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1. Let M be the set of n×n matrices of rank one. We show that M is naturally a manifold,
calculate its dimension, and give its tangent space at E11.

Well, G = GL(n)×GL(n) acts on M by x →(P,Q) PxQ−1. We want to show that M
is a homogeneous space for this action.
Now, if x(vi) = 0 for linearly independent vi, 1 ≤ i ≤ n− 1, then {Q(vi)} is a linearly
independent set of vectors which are killed by PxQ−1 so this also has rank at most
one. Similarly, if x(v) 6= 0 then PxQ−1(Q(v)) = P (x(v)) 6= 0 since P has full rank.
Also (P,Q)(P ′, Q′)(x) = PP ′xQ′−1Q−1 = (PP ′)x(QQ′)−1 = (PP ′, QQ′)x. So this is
a well-defined action.

Write an element P ∈ GL(n) as
(

p11 p12

p21 p22

)
, where p11 is a scalar, p12 and p21 are

n− 1-tuples, row or column as appropriate, and p22 is an n− 1× n− 1 matrix. Write
Q−1 in the same form. Then

PE11Q
−1 =

(
p11 p12

p21 p22

) (
1 0
0 0

) (
q11 q12

q21 q22

)
=

(
p11q11 p11q12

q11p21 p21q12

)
.

First, we need to show that this action is transitive. Let x ∈ M. By Jordan decom-
position over C, we know that either there is a trace to x, in which case there is an
eigenvector with nonzero eigenvalue, or every eigenvalue is zero. Then x is conjugate
to one of the following:

(a)


λ 0 · · · 0
0 0 0
...

. . .
...

0 0 · · · 0



(b)


0 1 · · · 0
0 0 0
...

. . .
...

0 0 · · · 0


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We know that there cannot be a larger Jordan block in the second case or any Jordan
block at all in the first case because then the matrix would have rank greater than one.

So this is not exactly the reasoning we want because we may be working over R and
so we may not have full conjugation. So suppose for a moment that we are working
over the reals. In the first case, we know that x has a real eigenvector with nonzero
eigenvalue and the Jordan decomposition then tells us that the original matrix of x,
being conjugate to this symmetric matrix, is diagonalizable over the reals. In the second
case we know that there is a nonvanishing vector under the action of x, which we can
take as v2 and extend to a basis v1, · · · , vn. Then by adding an appropriate multiple
of v2 to each basis vector we can put x in the second form above by a real change of
basis.

Then since (P, P ) acting on x gives an arbitrary change of basis, to show that this
action is transitive we need only show that the two cases above are in the orbit of E11.
But this is immediate. For the first case look to (λI, I) and for the second to (I, I12),
where I12 = I + E12 + E21 − E11 − E22 is the matrix with 1 in the 12 and 21 and
ii, i > 2 positions, zero elsewhere.

Now if we can show that the stabilizer group H of E11 under this action is a closed Lie
subgroup of G, then M will inherit a unique manifold structure as the cosets G/H.

Now to stabilize E11 by an element of G, we must have that p11q11 = 1 so then these are
nonzero so that p11q12 = 0 = q11p21 implies q12 = p21 = 0. As long as these conditions
are met, E11 will be stabilized. Then the stabilizer consists of elements of G of form((

p11 p12

0 p22

)
,

( 1
p11

0
q21 q22

))
This is a subgroup; the zeros and inverse conditions are preserved under multiplica-
tion. it is also the preimage of e1 under the map G → k2n−1 taken by (P,Q) 7→
(p21, q12, p11q11). This map is continuous, so this preimage is closed, so it is a Lie sub-
group, as desired.

Then M inherits a manifold structure as cosets. The dimension is the difference in
dimension between G, that being 2n2 or 4n2, depending on whether we are in R or
C, and this subgroup, which has dimension 2n(n − 1) + 1 (or twice that). Then the
dimension of M(R) is 2n2−2n2 +2n−1 = 2n−1, and the dimension of M(C) is 4n−2.

Okay, for the tangent space at E11, that was discussed, I think, on September 2nd,
when I wasn’t there, but I’ll take a stab at it. It seems quite reasonable to think that,
thinking of M as the cosets or topological quotient of the Lie group G by the stabilizer
Lie group H at a point, that the tangent space at that point will be the (at least vector
space) quotient of the Lie algebras. Any tangent vector in the stabilizer will be in the
kernel of the pushforward of the quotient map; on the other hand by surjectivity of the
pushforward in this case the stabilizer should be exactly the kernel. Then restricting
to a particular point, we get this quotient relationship. It makes sense to think of
TeG → TE11M if we think of g mapping to g applied to E11.

