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To do the last problem, you wanted to show that the quotient was semisimple as a way to
show that the ideal I gave was the radical.

Today we’ll talk about complete reducibility. The goal is to prove that any representation
of a semisimple Lie algebra is completely reducible. The algebra can be real or complex but
the representation is assumed to be complex and finite dimensional.

Historically, this was done by looking at complex Lie algebras, and then showing that these
were the complexifications of compact Lie algebras, and using the Haar measure to get the
result.

However, there is a purely algebraic way. It involves two ingredients; one of them is the
Casimir element.

Definition 1 If (, ) is an invariant symmetric bilinear form on g with xi an orthonormal
basis, then C =

∑
x2

i ∈ Ug is called the Casimir element.

This doesn’t depend on the choice of orthonormal basis. Here C is the image of
∑

xi ⊗ xi,
and with respect to any basis you can write it as

∑
vi · vi.

Your homework was to compute that this element is central. I won’t repeat that, it’s easy.

Theorem 1 Let V be a representation of g such that ker ρ = 0, i.e., ρ(x) 6= 0 for nonzero
x. Such a representation is called faithful.
Then trV (ρ(x), ρ(y)) is a nondegenerate invariant symmetric form.

To show invariance it’s easiest to look at the action Ad of a Lie group G, which is conjugation
so does not show up in the trace. The only thing we really have to show is that this is
nondegenerate. Let I = ker (, ) = g⊥. Then I is an ideal in g, and because of semisimplicity
you can write g = I ⊕ g′, where the latter is semisimple.
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So I itself is semisimple and trV (ρ(x)ρ(y)) = 0 for all x, y ∈ I. By one of the forms of the
Cartan criterion, then ρ(I) is solvable as a subset of gl(V ). So each simple factor of I must
be taken by ρ to zero, since the image must be simple and solvable. Since ker ρ is trivial,
this means I = 0.

This is then a good way to get nondegenerate invariant forms, which automatically give you
Casimir elements.

Let V be such a (faithful) representation and CV the Casimir element corresponding to
(, ) = trV (ρ(x), ρ(y)). If I assume in addition that V is irreducible, then let’s see how CV acts
in V. I claim that CV |V , which we know by the Schur lemma to be a multiple of the identity
as a central element, is nonzero, and in fact is dim g

dim V id.

If xi is an orthonormal basis, then trV (ρ(xi)2) = 1 so that tr(ρ(
∑

x2
i )) = dim g.

Corollary 1 For any irreducible representation V of g there exists C ∈ Z(Ug) such that
C|V = λ id for λ 6= 0.

We need to prove this, since the representation may not be faithful. Write g = ⊕i∈Jgi, these
being simple. So look to I = ker ρ. If the kernel is zero then the representation is faithful
and we are done. So what if it’s not? This ideal is a direct sum ⊕i∈J′gi, J ′ ⊂ J. Then let
g′ = ⊕i∈J−J′gi; then V is a faithful representation of g′, since g = g′ ⊕ I. We could take
C = CV ∈ Ug′ .

The problem is that g′ may be zero, which occurs precisely when V = C. You can show
that the Casimir element for the Killing form will act nontrivially in any representation, but
that’s harder.

So that was the first thing we needed. We’re ready to prove the main result of today.

Theorem 2 Any representation of g is completely reducible.

The proof uses a little bit of homological algebra. If you’re not familiar with this, then you
may not get it all, but it is supposed to be in the core courses.

So we can talk about long and short exact sequences of modules over a ring, and you know
that there is a way of classifying all short exact sequences extending V and U to 0 → V →
W → U → 0. That is, isomorphism classes of W are in bijection with Ext1(U, V ).

The way is as follows. We need to construct an element of Hom(U,W ). We have the sequence
0 → Hom(U, V ) → Hom(U,W ) → Hom(U,U) by the left exact functor Hom(U, ·). We need
to check whether the identity map from U to U can be lifted to a map to W agreeing with
the projection. This would be so if Hom(U,W ) → Hom(U,U) were surjective. But we know
that this can be extended to a long exact sequence whose next element is Ext1(U, V ). In
particular if Ext1(U, V ) = 0 then id can be lifted and we are done.
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So Ext1(U, V ) is what we need to study. I won’t remind you how to define it, because it
would take quite a long time.

