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So let me just review quickly. What we’ve done is defined H1 and H2 of any space X. For
H1 we consider equivalence classes of closed directed curves mapping to X or closed oriented
surfaces mapping to X for H2 up to deformation.

I don’t think I correctly said what deformation is. So here we have two closed curves mapping
into X and here we should have a cylinder mapping into X so that the boundaries agree with
the original two maps.

For surfaces, it’s the same. I’m being a little pedantic here. You put the first surface on one
end and the other surface on the other end and connect them with a cylinder and map it
into the space in the same way.

For homotopy you’d map a space cross an interval; these differ subtly; it’s a logical point. In
a deformation one could be red and the other blue.

This also allows surgeries, like when a vertical smoothing becomes a horizontal smoothing in
H1.

In H2 you have two kinds of move. If in some place the surface touches itself you can
connect that with a cylinder. Or, in the inverse, if a cylinder can be shrunk to a point, you
can seperate the ends. In the first case the inverse is equal to itself. You come in to the
intersection and change directions. If you do this twice you get back to the first case. In the
second case it’s not. One move increases the genus, the other decreases.

So this is the definition of homology in dimensions one and two, and then this just defines a
set, but these are actually Abelian groups so that you can define, well, there are two ways
that I can, uh, yeah, let’s, I want this to be connected, well, I guess I’ll make a remark.

Notice that if X is path-connected, and if we extended this discussion to disconnected col-
lections of closed curve and closed surfaces and we considered disconnected objects up to
deformations and these local moves, then each equivalence class contains connected repre-
sentatives.
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You can do surgery between different components no matter their various orientations. But
you get the same set if you allow disconnected subobjects, as long as the ambient space
is path connected. In this extended discussion disjoint union of domains and maps into X
defines a binary operation +.

So if you have something mapping into X you take two copies, coloring one domain blue and
another red. This is that logical point.

Logically the sets A q B and B q A are different but there’s an equivalence so that they’re
equivalent up to deformation. You take A q B × I and then cross them at the last minute.
If you take a lot of things, it doesn’t matter how you arrange them on the table. This is why
I had to take deformation instead of homotopy.

There’s a little funny thing that if you have two parallel planes then you don’t quite want to
just connect them with a tube. You have to do a flip, like a little bit of a Klein bottle.

This may seem tedious but the point is we started with the geometry and now this happens
when you get to algebra. If we started with algebra this would all be trivial, but then you
wouldn’t have a picture.

So now you have to check that + is well-defined on equivalence classes. Just think your way
through that. And now I claim that the collection of equivalence classes is a set. But before
I put the relation on it wasn’t a set. I don’t want to talk about this point for too long.

There’s one object in mathematics which I know of that doesn’t have to form a set, that’s a
category; the collection of objects doesn’t have to be a set.

But once we have an equivalence relation we can get a bijection with a set, like the set of
continuous maps from the standard circle into our space.

Now we have a binary operation on our set and we can ask if it’s a group. You can see
that the trivial map of the circle in is like an additive 0. Similarly, the 2-sphere mapping in
is an additive identity in dimension 2. So there’s an additive identity. The argument with
interchanging factors show it’s commutative. Inverses are obtained by looking at the map
from the object cross itself, with one inside the other.

So let me just start that proof.

Exercise 1 Show that a surface with one orientation and the surface with the opposite ori-
entation are additive inverses.

Proposition 1 So we get this from the exercise, that H1,H2 are abelian groups.

Last time I gave an argument that H1 of an oriented closed surface is isomorphic to Z2g. The
idea was to look at the intersection with the first cut with the Riemann cutting system.

You have a curve and you look at the intersection number with the first Riemann cut. Every
time it touches the first cut it crosses it transversally. You introduce a standard curve, add
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its negative, and then the union has intersection number 0. So you can pull the union off and
then do the same thing, look at the intersection number with the next Riemann cut. So you
add multiples of standard curves until you can pull your curve off. So we get an intersection
number with each cut. There are 2g-cuts.

The way I said it last time is you have an intersection number with the first cut which gives
you a homomorphism to Z. This gives you a kernel and you look at the map from that kernel
to Z, so you kind of deduce this algebraically. But if you do these cuts nicely you can just
read off the invariants. I didn’t want to get to technical, but we have total control of the
geometric object.

This object is not always a direct sum of copies of Z. If you take the M obius strib and cut
it down the center, it will go twice around. That curve going twice around, in the space X,
the M obius strip. So going twice around is the same as two copies; going around twice is
the same as going around the boundary. Now close this manifold by sewing on a disk. You
get something homeomorphic to the real projective plane, lines in three space.