The Lie algebra of H will then be subject to the same restrictions as H itself as a subset
of gl(n)⊕gl(n) with the exception that instead of p11q11 = 1 we will have p11 +q11 = 0.
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So h will be, precisely,{((
p11 p12

0 p22

)
,

(
q11 0
q21 q22

))
∈ gl(n)× gl(n) : p11 + q11 = 0

}
.

At the level of Lie algebras, then, this is the quotient gl(n) ⊕ gl(n)/h, so pairs (v, w)
where v is a column, w is a row, and v1 = w1. We can view this row and column as the
first row and first column of a pair of n × n matrices with all other entries zero. This
makes sense just on the face of it, because those are really the “directions” you can go:
either change the single nonzero vector or move a zero vector to match it.

2. Let G be the group of affine transformations of R, that is, maps from R to itself of form
x 7→ ax + b for nonzero a. We describe the Lie algebra and exponential for this group
explicitly, and discuss semisimplicity, solvability, and nilpotence.

Let G′ ⊂ GL(2, R) be the matrix group{(
a b
0 1

)
: a ∈ R∗, b ∈ R

}
.

An element of G′ can be denoted (a, b); then (a, b)(c, d) = (ac, ad + b); so this is a
subgroup of the subgroup of upper triangular matrices as a subgroup of GL(2, R). In
fact, it is the preimage of 1 in that subgroup under the smooth projection map on the
22 coordinate, so is closed in that subgroup, so is closed in GL(2, R). Then it is a Lie
group.

Define a smooth map G → G′ by ax+b 7→ (a, b). Then (ax+b)◦(cx+d) = a(cx+d)+b =
acx + ad + b 7→ (ac, ad + b) = (a, b)(c, d) so this is a Lie group homomorphism. It is
surjective since (a, b) is the image of ax + b and is injective since ax + b 7→ I implies
a = 1, b = 0. So this is a Lie group isomorphism.

Now we can work in G′ instead of G. The Lie algebra for G′ will be a subalgebra
of gl(2, R) and the exponential will be the same. In fact, the Lie algebra will be a
subalgebra of the Lie algebra of upper triangular matrices. An upper triangular matrix
with c in the ii place exponentiates to an upper triangular matrix with ec in the ii

place so this must be a subalgebra of the matrices of form
(

a b
0 0

)
. Such a matrix

exponentiates to
(

ea eab
0 1

)
so this is in fact the Lie algebra of G′. Then the bracket,

in terms of E11 and E12 is [E11, E12] = E11. So the Lie algebra can be viewed either
as this matrix algebra or abstractly as a two-dimensional real vector space with the
bracket defined thusly on a particular basis.

The exponential map, again, takes (a, b) to (ea, eab), that is, the affine function x →
eax + eab.

So g is not semisimple because, as we will show, it is solvable. It is solvable because
[[a, b], [c, d]] ∈ [〈E11〉, 〈E11〉] = 0. It is not nilpotent because

[E12, [E12, [E12, · · · , [E11, E12]] · · · ]]] = ±E11.
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3. Let V be an n-dimensional complex vector space and let B be a symmetric bilinear
form of rank r < n. Let G ⊂ GL(n, C) be the group of linear transformations preserving
B.

(a) We describe the corresponding Lie algebra and find its dimension.
Let B be the matrix of B with respect to the standard basis by abuse of notation.
Then B∗Bij =

∑
k B∗

ikBkj =
∑

k B∗
kiBjk = BB∗

ij so B is normal and thus diag-
onalizable. Then PBP−1 is a diagonal matrix of rank r. By applying the change
of basis corresponding to P, then possibly interchanging some basis vectors and

rescaling, we get that B has matrix
(

Ir 0
0 0

)
with respect to some basis.

Then G = {g ∈ GL(n, C) : gtBg = B}. Write g in block form as
(

a b
c d

)
; then

this says (
at ct

bt dt

) (
I 0
0 0

) (
a b
c d

)
=

(
ata atb
bta btb

)
=

(
I 0
0 0

)
.

