Introduction to Lie Groups and Lie Algebras
 November 9, 2004

Gabriel C. Drummond-Cole (based on the notes of Jaimie Thind)

November 30, 2004

Recall: \mathfrak{g} is a semisimple complex Lie algebra, and $\mathfrak{h} \in \mathfrak{g}$ is a Cartan subalgebra so that $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}$. Then $R \in \mathfrak{h}^{*}$ has a number of properties:

Definition 1 Let E be a finite dimensional real Euclidean space. A finite subset $R \subset E \backslash\{0\}$ is called a root system if it satisfies

1. R spans E.
2. If $\alpha, \beta \in R$ then $S_{\alpha}(\beta)=\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha=\beta-\left\langle\alpha^{\vee}, \beta\right\rangle \alpha \in R$. This is reflection in the hyperplane perpendicular to α. Here, also, $\alpha^{\vee} \in E^{*}$ is defined by the above by $\left\langle\alpha^{\vee}, \lambda\right\rangle=\frac{2(\alpha, \lambda)}{(\lambda, \lambda)}$.
3. If $\alpha, \beta \in R$ then $\left\langle\alpha^{\vee}, \beta\right\rangle=\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \in \mathbb{Z}$.
R is called reduced if $\alpha \in R$ implies $2 \alpha \notin R$.

Some remarks:

1. If $R_{1} \subset E_{1}, R_{2} \subset E_{2}$ are root systems then $R_{1} \sqcup R_{2} \subset E_{1} \oplus E_{2}$ is a root system.
2. If we rescale a root system $\alpha \mapsto c \alpha$ for $c \in \mathbb{R}_{*}$ it will again be a root system.
3. The third part of the definition means that the projection of β on α is an integer multiple of $\frac{\alpha}{2}$.

Assume we are working with reduced root systems. Back to Lie algebras, let \mathfrak{g} be as above. So $\mathfrak{h}^{*}=\mathfrak{h}_{\mathbb{R}}^{*} \oplus i \mathfrak{h}_{\mathbb{R}}^{*}$. Then $\left.()\right|_{,\mathfrak{h}_{\mathbb{R}}^{*}}$ is positive definite and $R \subset \mathfrak{h}_{\mathbb{R}}^{*}$ is a reduced root system.

Example 2 Take $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{C})$. Then take \mathfrak{h} to be traceless diagonal matrices

$$
\left\{\left.\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n+1}
\end{array}\right) \right\rvert\, \sum \lambda_{i}=0\right\} \subset \mathbb{C}^{n+1}
$$

We'll index the roots by $\alpha_{i j}, i \neq j$. Let $\mathfrak{g}_{\alpha_{i j}}=\mathbb{C} E_{i j}$. Then $\left[h, E_{i j}\right]=\left(\lambda_{i}-\lambda_{j}\right) E_{i j}=\left(\epsilon_{i}-\right.$ $\left.\epsilon_{j}\right)(h) E_{i j}$, where $\epsilon_{i}\left(\left(\begin{array}{ccc}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n+1}\end{array}\right)\right)=\lambda_{i}$.

Then $\mathfrak{h}^{*}=\mathbb{C} \epsilon_{1} \oplus \cdots \oplus \mathbb{C} \epsilon_{n+1} / \sum \epsilon_{i}=0$.
So the root system is $\left\{\epsilon_{i}-\epsilon_{j}, i \neq j\right\}$.
$\mathfrak{h}_{\mathbb{R}}=\left\{\left.\left(\begin{array}{ccc}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n+1}\end{array}\right) \right\rvert\, \lambda_{i} \in \mathbb{R}, \sum \lambda_{i}=0\right\}$.
$S o \mathfrak{h}_{\mathbb{R}}^{*}=\mathbb{R} \epsilon_{1} \oplus \cdots \oplus \mathbb{R} \epsilon_{n+1} / \sum \epsilon_{i}=0$.

Theorem 1 Let $\alpha, \beta \in R$ and $\alpha \neq c \beta$. Then, up to interchanging α, β, we must have one of the following.

1. $\alpha \perp \beta$ (like $A_{1} \times A_{1}$).
2. (a) $|\alpha|=|\beta|, \phi=\pi / 3$.
(b) $|\alpha|=|\beta|, \phi=2 \pi / 3$.