Exercise 2 Show that the real projective plane is homeomorphic to the disc with a m obius
strip sewn on.

Then the circle through the band is of order 2 or 0. How do you know that it’s nonzero? You
can get an intersection number in Z2, though not Z. But the center line intersects one of our
cuts one time, so it’s not 0. So H1(RP2) is Z2.

[What do you interpret this as?]

This is the same H1. I’m just computing it. I’m going a little fast. If you’re on a surface, even
if nonorientable, you can look at the intersection number modulo two. First it’s invariant,
and then it’s a homomorphism.

One reason it’s an invariant, under deformation first, is that if you start to move it all you
can do locally is pull something across with a plus and a minus.

Slightly more formally. Let X be the surface and γ the curve. You can intersect the cylinder
of the deformation, and then the intersection points are boundary elements of curves and
have to pair up, since every one manifold has an even number of boundary components.

This class is nonzero, it was part of the first paper on topology proper, by Poincaré.

We’ll see more examples before we get an abstract statement.

Say you have a cycle moving in. By general position you can find a point it doesn’t cover.
Then you can push the circle out to the M obius strip, so it has to go around the circle some
number of times. So every curve in the M obius strip is a multiple of the center line, but
twice the center line is 0, but it’s nonzero. So we know it’s Z2.

Poincaré duality tells you that this is always the way such an example arises. That’s the
meaning of Poincaré duality.

3



The standard curve was also nonzero; since there are only two elements they are homologous.
In projective geometry, this corresponds to the idea that a point in the plane is a line. Any
two planes intersect in a line in space in R3, so similarly every pair of lines meets in a point.

The fact that you have Poincaré duality is a lot like the axiom of projective geometry, that
any two lines intersect in a point.

So now I wanted to mention, were there any questions about this?

[Digression on projective geometry, and other and sundry geometries]

I want to take a couple of examples, with X as a 3-manifold or a 4-manifold. So let it be a
3-manifold. It could be S3 = R3 ∪∞, or S1 × S2, or S1 × S1 × S1.

So the first thing to observe is that if you just drew at random, it would be unlikely that
you’d ever cross your path, so any path can be moved slightly to make an embedding. So
every homology class is generated by embedded circles. You can’t do this in two dimensions
if you only use deformations. With surgery you can seperate in dimension 2. In higher
dimensions you can make everything embedded. Now with this geometric picture, you could
say ”I like these embedded things.” You can look at this picture and require that you keep
things embeddings. This is called isotopy, and gives knot theory, which is complicated.

Look at a small sphere. There are certain numbers of spaces where the knot is entering and
leaving, and you might imagine doing reconnectings, and introducing relation. These are
called skein relations and this is a field of current research. The talk Wednesday by Justin
Sawon was about this kind of things, indirectly.

Whereas homology can be said algebraically, these things can’t be said algebraically yet.
There is discussion but it’s not understood. Mathematicians are like guys riding big wild
horses. They’ve managed to get on top of the horses, but we’re not in control. Whereas since
Steenrod, we’re in control of homology. Anyway, this is called quantum theory.

In dimension four if you do this there’s nothing to say because you can draw it with no
crossings. Isotopy and deformation are there the same. There’s no additional discussion in
dimension 4. If you consider families of curves, then 1-dimensional families have interesting
intersections, but you’re moving off into other directions. So it’s only going into dimension
three that you get this rich theory.

Proposition 2 Up to homology equivalence you can make a 2-manifold in a 3-manifold or
4-manifold embedded.

Think of the surface as a graph attached to an n-gon. I can pretend the graph is embedded
since it’s one dimensional. Now the surface will move around and cut through itself. You
perform a surgery-like operation along the intersection, and then the vertices go down to the
graph and hit the graph somewhere. You get a 2-sphere containing a bunch of closed curves.
Look at them in the plane, and then we can put igloos on the closed curves and span them
by disjoint surfaces. Your original surface have this as boundary, and so do your igloos. Put
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the surface together with a ball, so the change in the ball is homologous.

Each element of H2(M3) is represented by a surface of genus g. You can get an interesting
norm from this on the second homology group, called the Thurston norm. How do you prove
it in a 4-manifold? You have a map into a 4-manifold. It’s a graph with a cell attached,
and you make the cell embedded. The intersection of two surfaces in 4-space is generically
in points.

[lost]
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