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Every nonorientable closed surface is combinatorially equivalent to a disk sewn to the bound-
ary of another with h nonnested nonintersecting twisted bands.

[Interlude where I prove it]

If you just have one twist, it’s the real projective plane. If you have two collections with
n, m twists, you can look at their connect sum as having n+m twists pretty easily. So Σh =
#hRP2. You can also look at it as RP2#T 2#T 2 · · · or RP2#RP2#T 2#T 2 · · · , depending on
the parity of the genus.

RP2#RP2 is the Klein bottle, which you can see because the torus is a double cover of it or
just directly geometrically.

If you look at the algebra of nonorientable surfaces, it is just 〈T#n〉 If you throw in orientable
ones, it’s 〈(RP2)#n〉 but if you want all of them, you need the relation T#RP2 = RP2#3

.

Does this process remind you of any algebraic process? It’s kind of like putting a basis in
standard form.

So I wanted to summarize a little bit what I said last time and then go forward. There are
two paths to go forward, and we have to choose one, well, I’ve chosen one. We talked about
classical physics where you had the gradient, curl, and divergence. Then we had that this
was equivalent to something with differential forms

functions
grad //

��

vector fields
curl //

��

vector fields
div //

��

functions

��
0− forms

d // 1− forms
d // 2− forms

d // 3− forms

So differential forms were the natural integrands. The reference here is to Spivak’s Calculus
on Manifolds. Then Stokes’ theorem said that

∫
δR

η =
∫

R
dη.

Next, we looked on a closed orientable surface at a harmonic form, locally d of a harmonic
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function. I didn’t develop any of the theory of this, but we showed that a harmonic 1-form
is determined by 2g periods. So to write η as df you get a multivalued function for f. But
because of Stokes’ theorem, f was abelian; if you deform or homologize the path then you
get the same thing. The harmonic forms are at most of dimension 2g; I forgot that I didn’t
prove the existence of any of these.

Riemann cut these up into simply connected things and then glued them together and got
things to match up; this is known as solving Dirichlet’s problem. It was in dispute for a
while because the argument used physical principles that don’t work in all settings. So we
have half of the Riemann result that on a Riemann surface, there’s a multivalued map to Cg,
where you get a picture which turns out to be a lattice. This is another reason it’s called
Abelian, because the lattice is an Abelian group.

In general you get a base lattice and divide by it to get T g, a complex torus of dimension g.
It’s a well-defined map of the Riemann surface into the complex torus. It’s a highly studied
object. You can think of the lattice as Z2g. I think this curve is an embedding except in
what’s called the hyperelliptic case.

We started with an algebraic surface F (x, y) and then there might be an algebraic meaning
to the analytic map from Σ → T g. This is like going in an algebraic geometry and arithmetic
direction, but we won’t go there. Abel had a role in this, but I don’t know what.

This example is still very significant from an analytic, algebraic-geometric, arithmetical point
of view.

So we could think of this discussion two ways; either it’s the discussion of multivalued func-
tions, or it’s the discussion of homology. Since it’s Abelian, it’s related to the first homology
group. We could go off into higher dimensional (abelian) homology, or into nonabelian mul-
tivalued functions. I’m going to go a little while in the direction of homology and then a
little while in the direction of the nonabelian functions. These latter are linear representa-
tions of the fundamental group. They can be generated nicely using something called flat
connections. This is sort of one-dimensional.

In some sense you could say it doesn’t have a good higher dimensional analogue. In some
sense it’s Gauge theory, which studies all connections, not just the flat ones. But that’s not
even understood. But let’s say something about the other thing we were talking about.

If we didn’t want to mention holomorphic, we could have talked about closed one forms and
mapped into R2g. We get a 2g period associated to a form and if it’s zero we find a function.
It turns out to be onto but we haven’t shown that. Say we’ve shown it’s onto; then closed
one forms modulo exact one forms is isomorphic to R2g = Hdual

1 )R.

Let me get an exercise on the board here. Let’s go back to the plane again. No, three
dimensional space. When Betti interacted with Riemann and generalized things, well, let’s
look at a region in 3D space, like take out a knot or some balls or lines, and then there are
closed forms like ω = xdydz+ydzdx+zdxdy

x2+y2+z2

3/2
. This is defined off the origin.
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Exercise 1 Show that dω = 0. We can form the integral
∫

S
ω.

If we move the surface by a homology the integral is not changed.

Theorem 1 If you have a region R in 3D, and ω is closed in R, and you want to know
if you can write ω as dη, you can do this if and only if the integral of ω over every closed
surface in R is zero.

This was known to Betti in the 19th century. So we say ω1 ∼ ω2 if ω1−ω2 = dη. The number
of linearly independent closed integrands is something like the rank of the second homology
group, which I’ve defined. Because of the theorem, it’s at most that rank; if you look deeper
it’s equal to the rank.

The one in dimension two is xdy−ydx
x2+y2 is closed, and you can find the formula for D = 4.

Exercise 2 Show these are closed and find the analogous expression for D = 4.
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