This argument can be repeated word for word over any abelian category of enhanced modules,
including the category of Lie algebras. Or you can use a shortcut and consider Ext over
universal enveloping algebras.

We need to show that Ext1(U, V ) = 0.

Lemma 1 Ext1(C, V ) = H1(g, V ) = 0 for any irreducible representation V.

This is still a very special case. Let’s prove the lemma first. The proof is not very hard.

1. Say that V is not the trivial representation. Then the corollary gives us all we need. We
know that Ext classifies all short exact sequences of the form 0 → V → W → C → 0.
Take C ∈ Z(Ug) as in the corollary. In V it acts by zero; in C it acts trivially; how
does it act in W? So C|V = λ 6= 0, C|C = 0, so we can decompose W as the direct
sum of eigenspaces V ⊕ V ′, where V ′ is the kernel of the Casimir element. Since it
commutes with the action of the Lie algebra, we’ve found that W splits as a direct sum
of representations so there is only one isomorphism class of such W.

2. Say V = C, the trivial representation. We’re talking about 0 → C → W → C → 0,
so you have a trivial subrepresentation and a trivial quotient. So there’s a basis of W

such that every element has the form
(

0 ∗
0 0

)
, since it kills the commutator of any

element with the first C, and similar considerations for the quotient.
Can you have a two dimensional irreducible representation of this form? No, because
this is nilpotent.

From now on it’s rather trivial homological algebra.

Lemma 2 Ext1(C, V ) = H1(g, V ) = 0 for any V.

The proof is by induction on dim V. Either V is irreducible and we are done, or it has a
subrepresentation and quotient representation 0 → V1 → V → V2 → 0. Then we have the
long exact sequence of Ext, which is locally Ext1(C, V1) → Ext1(C, V ) → Ext1(C, V2). So
if you know the long exact sequence of Ext then you are done, since the first and third of
these vanish.

Now the next thing, after the case where the first factor is trivial and the second irreducible
and the case where the first is trivial and the second is anything, is

Lemma 3 Ext1(V,U) = Ext1(C, V ∗ ⊗ U).

This doesn’t usually make sense, but in this case it does.
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I’ll wave my hands a little. You add Ext to make the sequence of Homs exact. More formally,
Ext is the derived functor from Hom. Then Homg(V,U) = Hom(C, V ∗⊗U) and we’re done.

Just as vector spaces, this is clear, since Hom(V,U) ∼= V ∗ × U and Hom(C, X) ∼= X. Now
if φ : V → U commutes with the action of g then φ ∈ V ∗ ⊗ U is g-invariant; this is a trivial
exercise. Therefore we know that Homg(V,U) = (V ∗ ⊗ U)g = Hom(C, V ∗ ⊗ U). This last
one is more or less immediate.

The middle term is the space of invariants, of all vectors u such that xu = 0 for all x ∈ g.

From here it’s not so, well, this kind of gives you the idea for why you have the same for
Ext. Probably I don’t want to go any deeper into that. You need to show that the functor
of tensor product is exact, but I don’t want to go into it.

But now we’re done. By this lemma and the last, Ext1(V,U) = Ext1(C, ∗) for some ∗, which
is zero and we’re done.

The arguments in the last two lemmas use no information about semisimplicity, so that is
used entirely for the Casimir element.

In particular we now know that any representation is completely reducibles; now how do you
do it? That’s what we’ll have to do starting next time. In theory we could use orthogonality
of characters for compact groups, but it is too hard to integrate in real life.

Let me make just one more remark. One can also consider more general Ext spaces. In
particular, we can define Hi(g, V ) = Exti(C, V ). Then Hi(g, V ) = 0 for all i if V is irreducible
and not the trivial representation.

However Hi(g, C) may be nonzero for i ≥ 3. The study of this homology is rather impor-
tant. If g = Lie(G) for a compact connected Lie group G, then Hi(g, C) = Hi

DR(G, C). So
H3(SU(2)) 6= 0, for instance. But defining this higher Ext takes some effort, and moreso to
get these results. But I wanted to at least mention this result. It’s not true for noncompact
groups, by the way.

Okay, so I think I actually want to stop here. We’ll study a lot of examples starting next time.
We’ll start studying the irreducible representations from the point of view of Lie algebras,
forgetting about Lie groups altogether.

4