So this says that a ∈ O(r, C) and bta = 0. Then by right multiplication by a−1 we
get that bt = 0.

Now for invertibility we get that the product of such matrices is of form(
aa′ 0

ca′ + dc′ dd′

)
So d must be invertible and then if (a, c, d) is a matrix with the constraints thus
far, then (a−1,−d−1ca−1, d−1) is an inverse. So the constraints give

G =
{(

a 0
c d

)
∈ GL(n, C) : a ∈ O(r, C), d ∈ GL(n− r, C)

}
.

For the Lie algebra, we then get as usual that

g =
{(

a 0
c d

)
∈ gl(n, C) : a ∈ o(r, C), d ∈ gl(n− r, C)

}
.

Then the dimension of this Lie algebra is dim o(r) + dim c + dim gl(n − r) =
r(r + 1)/2 + r(n− r) + (n− r)2 = n2 + r2/2 + r/2− nr.

(b) We decompose g = gss ⊕ b where g is a semisimple subalgebra and b is a solvable
ideal.
Well, here’s a shot in the dark. Let gss be so(r, C) ⊕ sl(n − r, C), where these
summands are obtained from the block matrices a and d by subtracting scalars to

make them traceless. Let b be matrices of form
(

λIr 0
c µIn−r

)
.

So to show that this is the desired decomposition, we have a few steps.
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First of all, gss is certainly a subalgebra, and is semisimple as the direct sum of
semisimple algebras. That’s the easy part. Well, the whole thing is not so hard,
but these two facts are obvious by inspection.
Next, for x, x′ ∈ b we get that [x, x′] is equal to(

λIr 0
c µIn−r

) (
λ′Ir 0
c′ µ′In−r

)
−

(
λ′Ir 0
c′ µ′In−r

) (
λIr 0
c µIn−r

)

=
(

λλ′Ir 0
λ′c + µc′ µµ′In−r

)
−

(
λ′λIr 0

λc′ + µ′c µ′µIn−r

)
=

(
0 0
• 0

)
.

Then [[x, x′], [y, y′]] = 0 for any x, x′, y, y′ ∈ b.

All that remains is to show that b is an ideal. This is the same sort of thing.

[g, x] =
(

a 0
b d

) (
λIr 0
c µIn−r

)
−

(
λIr 0
c µIn−r

) (
a 0
b d

)

=
(

λa 0
λb + dc µd

)
−

(
λa 0

ca + µb µd

)
=

(
0 0
• 0

)
∈ b.

4. Let G be a compact real Lie group, g its algebra, and V a complex finite dimensional
representation. We show that for every x ∈ g its action is diagonalizable, and discuss
the truth of this assertion in gC.

Since G is a compact real Lie group every representation of it is unitary. Then for x ∈ g
we have exp(ρ(x)) = ρ(exp(x)) ∈ U(V ) where ρ denotes both the original representation
of the group and the induced representation of the algebra. Then expPρ(x)P−1

=
P exp(ρ(x))P−1 is diagonal for some P since unitary matrices are diagonalizable, so
ρ(x) is diagonalizable.

This is not necessarily true for gC. If g = su(2) then gC = sl(2, C). If we let the
representation be the standard representation on 2-dimensional affine space, then the
matrix of ρ(e) for e ∈ sl(2) is the matrix of e itself, which is certainly not diagonalizable.

5. We show that V = SkCn has the natural structure of an sl(n, C)-module. We show it
is irreducible, find the highest weight, and find the dimension of V [0].

Well, there is not much to show. Sk can be expressed as a tensor (the symmetric
product) so the action comes tensorially as the linear extension of g : xi1

1 · · ·xin
n →∑

j ijg(xj)xi1
1 · · ·xij−1

j · · ·xin
n where g acts on xj as the standard representation on Cn.

