Introduction to Lie Groups and Lie Algebras November 9, 2004

Gabriel C. Drummond-Cole (based on the notes of Jaimie Thind)

November 30, 2004

Recall: \mathfrak{g} is a semisimple complex Lie algebra, and $\mathfrak{h} \in \mathfrak{g}$ is a Cartan subalgebra so that $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}$. Then $R \in \mathfrak{h}^*$ has a number of properties:

Definition 1 Let E be a finite dimensional real Euclidean space. A finite subset $R \subset E \setminus \{0\}$ is called a root system if it satisfies

- 1. R spans E.
- 2. If $\alpha, \beta \in R$ then $S_{\alpha}(\beta) = \beta \frac{2(\beta, \alpha)}{(\alpha, \alpha)}\alpha = \beta \langle \alpha^{\vee}, \beta \rangle \alpha \in R$. This is reflection in the hyperplane perpendicular to α . Here, also, $\alpha^{\vee} \in E^*$ is defined by the above by $\langle \alpha^{\vee}, \lambda \rangle = \frac{2(\alpha, \lambda)}{(\lambda, \lambda)}$.
- 3. If $\alpha, \beta \in R$ then $\langle \alpha^{\vee}, \beta \rangle = \frac{2(\alpha, \beta)}{(\alpha, \alpha)} \in \mathbb{Z}$.

R is called reduced if $\alpha \in R$ implies $2\alpha \notin R$.

Some remarks:

- 1. If $R_1 \subset E_1, R_2 \subset E_2$ are root systems then $R_1 \sqcup R_2 \subset E_1 \oplus E_2$ is a root system.
- 2. If we rescale a root system $\alpha \mapsto c\alpha$ for $c \in \mathbb{R}_*$ it will again be a root system.
- 3. The third part of the definition means that the projection of β on α is an integer multiple of $\frac{\alpha}{2}$.

Example 1 (Pictures)

1

Assume we are working with reduced root systems. Back to Lie algebras, let \mathfrak{g} be as above. So $\mathfrak{h}^* = \mathfrak{h}_{\mathbb{R}}^* \oplus i\mathfrak{h}_{\mathbb{R}}^*$. Then $(\,,\,)|_{\mathfrak{h}_{\mathbb{R}}^*}$ is positive definite and $R \subset \mathfrak{h}_{\mathbb{R}}^*$ is a reduced root system.

Example 2 Take $\mathfrak{g} = \mathfrak{sl}(n+1,\mathbb{C})$. Then take \mathfrak{h} to be traceless diagonal matrices

$$\left\{ \left(\begin{array}{cc} \lambda_1 & & \\ & \ddots & \\ & & \lambda_{n+1} \end{array} \right) | \sum \lambda_i = 0 \right\} \subset \mathbb{C}^{n+1}.$$

We'll index the roots by α_{ij} , $i \neq j$. Let $\mathfrak{g}_{\alpha_{ij}} = \mathbb{C}E_{ij}$. Then $[h, E_{ij}] = (\lambda_i - \lambda_j)E_{ij} = (\epsilon_i - \epsilon_i)$

$$\epsilon_j)(h)E_{ij}, where \epsilon_i\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_{n+1} \end{pmatrix}) = \lambda_i.$$

Then $\mathfrak{h}^* = \mathbb{C}\epsilon_1 \oplus \cdots \oplus \mathbb{C}\epsilon_{n+1} / \sum \epsilon_i = 0$.

So the root system is $\{\epsilon_i - \epsilon_j, i \neq j\}$.

$$\mathfrak{h}_{\mathbb{R}} = \{ \left(\begin{array}{cc} \lambda_1 & & \\ & \ddots & \\ & & \lambda_{n+1} \end{array} \right) | \lambda_i \in \mathbb{R}, \sum \lambda_i = 0 \}.$$

So
$$\mathfrak{h}_{\mathbb{R}}^* = \mathbb{R}\epsilon_1 \oplus \cdots \oplus \mathbb{R}\epsilon_{n+1} / \sum \epsilon_i = 0.$$

Theorem 1 Let $\alpha, \beta \in R$ and $\alpha \neq c\beta$. Then, up to interchanging α, β , we must have one of the following.

