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Representations of semisimple Lie algebras.

We have finished with our classification of complex semisimple Lie algebras, and we have an
explicit construction for each of them; we have four infinite series and five exceptional ones.
What we really want to study are the representations of the Lie algebras.

For the spherical Laplacian we needed only sl(2) but for other things we will need something
else.

Let g = h ⊕ ⊕gα. Now V will be a finite dimensional complex representation of g. So our
goal will be the study of representations. The first thing is that we have an anologue of the
result for sl(2). There it was graded by the eigenvalue of h. There is a similar result here.

Definition 1 v ∈ V is of weight λ ∈ h∗ if hv = 〈λ, h〉v for all h ∈ h. We denote by V [λ]
the subspace of vectors of weight λ. We will also write P (V ) for the set of weights, that is,
{λ ∈ h∗|V [λ] 6= 0}. There are only finitely many possible eigenspaces, so this is a finite set.

Example 1 Let V be g under the adjoint representation, what are the weights?

Then P (V ) = 0 ∪R. So h corresponds to weight 0 and the others correspond to gh.

So for the adjoint representation we get the roots and zero, and the root spaces come with
weight 1, and 0 comes with multiplicity equal to the rank of your Lie algebra (dimension of
h).

So we have even a direct sum decomposition; a similar result holds in general.

Theorem 1 1. Any finite dimensional representation has a weight decomposition:

V =
⊕

λ∈P (V )

V [λ].
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2. gαV [λ] ⊂ V [λ + α].

3. P (V ) ⊂ P = {λ ∈ h∗|〈λ, ha〉 = 2(λ,α)
(α,α) ∈ Z}.

P is called the weight lattice.

For the first one you need to show that the action of Cartan is always diagonalizable.

For the second, if you remember sl(2), this is a generalization of e and f increasing and
decreasing the weight by two.

So let’s prove this. The proof is simple. The basic idea is that, let’s start with the second
one. This is the same argument as for sl(2). Say you have v ∈ V [λ] and eα ∈ gα, then

h(eαv) = ([h, eα] + eαh)v = 〈h, α〉eαv + eα〈h, λ〉v = 〈h, α + λ〉eαv.

So that’s the easy part. Let me now prove the other two parts. To prove the first one, it
suffices to prove that every action from Cartan is diagonalizable. Then commuting diagonal-
izable operators can be diagonalized simultaneously. But each element of Cartan, well, hα

span h as a vector space. So it suffices to show that hα is diagonalizable. Because hα is part
of an sl(2) triple (eα, fα, hα) so you can consider this as a representation of sl(2) and then
the action of h is diagonalizable.

We can say more than this. We know that the eigenvalues are always integers. So each hα is
diagonalizable with integral eigenvalues. That gives the last part of the theorem.

The proof is based on two things: knowing what happens with sl(2) and knowing that every
root can be put into an sl(2) triple.

Before I go on, let me note that it suffices to just require P = {λ ∈ h∗|〈λ, hαi〉 ∈ Z} for
αi ∈ Π.

Any element hα can be written
∑

nihαi
with ni ∈ Z. I’m going to skip a step here if the

roots are of different length. But you can note that P ⊂ h∗ and with an appropriate basis
you can identify this as Zr ⊂ Cr.

You can actually describe wahst is this basis. If P is given by these conditions, take ωi such
that 〈ωi, hαj

〉 = δij .

Let’s do some examples.

Example 2 1. sl(2, C). So h∗ = Cα, and 〈α, h〉 = 2. Then P = λ ∈ h∗|〈λ, hα〉 ∈ Z}
So if I write λ = cα I get {cα|c ∈ 1

2Z}. So the weights here are Zα
2 . Recall if we identify

with Z in some obvious way, then the simple root corresponds not to one but to two.

As a side remark we could consider the lattice Q generated by all roots=Z〈α1, · · · , αr〉.
How are these related? Here we have Q = Zα. Generally we have Q ⊂ P. So every root
is in an integer weight, but it’s not true that any integer weight is a root.
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To show this inclusion you need to show that 〈αi, hαj 〉 ∈ Z, so we need to argue that
2(αi,αj)
(αj ,αj)

∈ Z. We could say that this is from the root system axioms or from Lie algebra
stuff.

Lattice theory says that P/Q is then a finite group. In your homework I ask you to
calculate it in some examples.

