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First of all, let me answer the question for why we are so interested in eigenvalues for the
spherical Laplace operator. Consider an atom. You have some positive charge here and you
have the electrons going around in circles, and the actual quantum mechanical discussion is
the space of functions on R3, this being the space of states, if you have just one electron,
I’m simplifying a little, and the energy operator, the Hamiltonian H will be L2(R3) →
L2(R3), which will be ∆sph+ a radial part. Here we have electric charges so this isn’t
just the Laplacian, but the other part from the charge only depends on r. We want to
find the eigenvalues of this because in quantum mechanics, the observables such as energy
and momentum have possible values equal to the eigenvalues of this operator. So you find
eigenvalues by seperating variables, and then you need to solve two seperate problems, a
radial part and a part of finding eigenvalues on the sphere. The spherical eigenvalues are not
exactly right because we didn’t talk about the radial part. But we can see that there is one
possible state with the lowest energy level, and so on. This is a little bit of simplification,
but the actual answer is twice as large.

This exactly explains why the periodic table, why the structure changes when you fill all the
possible energy levels.

The fact that these are indexed by positive integers gives you a lot of information about the
structure of the hydrogen atom, and if we did the full analysis for the atom including the
radial part you would get an explanation of the line spectra you see and so on. This was due
to Bohr and it was the first test of quantum mechanics. That all goes to the physics. As
far as mathematicians are concerned, the eigenfunctions are unimportant but the values are
quite important because they predict possible states for a physical system. I should probably
give you a reference for where this problem is analyzed completely; I’ll have such a reference
for you next time.

Okay, guys, the next homework assignment is due next week because we have Thanksgiving
afterward. I would ask you to turn it in next Tuesday.

Last time the general setup is that we are talking about the root system. We have a finite
set in Euclidean space satisfying certain axioms; the motivation comes from Lie algebras but
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we can forget that. We split R into R+∪R− and then choose a basis Π = {α1, . . . , αr} ⊂ R+

where r is called the rank. Of course this is not unique, as positive just came from taking
an inner product with an arbitrary vector, but the set of all decompositions or polarizations
is in bijection with what we call Weyl chambers. This is just a connected component of the
complement of the hyperplanes Hα = {λ|(λ, α) = 0}

For example, in A2 there are six Weyl chambers. The correspondence is that given a Weyl
chamber, the choice of vector determines the same set of positive roots, and you can also go
backward, to find that C+ = {λ : (λ, α) > 0 for all α ∈ R+}; the more exciting result is that
this is equal to {λ : (λ, α) > 0 for all α ∈ Π}.

Another important notion was the Weyl group W = 〈Sα〉, the reflection group.

Theorem 1 1. W acts transitively on the set of Weyl chambers.

2. W = 〈Si〉 where Si = Sαi .

3. WΠ = R.

We discussed an example; when R = An, which corresponds to sl(n) then W = Sn+1. Did
we discuss the simple roots in this case? Recall that these are indexed by αij . Then the
reflection corresponds to the transposition of the i, j entries.

What are the simple reflections? The simple roots are αi = εi − εi+1, which is the cycle
(i(i+1)). That’s a pretty obvious statement in this case but this works in general. Then this
part tells you that any root can be obtained from the simple ones by permutation.

Let me remind for you one of the important tools used in the proof. We tried to connect C+

to some other Weyl chamber. So we proved that we can always connect to Weyl chambers
by such a chain Cn = Sβn

· · ·Sβ1(C+). But we said since β1 is a wall of a Weyl chamber it
corresponds to a simple reflection. Since β2 is a wall of C1, which is obtained from C+ by
reflection. So β2 is a reflection Sβ1(αi2) os that this is Sβ1Si2Sβ1 , so you can write this as
a product of simple reflections Si1 · · ·Sin

(C+). Two different choices of Weyl chambers give
you isomorphic structures, angles, lengths, inner product all the same.

So let me continue and do a couple more things.

So first of all let me say a little bit more about this picture. I would like to discuss how long
such a chain should be, and that really requires the following definition.

Definition 1 Suppose w ∈ W . Then l(w) is the number of hyperplanes separating

C+, w(C+) = |{α ∈ R+ : w(α) ∈ R−}|.

