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Excuse me for being late. I need a little more chalk if you can find some.

I want to work an exercise that he gave me, first he distracts me and then he doesn’t show
up.

Let’s describe local moves to generate all manifolds. I haven’t defined what a manifold is,
but we can let this be the definition, all things you can get from these.

The idea is Morse theory, and the picture is to think of a function on a manifold, and then
if you look at the levels, you have things like spheres being born, saddles, and so on.

In the picture I’ve drawn there are ten moments. The first and last are kind of inverse from
eachother; you start or complete a ball. There’s kind of an elementary result that you don’t
need any intermediate minima or maxima. It’s kind of an elementary cancellation lemma,
suppose your function only has one minimum and one maximum.

So what are the moves to go from a sphere to a sphere? There are actually two statements
here. Every manifold of dimension n− 1 can be obtained from the sphere in this way, or this
track is every manifold of dimension n. That’s not right, sorry. Every manifold is obtained
like this, and if there is a manifold between two manifolds, then you can get from one to the
other by these moves.

So the statements are that every closed n-manifold is a path of handle moves from Sn−1 to
itself, union two n-discs and, more generally, if two manifolds are cobordant then you can
get one from the other by these moves; we say that one is obtained from the other by local
surgeries.

Here’s the basic move: you add a handle to move from one sphere to two. A handle is Dp×Dq

and the boundary of it is δDp ×Dq ∪Dp × δDq. The lemma says that you can choose p, q
positive except for the first and last time.

In dimension three, there’s a lot of battling going on between the 1, 2 and the 2, 1 cases. You
can do a bunch of 1, 2s and then get rid of them with 2, 1s. The weakness of this is that it’s
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not unique. In dimension two this is fairly easy to study, but it is still not unique there.

So you can think of these as paths in the space of manifolds. The move in dimension n is
very simple; you just stick on a disc along half its boundary. In the smooth category you
worry a bit about rounding the corners. If we’re working with piecewise smooth there’s no
problem.

If I have a piece of boundary, then there’s a collar neighborhood so you can get these moves.
The proof is, take a manifold and then just choose a Morse function on it. Then it only has
critical points of index 1, 3, 2, 2, 3, 1, if, say, it’s a four-manifold. Between critical points it
moves by diffeomorphism. You look in a Morse theory book and that gives you your proof.

You can look at it in dimension n for Morse theory. In dimension n − 1, let’s look a little
more carefully. If you have a sequence M1, . . . ,Mn of m-manifolds. The procedure to get
from one to the next is to cut Sp−1 × Dq out of it. You find an embedded sphere whose
normal bundle looks like a product.

Has Kevin arrived yet? No.

This contains Sp−1 × Sq−1, and so that’s also the boundary of Dp × Sq−1, so you can glue
that in.

If you do a 2, 2 move in the 4-manifold, you can glue S1 ×D2 to D2 × S1. You squeeze the
solid torus down and then expand it in the other direction.

In fact there’s a little theorem, actually, you can get a three manifold from the 3-sphere by
doing these surgeries simultaneously.

So we can define, using this, suppose we define, in more innocent times, before World War
I, we might have tried to define homology like this. A cycle is just going to be a map of a
closed manifold of the same dimension into the space. We say two are homologous if you can
put a closed manifold with boundary between them and send it in.

Poincaré had his things embedded, and in codimension one and two, if the target space is a
manifold, that’s okay. So let’s call this bordism homology.

[The problem is that the manifold in between might not exist?]

If we added singularities, if you add cones of things then we get an ordinary homology.

This will be a perfectly good homology with a slight generalization. It turns out this will satify
all the axioms except the groups of a point are not correct. What are the groups of a point?
Call this Ω and compute Ωi of a point. The real information has to do with the cycles, which
are the bordism groups of closed oriented manifolds. They’re generated by closed manifolds
with orientation; disjoint union is the sum, and the groups are Z, 0, 0, Z, Z/2, . . . Usually you
get just Z, 0, . . . Thom found these. He figured it out rationally and at the prime two; these
are torsion except for dimension 4n. He didn’t do it directly; Steenrod asked the question,
let’s say we take the definition with mapping cycles in, where they may not be manifolds. He
asked which could be represented by manifolds. Such are said to be Steenrod representable.
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At the same time there was a question about algebraic varieties, another Fields medal, in
Japan he’s as famous as Tom Cruise here, well, famous, picture on billboards.