One can check directly that this is a representation; linearity is clear, while for the
bracket, this follows from the bracket identity for the standard representation. Then
for the diagonal Cartan subalgebra h every monomial xi1

1 · · ·xin
n is an eigenvector of

weight
∑

j ijλj , where λj(h) = hjj . The monomials clearly span the space so this set of
eigenvector/weight pairs must contain all the weights. If we let t =

∑
tiλi where i > j

implies ti > tj , then t can test for highest weight; Then for the weight written above we
have (t,

∑
j ijλj) =

∑
ijtj ≤

∑
ijt1 = t1

∑
ij = t1k = (t, kλ1). So the highest weight

is at most kλ1. Since kλ1 is the weight of xk
1 , this is the highest weight.
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For V [0], do the following. For a given i, write a polynomial p in SkCn as a polynomial
qkxk

i + · · · + q1xi + q0 in xi. Then Eiip =
∑k

j=0 jqjx
j
i . For p to have weight zero, this

would have to be the zero polynomial, which implies that qj = 0 for j > 0. Then p
would have to be independent of xi.

Since this is true for all i, if k > 0 the space V [0] contains only the zero polynomial.
For k = 0 the space V [0] is all of SkCn, namely the constant polynomials.

For irreducibility, we apply the same method used in the homework. We know from the
semisimplicity of sl(n) that this module contains the unique irreducible with highest
weight kλ1. So then all we need to do is show that every eigenvector in our spanning
set can be obtained from xk

1 by the action of our Lie algebra. But this is easy:∏
j>1

E
ij

1jx
k
1 =

k!
i1!

xi1
1 xi2

2 · · ·xin
n .

6. Let g be a semisimple complex Lie algebra, ( , ) the Killing form, and g = h⊕
⊕

α∈R gα

the root decomposition. For any α ∈ R+, let eα ∈ gα and fα ∈ g−α be such that
(eα, fα) = 1; let xi be an orthonormal basis for h.

(a) We show that C =
∑

α∈R+
(eαfα + fαeα) +

∑
x2

i is central in Ug.

We know from a theorem in class (November 2) that (vα, vβ) = 0 if vα, vβ are of
weights α, β, respectively, and α + β 6= 0.

Then I claim that the list { eα+fα√
2

, i(eα−fα)√
2

}α∈R+ ∪ {xi} forms an orthonormal
basis for g.

What do we have to show? Orthogonality is easy. The theorem says that the
Killing form inner product of most disjoint pairs of these is zero. The only cases
not covered by it are (xi, xj), which is zero because the xi are orthonormal by
supposition, and

(
eα + fα√

2
,
fα − eα√

2i
) =

1
2i

((eα, fα)− (fα, eα)) = 0.

For orthonormality, again, the xi take care of themselves. For the others, we have

(
eα + fα√

2
,
eα + fα√

2
) =

1
2
((eα, fα) + (fα, eα)) = 1;

(
fα − eα

i
√

2
,
fα − eα

i
√

2
) =

1
−2

((fα,−eα) + (−eα, fα)) = 1.

So orthogonality shows that the set is linearly independent. It is spanning because
the xi span h and the pair for α span gα ⊕ g−α. Then we have, in Ug, that

(
eα + fα√

2
)2 + (

fα − eα

i
√

2
)2

=
1
2
(e2

α + eαfα + fαeα + f2
α)− 1

2
(e2

α − eαfα − fαeα + f2
α)
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= eαfα + fαeα.

We know that the Casimir element is central; with respect to this orthonormal
basis we can calculate its value to be precisely∑

α∈R+

(
eα + fα√

2
)2 + (

fα − eα

i
√

2
)2) +

∑
x2

i = C.

This shows that C is central.

(b) We calculate the value of C in the irreducible highest weight representation Lλ.

So C is central and thus will act like a scalar. We can tell what scalar by looking
at Cvλ. Another proposition (from November 4) says that [eα, fα] = (eα, fα)Hα,
where Hα is the Cartan element corresponding to the dual element α. Then Hα =
eαfα − fαeα so that eαfα = Hα + fαeα. Then

Cvλ = (
∑

α∈R+

Hα + 2fαeα +
∑

x2
i )vλ

= (
∑

α∈R+

λ(Hα) +
∑

λ(xi)2)vλ.

The fe vanishes because e kills vλ. Now, by virtue of the pairing between h and
its dual, we can replace λ(Hα) with (λ, α). Further, because {xi} was an arbi-
trary orthonormal basis for h, we can assume that x1 was the unit vector in the
direction of Hλ and that all the others were orthogonal to Hλ. We have λ(x1) =
(λ, λ/||λ||) = ||λ||2/||λ|| = ||λ||. Then this scalar becomes ||λ||+

∑
α∈R+

(λ, α).
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