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Let’s recall Stokes’ theorem again. If we were to break the definition of homology into two
steps, well, right now let’s work in an open set U in Euclidean space. We have differential
forms on U, and given one on U we want to solve on U the equation w = dn.

The first condition is dw = 0. Given this, then for any Z which is a linear combination of
domains of integration in U so that the boundary of Z is zero, you get a second condition,
that [, w = [, dn= [;,n=0.So the integral of w over a cycle is zero.

The first condition is the derivative condition and the second condition is the integral condi-
tion. Furthermore, if Z1, Zy are two cycles and Z; —Z, = §W then le w—fZ2 W= le_Z2 W=
Jsw @ = [y dw = 0. So a closed form w has “periods” [, w, where K is a boundary class of
cycles, Z1 ~ Zy it Z1 — Zy = W and all of these must vanish if w = dn.

More generatlly, if wy ~ wo when wy; — ws = dny2 then such an equivalence class has periods
on homology classes of cycles.

The point is that given Stokes’ theorem, just the formal properties arise naturally in trying
to solve this equation. So Betti started looking at these homology classes of cycles, and he
defined the Betti numbers, in terms of the maximum p such that for any collection of p 4 1
cycles there is a relation dW = " z; for some subset of indices.

I don’t know what else he did since this was in Italian.

Then Poincaré made a slightly different definition. He noticed that sometimes a multiple of a
cycle bounded something. He actually builds these interesting manifolds by gluing together
sides of a cube. So if 4z = dW then 4 [, w = [, w =[5, w = [, dw = 0. So the Betti
number is the number of generators but the Poincaré Betti number ignores torsion.

Then you can extend this to manifolds; if you have a diffeomorphism from U; to Us you can
glue along the diffeomorphism and still get something with a differentiable structure.

You can talk about closed manifolds, so that you get something without boundary, and about
oriented manifolds.



The Betti numbers are symmetric so that the £ and n — k Betti numbers are the same.
Heegard gave objections and came up with a counterexample. For example, RP? homology
is Z,7,/2,0,Z. For the second definition you lose torsion and get 1,0,0,1. Poincaré even
explained that Heegard’s example was actually mentioned in his first paper. Then Poincaré
pointed out that his proof seemed to work for both definitions so it wasn’t right. So he gave
the proof again in the second paper.

I think the proof in the first paper was largely right. If an n — 1 manifold seperates an
n manifold then it’s homologous to zero; if it doesn’t then you can connect two points on
opposite sides of the n — 1 manifold with a path in the complement. One can actually keep
going in the argument and get the second dimensional case. That proved it up to five.

The way Poincaré proved this was to make a third definition, of the induced Betti numbers.
There’s some good geometry in this. He assumed the manifold was a union of these domains
of integration. Then you restrict this discussion to cycles and homologies made out of only
these pieces. He reduced the number of pieces used. This is the way we think about homology
now, with simplicial complexes or CW complexes. Then he showed that these were invariant
under subdivision.

As to the question of whether this is a combinatorial manifold, he studied things made out
of cones. He only really went through dimension three. Then he talked about the case where
all the pieces were simply connected, which meant that they were cells. The reduced Betti
numbers then turned out to be the same as regular Betti numbers.

Then using these nice cells he formed the dual decomposition. The point is that for each
cell in the original, there was a cell of complementaty dimension in the dual complex. Then
the incidence matrix under the duality bijection, whose ij entry asks if ¢ is a face of 7, is the
transpose.

I bet he was scared for a little while. He had to come up with a bunch of new ideas. This is
kind of a sketch of a bunch of ideas, which have been discussed a lot.

So this is basically based on the idea of having weighted subsets. If we think about cycles and
homology, there are two viewpoints. One is that they are subsets with geometric structure.
The other viewpoint is that they are maps of abstract versions into a space. These two points
of view are not the same, because a map can crush things. You have to do some work to
relate them. Each has its advantages for developing different properties here.

Right now what Scott’s doing is sometimes he wants to be in one of these, sometimes in
another. There’s an interesting thing going on right now in quantum physics related to this.
So Gromov-Witten theory is defined in terms of maps of abstract things in. And there’s
a conjecture by physicists, well, these give you a rational number but the physicists have

. . . . vy .
a conjecture that these rational numbers, summed in a certain way, > ,fzw - are integers.

Anyone in here studying symplectic topology? You wouldn’t be in here, you wouldn’t know
you should be in here if you were already studying symplectic topology. The problem, the
tension is just between these two viewpoints in ordinary homology theory.

So this last discussion was really about subsets, about moving subsets around. 1 wanted



to break it up into two parts, a subset part and a mapping part. Let’s go back over the
definition of homology. Part one would be for open subsets of Euclidean space and various
generalizations of piecwise manifolds.

Just imagine taking unions of domains of integration; you can get many smooth manifolds
this way and also things with singularities. Whenever you glue together they’re always like
manifolds with corners.

Here define cycles and homologies with integer coefficients by linear combinations of domains
of integration.

There’s another point I want to make, that for differential forms you don’t really have to have
a manifold. When you glue pieces together, like if you have three things coming together,
and suppose you're considering 1-forms. You only care about integrating them along paths.
So a 1-form here is defined everywhere except along the singularity. You just ask that three
one-forms agree on the vector where they’re all defined, i.e., the one where you stay on
the discontinuity. This is another point, that differential forms have a natural definition on
manifolds with corners. The dual objects are cones on things that aren’t spheres.

So if you have nice objects you can work with subset-defined homology but then when I had
my first course in algebraic topology, Steenrod was my professor and he explained how to
extend homology to all spaces. Say you have an arbitrary space. Well, let me not take the
above as a definition, just as a first step on nice spaces.

A cycle is going to be a map from a cycle in a nice space into the arbitrary space. As a
subset it can’t be viewed as a cycle. This is Steenrod’s version of singular homology. I only
looked at books that were written in 1964, so I don’t know if it’s written in any book. The
one that’s written in most books is Eilenberg’s definition, where you talk about mapping the
standard simplex into your arbitrary space, and take a homology on that. This is good for
algebra and not so good for geometry, Steenrod’s is good for geometry and not so good for
algebra.

The difference is that you get a fixed object as your domain in Eilenberg’s definition, whereas
for Steenrod you get any closed manifold. The Steenrod thing right now is a proper class.

Since I'm giving a class in the geometric viewpoint I'm going to erase the Eilenberg definition.
What I heard is that they were planning on writing up everything, and they didn’t write up
the second book because of mathematical differences.

If you have two cycles then there should be a big space and a homology between the two is
an embedded homology including an embedding of the ambient space. Now you’re not just
mapping the cycle, but the whole carrier as well.

Steenrod’s definition has no chain complex.

These singular definitions are functorial; there’s a natural transformation. The subset def-
inition is not obviously functorial. This definition came around World War II. Poincaré’s
definition was older, but the question arose, do homeomorphic spaces have a common sub-



division?

So one reason to return to this geometric picture is that, even though the Eilenberg definition
is clean and fast, it’s much more connected to the older viewpoint of cells. The interesting
invariants that were discovered since the 1980s are not topological invariants, they’re combi-
natorial. Topology as the study of invariance under homeomorphism is not correct anymore.
Now there are more invariants in the combinatorial or geometric structure. It’s good to learn
homology from this viewpoint which is closer to the combinatorial way. Eilenberg only uses
the topological structure of the space, well, so does the other, but it has more.



