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Recall: g is a semisimple complex Lie algebra, and h € g is a Cartan subalgebra so that
g=b®@,cp0a- Then R € b* has a number of properties:

Definition 1 Let E be a finite dimensional real Euclidean space. A finite subset R C E\{0}
1s called a root system if it satisfies

1. R spans E.

2. If a,8 € R then S,(B) = 8 — 280y = g — (aV,BYa € R. This is reflection in

(o)
the hyperplane perpendicular to «. Here, also, o¥ € E* is defined by the above by

(¥, ) = T35

3. If o, B3 € R then {(aV,3) = AB) ¢ 7,

R is called reduced if o € R implies 2a ¢ R.

Some remarks:

1. If Ry C E1, Ry C E5 are root systems then R; U Ry C Fq @ F» is a root system.
2. If we rescale a root system a +— ca for ¢ € R, it will again be a root system.

3. The third part of the definition means that the projection of 3 on « is an integer
multiple of 5.

Example 1 (Pictures)



Assume we are working with reduced root systems. Back to Lie algebras, let g be as above.
So h* = by @ ibg. Then (, )z is positive definite and R C by, is a reduced root system.

Example 2 Take g = sl(n+ 1,C). Then take b to be traceless diagonal matrices

A1
> Ai=0pcCrtl,

)\n+1

We’'ll index the roots by ayj,i # j. Let go,; = CEjj. Then [h, Eij] = (A — A\j)Eij = (& —
A1
€;)(R)E;;, where €;( )= A
)\n+1
Then h* = Ceq @"'@C6n+l/zﬁi =0.
So the root system is {e; —€;,1 # j}.
A1
br = { A € R, - A =0}
)\n+1

Sobhi =Re1 ®--- BRepp1/ > ¢, =0.

Theorem 1 Let o, € R and o # ¢f3. Then, up to interchanging «, 3, we must have one of
the following.

1. o L 6 (lzke A1 X Al)
2. (a) la| =18],¢ =7/3.
(b) lel = 15|, ¢ = 2m/3.
These cases correspond to As.
3. (a) |a| = V2|6|,¢ = 7/4.
(b) la| = v2|8],¢ = 31/4.
These cases correspond to Bs.
4. (a) la| =V3|6|,6 = /6.
(b) la| = V36|, ¢ = 57/6.

These cases correspond to Gs.

Look at nes = (b, a) = % € Z. This is 2'@"'25‘ cos ¢ = % cos ¢. Then nysnge = 4 cos? .
The options are



® 1y = nfa = 0. This is case one.

® n,5 = +1,nBa = £1 so that cos® ¢ = ;7 and cos ¢ = :I:%. This is case two above.

[l

® n,p = +1,nfa = £2 so that cos? ¢ = 5 and cos ¢ = =—=. This is case three above.

1
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® Ny = £1,nBa = +£3 so that cos? ¢ = % and cos ¢ = j:@. This is case four above.

Theorem 2 The only rank two root systems are Ay X A1, Ag, Ba, Gs.

Let R be a rank two root system. Take a,3 € R such that the angle between them is the
smallest possible. Then we must be in one of the cases 1, 2a, 3a, 4a (to eliminate the b cases
reflect to get a root with smaller angle).

If we are in the case 2a, by reflections it must contain all of the six roots in As; if it contained
anything else we’d get a pair of roots with smaller angle. Similarly for 3a, 4a.

Now let t € F such that (¢t,«) # 0 for all @« € R. Then R = Ry U R_, where R, = {a €
R|(a,t) > 0} and R_ = {a € R|(a,t) < 0}.

Example 3 Look at the root system A, of sl(n+ 1,C). Take t € b ast = (t1, -+ ,tnt1)
with t1 > -+ > tpq1. Then (¢, ;) = (t,e; —€j) = t; — t;, so this is positive when i < j,
negative when ¢ > j.

Then Ry = {ayjli < j}; R- = {ayjli > j}. So Daer, 8o is the set of strictly upper triangular
matrices, and Bocr_Ba @S the set of strictly lower triangular matrices.

Definition 2 A root a € Ry is simple if it cannot be written as a sum of positive Toots.
Let IT = {1, -+ ,ax} be the set of simple roots.

Lemma 1 Any positive root can be written as o =Y n;; forn; € Z4.

Lemma 2 (a;,a;) <0.

Lemma 3 {«y,...,ax} are linearly independent

The proof is an exercise.

In sl(n + 1), the simple roots are €; — €3, , €, — €p41.



