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The website is www.math.sunysb.edu/ kirillov/mat552/ The texts are ”Representation The-
ory: a First Course,” by Fulton and Harris, and ”Lie Groups and algebraic groups” by
Onishchik and Vinberg, which is out of print and on reserve. I won’t follow either of these
exactly; sometimes I will give references to one or the other of these texts.

I want to have regular homework, a midterm, and a final. Here is the first homework, due in
two weeks. I will give a grade, which will take homework and tests into account.

I will require some linear algebra and basic topology, including manifolds, vector fields, and
SO on.

I’'m going to start with a baby example.

Example 1 Suppose you have m numbers ai,...,a, arranged on a circle. You have a
transformation which replaces a, with “"3‘“2, as with a; + as/2, and so on. If you do this

sufficiently many times, will the numbers roughly equalize? To answer this we need to look at
the eigenvalues of A. To get the characteristic polynomial, and then to find the roots, is too
hard. But we have a rotational symmetry. We can call this Z,-symmetry. So BAB™! = A,
where B is a rotation. This helps us because of the following result from linear algebra: if
two operators A and B commute and B is diagonalizable, i.e., that V = @, Vi, Blv, = \id,
then AV C Vi. We can diagonalize B and see that the eigenvalues of B are the m m*" roots
of unity. Let € be a primitive m'" root of unity. Then the eigenvectors are (1,€', €%, ... ™)
where i ranges from 0 to m — 1.

)

So since each of these eigenvectors spans an A-invariant subspace, they are thus also eigen-
vectors of A. So we can answer the question by looking at what A does to the eigenvectors.

This is the baby version of a real life problem. Say we have S? C R3. We have the Laplace
operator Ay, : C*(S?) — C°°(5?%). I'm not going to talk about this in detail, it involves
extending to R? and taking second derivatives. The question is, what are the eigenvalues
and eigenfunctions of A,p,? This describes information about the hydrogen atom. If we try
to solve it generally, we run into a difficult differential equation.



So we use symmetry, this time the symmetry of SO(3) acting on the sphere by rotation.
This is not a finitely generated group. The second problem is that SO(3) is noncommuta-
tive. So the approach before is hopeless, you’ll never be able to diagonalize all of SO(3) at
the same time, as we could with Z,,. We’ll eventually be able to solve this by generating
with 3 ”infinitessimal rotations” and decomposing into invariant representations instead of
eigenspaces.

So how can we deal with these two problems? The trick is that the group SOj3 is more than
a group, it is also a smooth manifold.

Definition 1 A Lie group is a set G with two structures: G is a group and G is a (smooth,
real) manifold. These structures agree in some reasonable sense, i.e., multiplication and
inversion are smooth maps. A Lie group morphism is a smooth homomorphism.

I should say what I mean by smooth. For a Lie group, it turns out that C?! is sufficient to
give you real analytic. This is a highly nontrivial result which was one of Hilbert’s problems.
But the level of smoothness is unimportant here.

1. R, +

2. R*, x
R+,X

3. St={z€eC:|z| =1}, x

4. GL(n,R) C R™". A lot of the groups we’'ll consider will be subgroups of GL(n)

5. SU(2) = {( _O[B g ) ta, 3 €C,|al? +|B]? = 1}. This can be seen to be S? C R* by
(Ra, Sa, RB, 30).

6. In fact, all classical groups in linear algebra, such as
GL(n,R),SL(n,R),0(n,R),U(n),SO(n,R), SU(n), Sp(2n,R), are Lie groups.

I never said whether my groups were connected as manifolds. So any finite group satisfies
this as a O-dimensional manifold. So we seperate the finite group part and the continuous
part as follows. If G is a Lie group, we can denote by G° the connected component of unity.

Theorem 1 This is a normal subgroup of G and is a Lie group itself. G/G° is discrete.

For completeness’ sake, it is a group. You have to show that it is closed under the operations
of multiplication and inversion. The continuous (inversion) map i must take G° to one
component of G, that which contains i(e) = e, namely G°. I leave it to you to show that
multiplication is closed.

Now, how do you check that this is a normal subgroup? If g € G and h € G°, then we must
show that ghg™! € G°. Conjugation by g is continuous will take G° to some component;



since it fixes e this component is G°.
We'll put off for a moment the proof that the quotient is discrete. We're not going to pay
much attention to the discrete case.

Theorem 2 IfG is a connected Lie group then its universal cover G has a canonical structure
of a Lie group such that the covering map p : G — G is a morphism of Lie groups, i.e., that
it agrees with the group structure. Then ker p = m(G). You can prove this.

Definition 2 A Lie subgroup H of a Lie group G is a subgroup which is also a submanifold.

Theorem 3 1. (easy) Any Lie subgroup is a closed submanifold

2. (hard) Any closed subgroup of a Lie group is a Lie subgroup.

A torus is a Lie group, since the product structures of groups and manifolds respect one
another. So if the torus is G, and H is R, then the map H — G given by t — (t,+/(2)t) is
not a submanifold.

Corollary 1 1. if G is a connected Lie group and U is a neighborhood of e, then U
generates G.

2. Say f : G1 — Ga, Ga is connected, and f. : T.G1 — T.G2 is surjective, then f is
surjective.

Proofs:

1. Let H be the subgroup generated by U. Then H is open in G. That’s because multa-
plication of h € H by U yields a neighborhood of h in G. Since it’s an open subset of a
manifold, it is a submanifold, so that it is a Lie subgroup. Therefore it is closed, and
is nonempty, so is all of G.

2. Given the assumption, the implicit function theorem says that f is surjective on some
neighborhood U of e, and then because U generates Ga, we can pull back to preimages
to see that G covers Gs.

That’s all I wanted to talk about today.



