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By the way, there is a misprint in the homework assignment. The first part of problem 2b is
incorrect as stated, but can be corrected. I had a professor who would give me the problem
to show that two things are the same, and if I would come back and say that they were not
the same, he would tell me to change the question so that they were the same. I was not
often successful, but in this case it is easy.

Today is probably the most important lesson we’ve had so far.

Recall that g is a semisimple complex Lie algebra. There exists a Cartan subalgebra h ⊂ g
such that g = h⊕

⊕
gα, α ∈ h∗ where gα is defined so that [h, x] = α(h)x for h ∈ h, x ∈ gα.

So you can forget everything else, Killing forms and Cartan criterion and so on; this is the
most important part of being a semisimple Lie algebra.

These α are called roots, and the root system R is {α : gα 6= 0} ⊂ h∗ − {0}. gα is called the
root subspace. I don’t know where this terminology came from but it is absolutely standard
and could not be changed at this point.

Example 1 1. g = sl(2, C).
h ∼= Ch, h∗ ∼= C
g = h⊕ Ce⊕ Cf. The first of these corresponds to α(h) = 2, the second to α(h) = −2.

Here every root space is one dimensional.

2. As a slightly more complicated example let g = sl(3, C). Then I claim that h consists of
diagonal traceless elements.

You can write g as h⊕
⊕3

i 6=j=1 CEij . I claim that this is a root decomposition. If you
fix h, with entries λi, you can compute that [h, Eij ] = (λi − λj)Eij . You can describe
the corresponding roots. If you define ei ∈ h∗ by ei(h) = λi, then first these do not
form a basis, since h∗ has e1 + e2 + e3 = 0. They are still well-defined elements, and we
can say that Eij ∈ gei−ej

. So there are six root spaces, each one dimensional. I can’t
draw the complex space but I can draw the real part. Let me consider the original R2,
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with three vectors dividing the plane at 2π/3 angles. Call these e1, e2, e3, and then they
satisfy the relation. There are then six roots seperating by π/3 angles into sixths. This
is known as A2.

This suggests that we’re going to get nice and symmetrical pictures. Let’s see what we can
prove about roots and all that. Let me remind you of what we had last time.

1. [gα, gβ ] ⊂ gα+β .

2. K : gα⊗ g−α → C is nondegenerate. In particular, K is nondegenerate on h. We’ll just
use (, ) to denote it.

I should note that a nondegenerate symmetric bilinear form on a vector space you can
use it to identify the space with its dual via h∗ ← h by α ← Hα. Then you can define
(, ) on h∗ so that (α, β) = (Hα,Hβ).

So what can we prove about the root system? Here is the first result.

Proposition 1 R spans h∗.

Suppose not. Then there is a nonzero h ∈ h with 〈h, α〉 = 0 for all α ∈ R. Then if I take
[h, x] it will be 0 for all x ∈ gα, since it is 〈h, α〉x.

Then h is central, since it commutes with everything; but then h is not semisimple, which is
impossible.

What’s next? In both of the examples, we’d seen

Proposition 2 For any α ∈ R, if x ∈ gα and y ∈ g−α. Then [x, y] = (x, y)Halpha.

This should remind you of the commutation relation [e, f ] = h in sl(2). Well, we know
[x, y] ∈ g0 = h. To compute which it is, I need to look at ([x, y], h), which will work because
the Killing form is nondegenerate. From invariance of the Killing form this is −(y, [x, h]).
This is (y, [h, x]) =< h, α > (y, x) = (x, y)(h, Hα). These have the same inner product with
any element of Cartan so the Killing form is nondegenerate.

Proposition 3 (α, α) 6= 0 for any α. Moreover, if we choose eα ∈ gα, fα ∈ g−α so that
(eα, fα) = 2

(α,α) , and let hα = 2Hα

(α,α) then (eα, fα, hα) satisfy the relations for sl(2, C).

It’s nondegenerate but complex, so it might give you zero squares, but not roots. This is the
most important proposition so far. So let’s see. Let x ∈ gα, y ∈ g−α, and (x, y) = 1. Then
[x, y] = Hα. We have [Hα, x] = 〈Hα, α〉x− (α, α)x. On the other hand, [Hα, y] = −(α, α)y.

If (α, α) = 0 then (x, y,Hα) is solvable.
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Consider g as an L-modules. In a suitable basis the ads of these three elements are upper
triangular. Then their commutator is strictly upper triangular, so that Hα is strictly upper
triangular but diagonalizable.

On the other hand Hα is a semisimple so Hα = 0, which is impossible because α was nonzero.

Now the relations of sl(2, C) are rather immediate. Let me erase again. Then (eα, fα) = 2
(α,α)

implies [eα, fα] = 2Hα

(α,α) = hα. Then [hα, eα] = 〈hα, α〉eα = 2
(α,α) 〈Hα, α〉eα = 2(α,α)

(α,α) eα = 2eα.

So for each root we have an sl(2) algebra, which is extremely important. So you can consider
g as a representation of sl(2, C).

Proposition 4 ηβα = 〈hα, β〉 ∈ Z, α, β ∈ R, which is the quantity 2(α, β)/(α, α).

So I claim these are integers. Consider g as a module over (eα, fα, hα. These are hα|gp . This
means that these inner products are real.

Proposition 5 If α, β ∈ R then sα(β) = β − 2(α,β)
(α,α) α. The constant is chosen so that

(sα(β), α) = −(β, α).

Consider (ad fα) : ⊕gβ+kα → g. This is stable under the triple eα, fα, hα. Then hα|gβ+kα
=

〈hα, β〉+ 2k.

As part of your homework, we have a pairing of α,−α. Now the pairing will be of β and
sα(β).

Proposition 6 Let α ∈ R. Then dim gα = 1 and kα ∈ R if and only if k = ±1.

From the fourth proposition we get that 2(kα,α)
(α,α) ∈ Z, so that k must be a half-integer. I can

also write α = 1
kβ to get 1

k also a half-integer. The only possibilities are k = ±1,±1/2,±2.
Without loss of generality, we need only say α ∈ R, 2α ∈ R as impossible. Look at V =
g−2α ⊕ g−α ⊕ Chα ⊕ gα ⊕ g2α. Then V is a module over (eα, fα, hα).

We can even compute the eigenvalues for hα for each of these; they are −4,−2, 0, 2, 4. What
can we say about this representation? Notice that V [0] is one dimensional. This tells you
that it’s irreducible. This is homework. Since we know that these are nonzero, this is the
four dimensional representation V4 of sl(2, C). So all these spaces are one-dimensional. But
then gα = Ceα, and ad eα : gα → g2α is a zero map. But in an irreducible representation,
eα cannot act by 0 so this cannot happen.

Let me write the last result, which I don’t have time to prove. Maybe I’ll prove it next time
or maybe I’ll leave it as a statement to be proved as an exercise.

Proposition 7 Let h∗R be the R-span of α, and hR the R-span of hα.
Then
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1. h = hR ⊕ ihR, h∗ = hR ⊕ ihR.

2. (, )|h∗R is positive definite.

Next time we’ll summarize and see what we can say about root systems from this.
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