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For the homework, I have some comments. If V is irreducible, then dualization reverses
inclusion and quotient, so that if U ⊂ V ∗ then U∗ = V/U⊥. There is a standard way of doing
this without a basis. Only a very little changes when you consider these as representations.

There were a number of minor things with the problem about diagonalizing the operator on
the cube. If Z : V → V and Z2 = 1 then it is almost immediate that V = V+ ⊕ V−. You
don’t need a basis to get these. I thought that this trick is so familiar that all of you know.
What you need to check is that each of these is a representation, so that they are stable
under the action of g. It follows from the fact that Z commutes with the action of the group.
This implies that the eigenspaces of Z are representations.

Doing this with bases obscures the real reasons that things work; it’s not formally wrong but
you should try to avoid using bases if there’s a way not to. Maybe I should say something
about the last problem. The problem was with the first part, extending the action to R4. The
standard inner product is 1

2 tr(xȳt), you can show this. I made a mistake with the coefficient.
Then the action can be by left multiplication. You need to check that gA is in the same
subspace; then it is immediate that this map is a linear action of your group on a vector
space, and it is equally trivial to show that it preserves the bilinear form. It is harder to
show linearity by extending multiplicatively; you don’t know if its extension is linear.

Okay, fine. Maybe at some later time I’ll actually post the solutions. Now let’s move on
and continue with what we’re doing right now. We defined a semisimple Lie algebra as one
containing no solvable ideals.

It followed directly that a Lie algebra is made out of a solvable ideal, the radical, and a
semisimple one, the quotient by this radical. I made a slightly more complicated statement,
that g = r n gss. The first is an ideal, the second is a subalgebra.

We talked about how to tell if a Lie algebra is semisimple.
Cartan Criterion

1. g is solvable if and only if K(g, [g, g]) = 0.
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2. g is semisimple if and only if K is nondegenerate,

where K(x, y) = trg(ad x, ad y) is the Killing form.

Today I’m going to prove this, so I need some things about linear algebra. Let’s forget about
Lie algebras for a second and talk about linear algebra on a complex vector space.

Definition 1 Let V be a finite-dimensional complex vector space. Then A : V → V is
nilpotent if An = 0 for n >> 0 and semisimple if A is diagonalizable.

Theorem 1 Any A ∈ End(V ) can be uniquely written as A = As+An, where As is semisim-
ple and An is nilpotent, with AsAn = AnAs.
Moreover, As ∈ AC[A], An ∈ C[A].

The proof is rather simple. Write V =
⊕

Vλ. Here Vλ is the kernel of (A− λI)n for n >> 0.
Let As|Vλ

= λid and An = A−As. This is obviously nilpotent because of the kernel condition;
they commute because As commutes with anything. Let p ∈ C[x] be a polynomial such that
p ≡ λi mod (x − λi)di , p ≡ 0 mod x. Equivalently p = λi in C[x]/(x − λi)di . I laim that
this system of congruences always have a solution. This exists by the Chinese Remainder
Theorem.

Then As = p(A), An = A− p(A). For uniqueness, if A = A′
n + A′

s then An + As = A′
n + A′

s

so (An − A′
n) = (A′

s − As). Then A′
n commutes with A and so with An, a polynomial in

An. Well, the difference of commuting nilpotent operators in nilpotent; the difference of
commuting semisimple operators is semisimple. So you have a nilpotent operator equal to a
semisimple operator. It is diagonalizable but all eigenvalues are 0 so it is 0.

This was the hardest one. Let me give you a second one.

Theorem 2 Let ad A : End(V ) → End(V ) be the adjoint action by A. Then we can discuss
its eigenvalues and try to decompose it into the sum of semisimple and nilpotent operators.
Then (ad A)s = adAs. This has eigenvalues λi − λj , for λi,j eigenvalues of A.

The proof is as follows. If you choose a basis in V which is an eigenbasis for the semisimple
part, and such that the nilpotent operator is upper triangular, which you can do (essentially
this is one of the steps in the proof of Jordan normal form), then ad As is diagonal in the
basis Eij of End(V ) and ad An is upper-triangular. So AsEij − EijAs = (λi − λj)Eij .