- 1. $\alpha \perp \beta$ (like $A_1 \times A_1$).
- 2. (a) $|\alpha| = |\beta|, \phi = \pi/3$

(b)
$$|\alpha| = |\beta|, \phi = 2\pi/3$$
.

These cases correspond to A_2 .

3. (a)
$$|\alpha| = \sqrt{2}|\beta|, \phi = \pi/4.$$

(b)
$$|\alpha| = \sqrt{2}|\beta|, \phi = 3\pi/4.$$

These cases correspond to B_2 .

4. (a)
$$|\alpha| = \sqrt{3}|\beta|, \phi = \pi/6.$$

(b)
$$|\alpha| = \sqrt{3}|\beta|, \phi = 5\pi/6.$$

These cases correspond to G_2 .

Look at $n_{\alpha\beta} = \langle b^{\vee}, \alpha \rangle = \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$. This is $\frac{2|\alpha||\beta|}{|\alpha|^2} \cos \phi = \frac{2|\beta|}{|\alpha|} \cos \phi$. Then $n_{\alpha\beta}n_{\beta\alpha} = 4\cos^2 \phi$. The options are

- $n_{\alpha\beta} = n\beta\alpha = 0$. This is case one.
- $n_{\alpha\beta}=\pm 1, n\beta\alpha=\pm 1$ so that $\cos^2\phi=\frac{1}{4}$ and $\cos\phi=\pm\frac{1}{2}.$ This is case two above.
- $n_{\alpha\beta} = \pm 1, n\beta\alpha = \pm 2$ so that $\cos^2 \phi = \frac{1}{2}$ and $\cos \phi = \pm \frac{1}{\sqrt{2}}$. This is case three above.
- $n_{\alpha\beta} = \pm 1, n\beta\alpha = \pm 3$ so that $\cos^2\phi = \frac{3}{4}$ and $\cos\phi = \pm \frac{\sqrt{3}}{2}$. This is case four above.

Theorem 2 The only rank two root systems are $A_1 \times A_1, A_2, B_2, G_2$.

Let R be a rank two root system. Take $\alpha, \beta \in R$ such that the angle between them is the smallest possible. Then we must be in one of the cases 1, 2a, 3a, 4a (to eliminate the b cases reflect to get a root with smaller angle).

If we are in the case 2a, by reflections it must contain all of the six roots in A_2 ; if it contained anything else we'd get a pair of roots with smaller angle. Similarly for 3a, 4a.

Now let $t \in E$ such that $(t, \alpha) \neq 0$ for all $\alpha \in R$. Then $R = R_+ \sqcup R_-$, where $R_+ = \{\alpha \in R | (\alpha, t) > 0\}$ and $R_- = \{\alpha \in R | (\alpha, t) < 0\}$.

Example 3 Look at the root system A_n of $\mathfrak{sl}(n+1,\mathbb{C})$. Take $t \in \mathfrak{h}_{\mathbb{R}}^*$ as $t = (t_1, \dots, t_{n+1})$ with $t_1 > \dots > t_{n+1}$. Then $(t, \alpha_{ij}) = (t, \epsilon_i - \epsilon_j) = t_i - t_j$, so this is positive when i < j, negative when i > j.

Then $R_+ = \{\alpha_{ij} | i < j\}$; $R_- = \{\alpha_{ij} | i > j\}$. So $\bigoplus_{\alpha \in R_+} \mathfrak{g}_{\alpha}$ is the set of strictly upper triangular matrices, and $\bigoplus_{\alpha \in R_-} \mathfrak{g}_{\alpha}$ is the set of strictly lower triangular matrices.

Definition 2 A root $\alpha \in R_+$ is simple if it cannot be written as a sum of positive roots.

Let $\Pi = \{\alpha_1, \dots, \alpha_k\}$ be the set of simple roots.

Lemma 1 Any positive root can be written as $\alpha = \sum n_i \alpha_i$ for $n_i \in \mathbb{Z}_+$.

Lemma 2 $(\alpha_i, \alpha_j) \leq 0$.

Lemma 3 $\{\alpha_i, \ldots, \alpha_k\}$ are linearly independent

The proof is an exercise.

In $\mathfrak{sl}(n+1)$, the simple roots are $\epsilon_1 - \epsilon_2, \dots, \epsilon_n - \epsilon_{n+1}$.