Introduction to Lie Groups and Lie Algebras November 11, 2004

Gabriel C. Drummond-Cole

December 3, 2004

Recall: $R = R_+ \cup R_- \subset E$ and $r = \dim E$. $\Pi = \{\alpha_1, \dots, \alpha_r\} \subset R_+$ is the set of simple roots. For any $\alpha \in R_+$, $\alpha = \sum n_i \alpha_i$ for $n_i \geq 0$.

Example 1
$$R = \{e_i - e_j, i \neq j\} \subset \mathbb{R}^{n+1}/(1, \dots, 1)$$
.
 $R_+ = \{e_i - e_j, i < j\}$.
 $\Pi = \{\alpha_1 = e_1 - e_2, \dots, \alpha_n = e_n - e_{n+1}\}$.

Can one recover R from Π , and for different choices of polarization do we get "different" Π ?

Note that $R = R_+ \cup R_-$ depends only on the signs of (t, α) . It changes when $(t, \alpha) = 0$, i.e., t crosses the hyperplane $H_{\alpha} = \{\lambda | (\alpha, \lambda) = 0\}$.

Definition 1 A Weyl chamber is a connected component of $E \setminus \cup H_{\alpha}$.

Each Weyl chamber is the intersection of half-spaces so it is a convex polygonal cone. There are only finitely many.

Lemma 1 $C \to R = R_+^C \cup R_-^C$, where $R_+^C = \{\alpha : \alpha(C) > 0\}$ is a bijection between Weyl chambers and polarizations.

The inverse map is $R = R_+ \cup R_-$ to $C_+ = \{t \in E | (\alpha, t) > 0 \text{ for all } \alpha \in R_+\} = \{t \in E | (t, \alpha_i) > 0 \text{ for all } \alpha_i \in \Pi\}.$

If $(t, \alpha_i) > 0$ for all $\alpha_i \in \Pi$ then for all $\alpha \in R_+$ $(t, \alpha) = \sum n_i(t, \alpha_i) > 0$.

Every Weyl chamber is bounded by exactly r hyperplanes, called the walls of the Weyl chamber.

Definition 2 The Weyl group W of $R \subset GL(E)$ is the group generated by $S_{\alpha}, \alpha \in R$.

Example 2 Let $R = A_n$, the root system of $\mathfrak{sl}(n+1)$. Then $\alpha_{ij} = (e_i - e_j)$ just as s_{ij} transposes i and j. So $S_{\alpha_{ij}}$ sends $(t_1, \dots, t_i, \dots, t_j, \dots, t_{n+1})$ to $(t_1, \dots, t_j, \dots, t_i, \dots, t_{n+1})$. So $W = S_{n+1}$.

Some properties are that $W \subset O(E)$ and $|W| > \infty$.

The first is obvious, the second is because $W \subset S(R)$.

Theorem 1 1. W acts transitively on the set of Weyl chambers.

- 2. Fix $R = R_+ \cup R_-$. Then W is generated by $S_i = S_{\alpha_i}$ for $\alpha_i \in \Pi$.
- 3. For every root α there exists $w \in W$ such that $w(\alpha) \in \Pi$ so $W\Pi = R$.

Corollary 1 1. R can be recovered from Π .

2. Say $R = R_+ \cup R_- = R'_+ \cup R'_-$, with simple root sets Π, Π' . Then $\Pi' = w\Pi$ for some $w \in W$.

Lemma 2 Fix $R = R_+ \cup R_-$ and let $W' = \langle S_i \rangle$, the group generated by the simple reflections. Then W' acts transitively on the set of Weyl chambers.

It suffices to prove that for a Weyl chamber C, there exists $w \in W'$ such that $w(C_+) = C$. Let ℓ be the number of hyperplanes seperating C and C_+ . Take a segment connecting a point in C with a point in C_+ . It will intersect all these ℓ hyperplanes and only them at isolated points. Then $C_1 = S_{\beta_1}(C_0)$, $C_2 = S_{\beta_2}(C_1)$, and so on to $C = C_l = S_{\beta_\ell}(C_{\ell-1})$ Proof of theorem from lemma:

- 1. Obvious
- 2. Let $\beta \in R$ and C be a Weyl chamber such that H_{β} is a wall of C. Then $C = w(C_+)$; $H_{\beta} = w(\text{wall of } C_+) = w(H_{\alpha_i})$ for some $\alpha_i \in \Pi$ and $w \in W'$. So $\beta = \pm w\alpha_i$. Then $S_{\beta} = ws_i w^{-1} \in W'$.
- 3. We already know $\beta = \pm w(\alpha_i)$. If $\beta = -w\alpha_i$ then $\beta = wS_i(\alpha_i)$.