
I recommend reading chapter 0 of Hatcher.

Now, I want to go over something that came out at the end of the last class, which is whether
the Riemann surface is connected. We’ll look at the example y2 = (z + ε)(z − ε), as ε goes
to zero. Generically you have two roots of this equation, so that there’s a two-sheeted cover,
and no branch at infinity We picture the Riemann surface by gluing two slit spheres together
along the slits. As ε tends to zero, the slit shrinks to a point. In the limit, as you go around
one of the points, you go around both of them, so that nothing is changed; it’s like infinity
in that you stay on the same sheet. So y2 = z2 produces two disjoint spheres, rather than
spheres joined at a point, say. We have the definition of a construction, and this construction
yields two spheres.

Now this equation is reducible, i.e., factors as (y − z)(y + z). You imagine that if you have
F1( )F2( ) = 0 then you get a picture for each factor. Some people have asked me also
whether the Riemann surface is the same as the completion of the projectivization in the
complex plane. This equation gives you two lines which touch at a point, but that’s not the
Riemann surface, which can have no singularities.

So we have this construction due to Riemann. It always produces a surface over the z-plane,
completed at ∞.

So to simplify the discussion, let’s imagine we’re in the case where you can’t factor these
equations. Then check if we get a connected surface.

So let’s see, if we havethe equation y2 = ( )( )( ) or y3 = ( )( )( ) (this was one
of the exercises, to make a picture of this). Now in all these examples you separate the
variables. This has a symmetry, because all of the roots look the same. So these covers have
a symmetry; we call them Galois coverings. So this is kind of the extension of Galois theory
to larger fields, like C(x). So if you have the equation yn + an−1(z)yn−1 + . . . + a0(z) = 0,
this is kind of a geometric picture of the field extension. Some fields have a sufficient group
of automorphisms for a splitting field and some don’t.

So not all coverings have a symmetry group that permutes the sheet. The definition of a
Galois covering is that there is a finite group of symmetries that transitively permute the
sheets. So I wanted to construct some non-Galois coverings.

So maybe since I’ve said all that, let me look at the equation y2 = z3 just for a second.
Formally, you could write this as y = ±z3/2. This is like y = (

√
z)3. So when you look at

the Riemann surface for that, the three is unimportant and you just get a level cover of the
sphere.

Near the origin, in C2 (the reference is Milnor’s orange book “Isolated Singularities. . .,” one
of his great books). That’s how I learned topology, from his notes. Anyway, if you look at
how a 3-sphere around the origin intersects this equation, you get a curve in the three-sphere
which is actually the trefoil knot. So this is embedded in C2 as the cone of the trefoil in
4-space. So the Riemann surface completely ignores this information, the cusp singularity
information, that is in the embedding, and looks at the locus as an abstract space rather
than an embedded one.
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So if I want to solve this equation abstractly, I just adjoin
√

z, which gives the double covering
of the Riemann sphere, which is just the Riemann sphere.

The knots that you get in general here are completely understood, although they form an
interesting class.

So there’s an interesting theory I want to go into a bit more. So let’s consider what are called
simple coverings of the completed z plane, where every branching is just a transposition. So
what I’m saying is that generically we have n sheets, and when you go into a branch point, all
that happens is that some pair of them cross. Then when you go around, all that happens is
that two of the n roots are interchanged. We’re saying the zeros of the derivative are simple.

There are interesting things to say about these, and every other example is a degeneration
of this example, so they should be studied in their own right. I’m going to decompose
the extended z-plane as everything inside and everything outside some circle. I’ll have two
singularities and three sheets. To describe it, I slit out to the boundary from each singularity
and cut out to the boundary, and then I just need to know how to glue them back up. In one
case we choose the permutation (12)(3); in the other I choose (1)(23). So what happens if I
go around the entire circle. We go around the composition of these two cycles, namely (123).
So the boundary wraps around three times to get back. Then some surface fills in along that
boundary.

So take two copies of this. Then take the base and think of it as half the sphere, and
glue them together along their boundaries. Then I get something which has, well, let’s
compute the formula. Anybody here heard of the Vlaschke products? This is a picture of
a Vlaschke product. The formula is the genus is 1 −# of sheets +1/2# of defects. This is
1 − 3 + 1/2(4) = 1 − 3 + 2 = 0 So this is the sphere. This is a non-Galois covering of the
sphere by the sphere.

