces of the Casimir element. The next
step is to split the V) into a composition series with every factor equivalent to V. Then
you can rather easily show that it actually splits. So Casimir operator can be used to show
irreducibility in this case.

So we have classified representations of s[(2). I only sketched the second proof, I didn’t give
full detail.

So the next goal is generalizing this to other semisimple Lie algebras. The key point here
was the basis h, e, f with [h, ] a multiple of e and [h, f] a multiple of f, well really that we
had an eigenbasis of ad h.

Definition 1 z € g is called semisimple if ad x is a semisimple, or equivalently diagonaliz-
able operator.

Why is this important? If x is semisimple then g = ®xgx, with ad z|g, = Xid. So [z,y] = \y
for y € ga.

Lemma 3 Let x be semisimple and V' a simple representation of g.
1. If zv = M, [z, y] = ay, then zyv = (A + a)yv.
gaV)\ C V)\+a.
2. In any irreducible representation, x is diagonalizable.
The proof is the same as it was for s[(2). Take the direct sum of the eigenspaces; this is
invariant under the action of the Lie algebra and is nonzero, so it’s the whole space.

So this is the starting point. As you might guess, what we will do next time (I don’t want to go
any further) is to start classification for any Lie algebra. For s[(2) it sufficed to consider just
h. For a general Lie algebra we’ll need to choose several commuting diagonalizable elements.
We'll have to talk about joint eigenspaces.



I should also say that the diagonalizable commuting elements are also known as Cartan
subalgebra, which all of you have seen. What puts semisimple Lie algebras apart is that they
have sufficiently many commuting diagonalizable semisimple elements.