So as soon as we have chosen an appropriate basis, ad of the semisimple part is semisimple.
For nilpotence you have to work a little harder, think about the order you put on pairs, but
it’s not very hard.

So A can be written as the sum of a nilpotent and an upper-triangular.

Corollary 1 (ad A)s = p(ad A), p ∈ xC[x].
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So basically what we are doing so far is decomposing into semisimple and nilpotent.

Theorem 3 Let Ās = λ̄i on Vλi if As = λi on Vλi . For semisimple operators there are no
choices involved. Then we can define ad Ās and this is Q(ad A) for some Q ∈ xC[x].

That’s not immediately obvious but here it is. As a proof, ad Ās has eigenvalues λi − λj .
On the other hand, we can always find a polynomial such that f(λi − λj) = λ̄i − λ̄j . If you
only have finitely many values then you can write conjugation as a polynomial, since you can
circumscribe finitely many values of a polynomial. Then ad Ās = f(ad As) = f(p(ad A).

Maybe I should continue with one more theorem about linear operators.

Theorem 4 Let g ⊂ gl(V ), such that tr(x[y, z]) = 0 for all x, y, z ∈ g. Then any x ∈ [g, g]
is nilpotent.

For a proof, it is very easy. If x = [y, z] then we want to show that all eigenvalues are
0. Compute the following thing: tr(x̄s x). This will be

∑
λiλ̄i =

∑
|λi|2 but this is also

tr(x̄s, [y, z]) = tr([x̄s, y]z = tr((ad x̄s y)z) = tr(
∑

ak(adkx y)z). I replace ad x̄s with a
polynomial in ad x.

It is a somewhat long proof, but no one knows any better one. This decomposition will be
useful again later. Now we can prove Cartan’s criterion; it will take us all of five minutes.

For part 1, if g is solvable then the Killing form vanishes. Choose a basis in g such that
ad x is upper triangular. Then ad [y, z] = [ad y, ad z] is strictly upper triangular so
tr(ad x[ad y, ad z]) = 0 since the product of an upper triangular and a strictly upper trian-
gular operator is strictly upper triangular.

Assume the Killing form is zero. You have a vector space, g, and a subalgebra such that the
condition of the last theorem holds. Then by that theorem, ad x is nilpotent for x ∈ [g, g].
Then we can use the theorem that tells us from this that [g, g] is nilpotent, and the theorem
that tells us from that that g is solvable.

Now the second part will be straightforward. If it is semisimple, look at the kernel b of the
Killing form When you have an invariant bilinear form, so the kernel is an ideal. What can
we say about the Killing form restricted to b. It’s 0 Therefore the ideal is solvable. If a Lie
algebra is semisimple then it has no solvable ideals except 0, so the kernel is 0 and the form
is nondegenerate.

For the other direction, assume K is nondegenerate. Then if b ⊂ g is a solvable ideal, then
the commutant sequence terminates. Now, each commutant in the sequence is an ideal in
g. What will be the last one? At some step, you’ll get bn to 0, so that bn is a commutative
ideal. Call this commutative ideal by a.

Now ad x is block upper triangular and ad y is strictly block-upper triangular for y ∈ a, where
the upper blocks correspond to a Their product is strictly upper triangular so trg(ad x ad y) =
0.
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I cheated in the last part because K(b, b) may be different for g and for b. You take the trace
acting in different places. It is not hard to see that they agree.

So we’re done. It took us a lot of effort, but in the last four minutes we get the main result.

Theorem 5 A Lie algebra is semisimple if and only if it is isomorphic to a direct sum of
simple ones.

The proof in one direction isn’t worth much discussion. If it’s a direct sum of simple algebras,
then the ideals are sums of these, and there are no solvable ones.

Suppose you have a semisimple Lie algebra. How do you show it is a direct sum of simple
ones. Let’s argue by induction on dimension. If the Lie algebra is simple, then we are done.
Otherwise, it has an ideal I. We can take I⊥ with respect to the Killing form. This is also an
ideal, but since the form is not positive definite we can’t immediately decompose into direct
sums. But let’s look at the intersection. I ∩ I⊥ is an ideal, and what can we say about the
Killing form restricted to this intersection? It’s identically 0. So this intersection is solvable.
Since the Lie algebra is semisimple then the intersection is 0 so this is a direct sum. Repeat
this process.
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