The Vlaschke product takes z to z−a
1−āz . Take z to z−a

1−āz
z−b
1−b̄z

z−c
1−c̄z . Each factor maps the unit

disc to itself, so the product does as well. The map of the boundary is of degree 3 because
a, b, and c tend to zero continuously, so it looks like z → z3.

Alright, so you can also do, where you take n − 1 singularities over n sheets, and then
over the i branch point you interchange i and i + 1. Everything else is the identity. So
then the composition is (12)(23) · · · ((n − 1)n), which is the cyclic permutation around the
boundary, So you take two copies of this and glue them together, and you get genus equal
to 1− n + 1

22(n− 1) = 1− n + n− 1 = 0. So this is a sphere, and half of it is like the n-fold
Vlaschke product. The Riemann surface is something where if you glue it to itself you get a
sphere, so it must be a disc.

If you’re a little bit uneasy about what I’m doing here, this part might be hard to follow, but
I’m going to return to it again. I just wanted to point out that there are non-Galois covers,
and, actually, think of this as an example, instead of.

So let’s start a little topology now. Riemann called it analysis situs; we now call it topology.
This should be called definition -1, since no one makes it anymore. These definitions will be
over the completd z plane minus a finite set.
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Analysis Situs Definition 1 A multivalued function on C̄ − n, with a nonremoved base
point is a function on the paths in the domain beginning at the base point which gives the
same value on two paths ending on the same point if the two paths are deformable to one
another fixing the endpoints.

So we’ve seen examples of this, our examples are these algebraic functions y which satisfy
some equation yn + an−1(z)yn−1 + . . . + a0(z) = 0. So these are mapping into this range
number space also completed at infinity. Later they can have values anywhere, and we can
talk about whether they’re continuous.

you can think of this as a function on equivalence classes of paths, which is in fact what
Poincaré did fifty years later. That’s kind of done so that you can remember some results
and forget what this rests on. The base point isn’t so trivial. If you’re in a static position it
won’t matter so much, but if you’re moving it matters.

So you go along a path, extending power series around given points. Or you can think about
doing it on sheets.

[Fire Alarm Rings]

Well, I could finish before they find us. People can leave if they want to. Oh, so y is one of
these branches of a multivalued function, because if you’re away from the branch point and
you deform a path a little bit, you’ll get your endpoint in the same sheet. So I’ve been using
that continuously for the last two weeks. So this is an example.

Question: are the coefficients rational functions in z? They’re polynomials so that they’re
defined everywhere.

Question: doesn’t this depend on the value at the base point? Yes, but given a choice your
function will be well defined on some neighborhood of the base point.

For these examples, the multivaluedness is finite. The definition would allow infinitely many.
Riemann proved the converse.

We could immediately extend this definition to surfaces spread over the z-plane. We could
define it anywhere that we have paths. Also we could talk about what lies over a region.

Analysis Situs Definition 2 Part of a surface spread over the z plane is called simply
connected if it is connected (i.e., there is a path connecting any two points, and any two paths
with the same endpoints can be continuously deformed to one another fixing the endpoints.

Remark 1 So on a simply connected region a multivalued function will actually be a single
valued function of the fixed endpoint of the path only.

Example 1 These are simply connected:

• the sphere
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• anything bounded by arcs joined into a circle in the plane

The annulus is not simply connected

The annulus was called by Riemann doubly connected.

Analysis Situs Definition 3 A surface is called doubly connected if one cut makes it simply
connected. A cut is apparently removing an embedding of an arc or a circle. Generalize to
n-connected. The connectivity is one plus the number of cuts it takes to make the surface
simply connected.

Let’s look at some examples. The twice punctured disc is 3-connected. The torus is also
triply connected. Any cut leaving a connected surface leaves an annulus, which cuts to a
disc.

Exercise 1 What is the multiple connectedness of the surface with two holes? Draw the
sequence of pictures.

Well, so, what Riemann did with these ideas is he was studying, in general, he made a general
theory of multivalued function. His functions were always differentiable in the sense of the
complex variable by studying the discontinuities across the cuts of the single valued functions
on the simply connected domain.

We’ll return to this later. Somehow this topology was a powerful insight into studying these
functions. So there’s no class Friday, there’s class Monday. So hand in these four homeworks
to Scott on Monday.
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