Introduction to Lie Groups and Lie Algebras November 11, 2004

Gabriel C. Drummond-Cole

December 3, 2004

Recall: $R=R_{+} \cup R_{-} \subset E$ and $r=\operatorname{dim} E . \Pi=\left\{\alpha_{1}, \cdots, \alpha_{r}\right\} \subset R_{+}$is the set of simple roots. For any $\alpha \in R_{+}, \alpha=\sum n_{i} \alpha_{i}$ for $n_{i} \geq 0$.

Example $1 R=\left\{e_{i}-e_{j}, i \neq j\right\} \subset \mathbb{R}^{n+1} /(1, \cdots, 1)$.
$R_{+}=\left\{e_{i}-e_{j}, i<j\right\}$.
$\Pi=\left\{\alpha_{1}=e_{1}-e_{2}, \cdots, \alpha_{n}=e_{n}-e_{n+1}\right\}$.

Can one recover R from Π, and for different choices of polarization do we get "different" Π ?
Note that $R=R_{+} \cup R_{-}$depends only on the signs of (t, α). It changes when $(t, \alpha)=0$, i.e., t crosses the hyperplane $H_{\alpha}=\{\lambda \mid(\alpha, \lambda)=0\}$.

Definition 1 A Weyl chamber is a connected component of $E \backslash \cup H_{\alpha}$.

Each Weyl chamber is the intersection of half-spaces so it is a convex polygonal cone. There are only finitely many.

Lemma $1 C \rightarrow R=R_{+}^{C} \cup R_{-}^{C}$, where $R_{+}^{C}=\{\alpha: \alpha(C)>0\}$ is a bijection between Weyl chambers and polarizations.

The inverse map is $R=R_{+} \cup R_{-}$to $C_{+}=\left\{t \in E \mid(\alpha, t)>0\right.$ for all $\left.\alpha \in R_{+}\right\}=\{t \in$ $E \mid\left(t, \alpha_{i}\right)>0$ for all $\left.\alpha_{i} \in \Pi\right\}$.

If $\left(t, \alpha_{i}\right)>0$ for all $\alpha_{i} \in \Pi$ then for all $\alpha \in R_{+}(t, \alpha)=\sum n_{i}\left(t, \alpha_{i}\right)>0$.
Every Weyl chamber is bounded by exactly r hyperplanes, called the walls of the Weyl chamber.

Definition 2 The Weyl group W of $R \subset G L(E)$ is the group generated by $S_{\alpha}, \alpha \in R$.

Example 2 Let $R=A_{n}$, the root system of $\mathfrak{s l}(n+1)$. Then $\alpha_{i j}=\left(e_{i}-e_{j}\right)$ just as $s_{i j}$ transposes i and j. So $S_{\alpha_{i j}}$ sends $\left(t_{1}, \cdots, t_{i}, \cdots, t_{j}, \cdots, t_{n+1}\right.$ to $\left(t_{1}, \cdots, t_{j}, \cdots, t_{i}, \cdots, t_{n+1}\right.$. So $W=S_{n+1}$.

Some properties are that $W \subset O(E)$ and $|W|>\infty$.
The first is obvious, the second is because $W \subset S(R)$.

Theorem 1 1. W acts transitively on the set of Weyl chambers.
2. Fix $R=R_{+} \cup R_{-}$. Then W is generated by $S_{i}=S_{\alpha_{i}}$ for $\alpha_{i} \in \Pi$.
3. For every root α there exists $w \in W$ such that $w(\alpha) \in \Pi$ so $W \Pi=R$.

Corollary 1 1. R can be recovered from Π.

2. Say $R=R_{+} \cup R_{-}=R_{+}^{\prime} \cup R_{-}^{\prime}$, with simple root sets Π, Π^{\prime}. Then $\Pi^{\prime}=w \Pi$ for some $w \in W$.

Lemma 2 Fix $R=R_{+} \cup R_{-}$and let $W^{\prime}=\left\langle S_{i}\right\rangle$, the group generated by the simple reflections. Then W^{\prime} acts transitively on the set of Weyl chambers.

It suffices to prove that for a Weyl chamber C, there exists $w \in W^{\prime}$ such that $w\left(C_{+}\right)=C$. Let ℓ be the number of hyperplanes seperating C and C_{+}. Take a segment connecting a point in C with a point in C_{+}. It will intersect all these ℓ hyperplanes and only them at isolated points. Then $C_{1}=S_{\beta_{1}}\left(C_{0}\right), C_{2}=S_{\beta_{2}}\left(C_{1}\right)$, and so on to $C=C_{l}=S_{\beta_{\ell}}\left(C_{\ell-1}\right)$... Proof of theorem from lemma:

1. Obvious
2. Let $\beta \in R$ and C be a Weyl chamber such that H_{β} is a wall of C. Then $C=$ $w\left(C_{+}\right) ; H_{\beta}=w\left(\right.$ wall of $\left.C_{+}\right)=w\left(H_{\alpha_{i}}\right)$ for some $\alpha_{i} \in \Pi$ and $w \in W^{\prime}$. So $\beta= \pm w \alpha_{i}$. Then $S_{\beta}=w s_{i} w^{-1} \in W^{\prime}$.
3. We already know $\beta= \pm w\left(\alpha_{i}\right)$. If $\beta=-w \alpha_{i}$ then $\beta=w S_{i}\left(\alpha_{i}\right)$.