These cases correspond to A_{2}.
3. (a) $|\alpha|=\sqrt{2}|\beta|, \phi=\pi / 4$.
(b) $|\alpha|=\sqrt{2}|\beta|, \phi=3 \pi / 4$.

These cases correspond to B_{2}.
4. (a) $|\alpha|=\sqrt{3}|\beta|, \phi=\pi / 6$.
(b) $|\alpha|=\sqrt{3}|\beta|, \phi=5 \pi / 6$.

These cases correspond to G_{2}.

Look at $n_{\alpha \beta}=\left\langle b^{\vee}, \alpha\right\rangle=\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$. This is $\frac{2|\alpha||\beta|}{|\alpha|^{2}} \cos \phi=\frac{2|\beta|}{|\alpha|} \cos \phi$. Then $n_{\alpha \beta} n_{\beta \alpha}=4 \cos ^{2} \phi$. The options are

- $n_{\alpha \beta}=n \beta \alpha=0$. This is case one.
- $n_{\alpha \beta}= \pm 1, n \beta \alpha= \pm 1$ so that $\cos ^{2} \phi=\frac{1}{4}$ and $\cos \phi= \pm \frac{1}{2}$. This is case two above.
- $n_{\alpha \beta}= \pm 1, n \beta \alpha= \pm 2$ so that $\cos ^{2} \phi=\frac{1}{2}$ and $\cos \phi= \pm \frac{1}{\sqrt{2}}$. This is case three above.
- $n_{\alpha \beta}= \pm 1, n \beta \alpha= \pm 3$ so that $\cos ^{2} \phi=\frac{3}{4}$ and $\cos \phi= \pm \frac{\sqrt{3}}{2}$. This is case four above.

Theorem 2 The only rank two root systems are $A_{1} \times A_{1}, A_{2}, B_{2}, G_{2}$.

Let R be a rank two root system. Take $\alpha, \beta \in R$ such that the angle between them is the smallest possible. Then we must be in one of the cases $1,2 a, 3 a, 4 a$ (to eliminate the b cases reflect to get a root with smaller angle).

If we are in the case $2 a$, by reflections it must contain all of the six roots in A_{2}; if it contained anything else we'd get a pair of roots with smaller angle. Similarly for $3 a, 4 a$.

Now let $t \in E$ such that $(t, \alpha) \neq 0$ for all $\alpha \in R$. Then $R=R_{+} \sqcup R_{-}$, where $R_{+}=\{\alpha \in$ $R \mid(\alpha, t)>0\}$ and $R_{-}=\{\alpha \in R \mid(\alpha, t)<0\}$.

Example 3 Look at the root system A_{n} of $\mathfrak{s l}(n+1, \mathbb{C})$. Take $t \in \mathfrak{h}_{\mathbb{R}}^{*}$ as $t=\left(t_{1}, \cdots, t_{n+1}\right)$ with $t_{1}>\cdots>t_{n+1}$. Then $\left(t, \alpha_{i j}\right)=\left(t, \epsilon_{i}-\epsilon_{j}\right)=t_{i}-t_{j}$, so this is positive when $i<j$, negative when $i>j$.

Then $R_{+}=\left\{\alpha_{i j} \mid i<j\right\} ; R_{-}=\left\{\alpha_{i j} \mid i>j\right\}$. So $\oplus_{\alpha \in R_{+}} \mathfrak{g}_{\alpha}$ is the set of strictly upper triangular matrices, and $\oplus_{\alpha \in R_{-}} \mathfrak{g}_{\alpha}$ is the set of strictly lower triangular matrices.

Definition $2 A$ root $\alpha \in R_{+}$is simple if it cannot be written as a sum of positive roots.

Let $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$ be the set of simple roots.

Lemma 1 Any positive root can be written as $\alpha=\sum n_{i} \alpha_{i}$ for $n_{i} \in \mathbb{Z}_{+}$.

Lemma $2\left(\alpha_{i}, \alpha_{j}\right) \leq 0$.

Lemma $3\left\{\alpha_{i}, \ldots, \alpha_{k}\right\}$ are linearly independent

The proof is an exercise.
In $\mathfrak{s l}(n+1)$, the simple roots are $\epsilon_{1}-\epsilon_{2}, \cdots, \epsilon_{n}-\epsilon_{n+1}$.