By definition this length is nonnegative and easily bounded above, which is one of your
homework assignments.
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What is the length of a simple reflection? If you reflect a hyperplane around a boundary
component then they are separated only by that compoenent. In this case the only root
which has different signs on C+, w(C+) is alphai, since Si(αi) is negative and Si permutes
the other positive roots.

There are purely algebraic arguments which are less obvious here but maybe would be easier
to write down.

Corollary 1 Let ρ = 1
2

∑
α∈R+

α ∈ E. Then (αv
i , ρ) = 2(ρ,αi)

(αi,αi)
= 1.

The proof is easy. Apply to this element the reflection Si. We get Si(ρ) = ρ− (αv
i , ρ)αi. This

gives us si( 1
2

∑
α∈R+

α) = 1
2 (−αi +

∑
α∈R+\αi

α = ρ− αi.

As an example, to compute this for sl(n + 1) we can say ρ = (t1, . . . , tn+1) up to multiple.
We can write the half sum of positive roots which gives me 1

2

∑
i<j εi − εj which is n

2 ε1 +
n−2

2 ε2 + · · · − n
2 εn.

So now if you prefer you can write it (n
2 , n−2

2 , · · · ,−n
2 ). I leave it to you to check that the

inner product with any simple root is one, which is easy.

Theorem 2 l(w) is the length of the shortest expression of the form w = si1 · · · sil
.

The proof is based on two simple lemmas.

Lemma 1 If w = si1 · · · sil
then l(w) ≤ l.

There are two ways of doing this; let me choose the geometric way. Each time we cross one
wall in our movement from C+ to Cl by crossing l walls. If you have such an expression you
can connect C+ to W (C+) with a sequence of adjacent chambers of length l. That actually
proves it.

Lemma 2 On the other hand going the other way must cross at least l hyperplanes

That proves the inequality. You may cross a hyperplane twice without meaning to. If
l(si1 , . . . , sil

) < l then we can write −n/2en+1 as (n/2, · · · ,−n/2), an expression for w which
is shorter than l.

Corollary 2 W acts simply transitively on the set of Weyl chambers.

This means that for any Weyl chamber the stabilizer is the trivial one. The proof is one line.
Assume w(C+) = C+; then l(w) = 0 so that the shortest expression of w is as zero simple
reflections, so it is the empty word.
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Probably I should give you one example here. Let me draw only the Weyl chambers for
A2. I drew the root system rather small. The emphasis is on the hyperplanes and the Weyl
chambers. How can I go from a Weyl chamber to its opposite? It takes three crossings and I
can go in either direction. So there should be an element of the Weyl group of length three,
but there should be two expressions for it in terms of simple generators.

In one direction you get s1(s1(H2)) = s2(s1s2s1)s1 = s2s1s2. The other direction gives you
s1s2s1, so that by our theorem these are equal. That is in fact so. If you think of the the
Weyl group as permutations in three letters, this is an identity, the Yang Baxter identity.

Let me finish with a couple of words about Lie group theory. I’ll just state results. I was
just talking about Weyl groups as generated by reflections.

Theorem 3 1. Any element w ∈ W is given by Ad∗g for some g ∈ G.

2. Conversely if g ∈ G such that Ad∗gh = h then Ad∗g|h∗ ∈ W.

Recall the root system lives in h∗ ⊂ g∗ not in g so this is not Ad.

The same idea has another form; this statement is also quite useful, but the statement is
quite complicated

Theorem 4 Consider the symmetric algebra Sg which is polynomials on g∗ and we take the
elements (Sg)G invariant under the adjoint action of G. Then this is in correspondence, and
isomorphism, with (Sh)W , polynomials on h∗ which are fixed under the action of the Weyl
group.

Suppose g = gl(n, C) then h is the diagonal and the theorem says that conjugation invariant
polynomial functions of a matrix and the right hand side are the Sn-invariant polynomial
functions of the eigenvalues, the space of symmetric polynomials.

That’s not immediately trivial even in this case. It’s obvious you have an embedding, but
equality is not clear. In general it’s somewhat harder.
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