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Okay, so let me as usual recall what we are doing. We have discussed the structure theory of
semisimple Lie algebras, and that gave us a root system. Once you have that you can divide
into positive and negative R+ t R−, and then we get a subset Π ⊂ R+ called the simple
roots, from which we can recover all of the roots by means of the Weyl group.

Our goal today is to classify all possible root systems, which will essentially solve the problem
of classification of all semisimple Lie algebras. So classifying root systems is equivalent to
classifying possible sets of simple roots. Before I continue let me just say that you can
always take orthogonal unions of existent simple root systems. That is, if R1, R2 are root
systems then R1 ∪R2 ⊂ E1 ⊕E2 is a root system. So you always can construct new ones by
means of orthogonal unions. Such root systems are called reducible and we will be discussing
irreducible root systems.

I claim that R is reducible if and only if Π = Π1 ∪Π2,Π1 ⊥ Π2.

If R is reducible, this direction is obvious, since the whole root systems are orthogonal.
They will be nonempty because then one of the Ri would be nonempty since that’s where
everything generated by reflection would live.

An element of the Weyl group will preserve E1, E2 so this is as claimed.

The proof in the other direction is that, if you assume the hypotheses, then let E1 be the span
of Π1, E2 the span of Π2. So this is a direct sum decomposition. Let R = R ∩ E1 ∪R ∩ E2.
Show that this works as an exercise.

Definition 1 Let Π be a set of simple roots. The Cartan matrix is defined by cij = 〈α∨i , αj〉 =
2(αi,αj)

αi,αi
∈ Z.

Then cii = 2, cij ≤ 0 otherwise. For example for A2 we get
(

2 −1
−1 2

)
. In general, for

An = {εi − εj : i 6= j} we get a matrix with 2 on the diagonal and −1 on the subdiagonal
and superdiagonal.
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There is an even better way of carrying this information, which is a graph. We have a vertex
for every simple roots. We will come up with edges according to the angles between them.
The only possibilities with an obtuse angle are π/2, 2π/3, 3π/4, 5π/6. We join α, β by 0, 1, 2,
and 3 edges according to which of these cases we are in, and we give orientations to the
double and triple edes by going from the longer to shorter sides.

This kind of diagram is called a Dynkin diagram. As we discussed, any other choice of simple
groups is related by the action of the Weyl group, so that the Dynkin diagram is determined
by the choice of the root system.

For An the Dynkin diagram is a string; for B2 it is two nodes joined by a double edge. The

matrix for B2 is
(

2 −2
−1 2

)
.

Claim 1 1. One can recover the Cartan matrix from the Dynkin diagram and vice versa.

2. The root system is irreducible if and only if the Dynkin diagram is connected.

3. if you are talking about irreducible root systems, the Dynkin diagram determines R
uniquely up to isomorphism

The second of these is obvious, since you don’t connect orthogonal pieces, and disconnected
diagrams give you a union of orthogonal subsets of the root set.

So first we want to recover the simple roots up to isomorphism, i.e., an orthogonal trans-
formation. That requires inner products. The diagram almost tells them. It tells you the
relative length of the roots. Since we are talking about irreducible root systems we know the
length of all the roots, relatively.

The Dynkin diagram determines |αi|2, (α, α) up to an overall constant factor, so all of the
simple roots.

Our basic sequence was to start from a root system to get simple roots to get Dynkin
diagrams. The results of the last week or two give us the other directions. So classifying root
systems is the same as classifying Dynkin diagrams.

The famous answer is that there is a very easy classification.

Theorem 1 1. For an irreducible root system R its Dynkin diagram must be one of the
following:

• An is single edges.

• Bn has a double edge pointing out at the end of a string.

• Cn has a double edge pointing in at the end of a string.

• Dn has a single-edged fork at the end of a string.
Those form a series. The exceptionals are:
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• E6

• E7

• E8

• F4

• G2

2. Each of these does occur as a Dynkin diagram of a root system.

I’m not going to give you the full proof, but just a part of it. I’ll classify those which are
simply-laced, i.e., with only single edges.

The basic idea begins with the idea that all roots have the same length. Assume it is
√

2.
Then Cij = (αi, αj) so that it is positive definite. Now any submatrix is also positive definite.
What it means geometrically is that if we take a subdiagram, a subset of vertices and all
edges connecting them, that the corresponding Cartan matrix is positive definite.

So now we can start. We begin by showing that Γ contains no loops. If it did, you would
make your matrix, or part of it, singular. An n-loop is called Â4.

Next, you have no vertex of valence 4 or higher. If you have that then you get again a singular
submatrix, in this case D̂4.

The next step is that it is impossible to have two vertices of valence three. If you did, you
could collapse along the line connecting them to get a case similar to the previous one. If
they are connected along β1, . . . , βn, then β =

∑
βi has |β|2 =

∑
2n − 2(n − 1) = 2. Then

(β, αi) = −1. This yields a linear combination that gives zero.

So if it has no vertices of valence three, then it is of type An. If it has such a vertex then
it must have three tails of length p, q, r. Another argument will show the following famous
inequality: 1/p + 1/q + 1/r > 1. So they cannot all be long. After that, some simple number
theory gives (1, 1, n), (1, 2, 2), (1, 2, 3), (1, 2, 4).

If the diagram is not simply laced, the basic idea is the same. You need to show that if there
is a double edge there can be only one, and so on. So you can find a full argument in many
books, but I don’t think we need a full discussion.

How do I know that every of these cases really does appear. The only way to do that is to
construct a root system for each. Let me describe the root systems of types A,B, C.

Explicit description of root systems of type A,B,C.

• An : R = {εi − εj : i 6= j} ⊂ Rn+1/R(1, . . . , 1). So
Π = {ε1 − ε2, · · · , εn − εn+1;
W = Sn+1.

• Bn : R = {±εi ± εj , i 6= j,±εi}. The fact that this is a root system will follow from the
Weyl group W = 〈σi, τij〉 = Sn n Zn

2 .

3



Positive roots can be εi, εi + εj , (εi − εj , i < j) = {α : (α, (n, n− 1, . . . , 1)) > 0}.
Π = {ε1 − ε2, . . . , εn−1 − εn, εn.

For the type C root system it’s almost exactly the same, but you include 2εi instead of
εi.

Next time I will go back to Lie algebras and say what you get there.
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