2. sl(3, C). The simple roots are α1 = ε1−ε2 and α2 = ε2−ε3; h∗ = C〈ε1, ε2, ε3〉/ε1+ε2+ε3.

What is in this case the weight system? P = {λ| 2(λ,αi)
(αi,αi)

∈ Z}, which with normalization
is {λ|(λ, αi) ∈ Z}.
So the fundamental weights are ε1 and −ε3.

So now take the simplest representation, the defining representation on C3. What is the
weight decomposition? This is Ce1 ⊕ Ce2 ⊕ Ce3, which I claim to be an eigenbasis for
Cartan. After all, Cartan is the diagonal matrices. So we only have to check what are
the weights.

The weight corresponding to e1 comes from looking at

 λ1

λ2

λ3

 . This sends e1

to λ1e1 so the weight is ε1. So the weights are ε1, ε2, ε3.

These pictures suggest some symmetries for the weights.

Theorem 2 For any finite dimensional representation V the set of weights P (V ) is W -
invariant. Moreover, dim V [λ] = dim V [wλ] for all w ∈ W.

The proof is immediate, actually. The idea is always the same. For sl(2) we know the weights
are symmetric. Since the Weyl group is generated by reflections, it suffices to check when
w is a reflection with respect to some root hyperspace. How do we check it for w = sα? I
want an isomorphism V [λ] ∼= V [sαv]. So I construct an sl(2, C) triple eα, fα, hα with respect
to this α. Then V is a representation of this copy of sl(2, C). So what? Let me assume that
2(λ,α)
(α,α) ∈ Z+. In particular fn

α : V [λ] → V [λ − nα] is an isomorphism, this being exactly
V [sαλ].

So as a corollary of what we know about sl(2) we knot that fα will give an isomorphism.

Let me finish by this. The easy way to talk about it, instead of looking at weights with
multiplicities, write a formal sum with graded dimension

ch V =
∑

λ∈P (V )

dim V [λ]eλ

Here eλ is a formal variable. This contains information about all the weight subspaces.

Let me also be more precise, by also writing the condition that eλ+µ = eλeµ so as to make
it an algebra.
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So I write C[P ] = {
∑

λ∈P aλeλ, aλ ∈ C}, with multiplication as above.

Then is there an easier way of defining this algebra? It is exactly the Laurent polynomials
in one variable if I write x = e1. So this is C[x, x−1]. For sl(2) I could write my character
as polynomial in one variable. So V3, which has weights −3,−1, 1, 3, what will be the cor-
responding character. Each of these weight subspaces multiplies by the dimension, and the
corresponding generators are x−3, x−1, x, x3, so the character will be x3 + x + x−1 + x−3.

This is a nice way to describe these dimensions, and is sometimes called the character. I
won’t have time to explain this today. In fact, first of all let me say these characters, since
we are Weyl group invariant, this will be Laurent polynomials in many variables (equal to
the rank of the group) but the polynomials will be symmetric: ch V ∈ C[P ]W .

So you can show ch(V ⊕W ) = ch V + ch W. If you want vectors of weight λ that will just be
the sum of those in V and those in W. Then you get this. More interesting is that it agrees
with the tensor product: ch(V ⊗W ) = ch V ch W. If v ∈ V [λ], w ∈ W [µ] then v⊗w ∈ V ⊗W.
We have h(v ⊗ w) by the Liebnitz rule is hv ⊗ w + v ⊗ hw, so that the weight is λ + µ.

This is why I defined my multiplication thusly in this algebra.

You can actually use this to compute various results about decomposition of a given repre-
sentation into an irreducible. Let me show you how that works for sl(2).

Consider V3 and V4. The characters are x3 + x + x−1 + x−3 and x4 + x2 + 1 + x−2 + x−4.

Multiply these together and you get x7 + 2x5 + 3x3 + 4x1 + 4x−1 + 3x−3 + 2x−5 + x−7. This
decomposes as V7 ⊕ V5 ⊕ V3 ⊕ V1.

I’ll continue next time and meanwhile I have homework due by the final exam. We are going
to have a final exam on December 16 at 11:00 AM. If this creates a serious problem let me
know, but I did mention it. I’ll try not to make it too difficult, but the homework you should
do and bring to the final.

4