In his thesis at Harvard he showed you can resolve a singularity on a variety. Ten years
earlier, Thom wasn’t sure this was true. Anyway, if you could do it, then, an algebraic
variety with singularities is still a cycle. It carries a fundamental class. If you can resolve
singularities then it’s Steenrod representable. Thom found obstructions to the topological
question, in ’53, and thought there might be obstructions to the algebraic question. In ’63 it
was resolved that there were none. The proof is very hard, and is still open in characteristic
p. Anyway, that was Thom studying that question, we saw a procedure; if every manifold
bounded a manifold then we could make every cycle Steenrod representable.

So that theory, the original question has been forgotten but the results here have gotten a lot
of study. If you’re studying a natural geometric question, even if it itself may not be useful,
having a methodology is a very good thing.

So, this is kind of like the wrong war in the wrong place at the wrong time; it’s very interesting
but it’s not homology theory. It’s a pretty way to represent it.

We can say from these two theorems, we have a corollary.

Corollary 1 The bordism homology equivalence relation is generated by deformations and
local surgeries

It’s a generalized deformation where you are also allowed to add these things. I’ve been doing
it all the time, that’s the way I defined two dimensional homology. In higher dimensions you
have more choices.

I had a great visitor planned for you and he didn’t show up. There’s a seminar at the CUNY
graduate center tomorrow, the first in a series. The speaker tomorrow was supposed to come
today.

So what am I doing now? Have I finished this? Okay, so the exercise Slava gave me was to
ask what is the analogue of this corollary for ordinary homology? What is Morse theory for
manifolds with singularities?

The homologies between things may not be manifolds, they may have singularities, like things
with lower codimension.

No, come in, come in, we were expecting Tom Cruise.

[Laughter]

So Stiefel’s thesis, in like 1936, was that every three manifold bounds a four manifold.

But any manifold with odd Euler characteristic is not a boundary, because by gluing two
of them together you’d get 0 = 2χW − χC, so that χC is even. That right side is Poincaré
duality. So for nonintegral generators, the CPn will generate these groups.
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The story is that Hirzebruck was at the IAS, and he gets the letter on Thom’s result, and
by the afternoon he has his result, and writes it up in a nice book, applying all these things
to algebraic varieties.

The only thing we don’t understand is why things in dimension six are Steenrod representable.

These are not unique; you can connect sum in funny stuff with CP2, but the map is onto
until dimension seven.

Okay, so let’s try to, I want to shoot for a corollary for ordinary homology, deformations and
some kind of local moves. Let’s ee if we can describe what happens; I’ve never done this
before.

[Following what you did, you can collapse a manifold to a point and blow it back up?]

Yes, exactly, you have to prove that.

The goal is to take a deformation plus a local move (equivalent definition of the homology,
which is described by the existence of a homology between two maps).

So we need a precise context to work so we can think of every object as carried by a cell
complex. So this means a space which is a union of objects called cells, which are balls of
some dimension, glued together on boundaries. After subdivision you can assume each cell
is a generalized tetrahedron.

In fact, this language of chain complexes, this is a geometric complex. Sitting on every
geometric complex is an algebraic complex where you take the linear combinations of these
with a boundary operator. These days only the algebraic definition is widely used.

This is by induction, if you subdivide so that the lower skeleton is a simplicial complex, if you
add a point in the middle and cone off to the boundary then you get generalized tetrahedra;
it’s clearly true in dimension one. So then we have a simplicial complex. Sometimes you
have to do it again to get things to be embedded.

Sometimes you work with regular cells, so that they don’t touch themselves along their
boundary; if you aren’t working with those you have to do it a second time, this subdivision.

So I want to do some Morse theory. I can think of my whole thing as just being a simplicial
complex. Then what I want to do, let me erase this, I’m just going to do it, rather than
motivate it.

So the first thing I want to do is to add collars, so I have a nice collar boundary. These
are not quite simplices, they’re prisms. Then I’m going to make a function. I have all these
vertices, and I can number them from 1 to n. I make a function that maps the vertices at
one end to n + 1, the ones at the other end to zero, and the others to 1, 2, . . . according to
the ordering. Then this extends uniquely, linearly to a map on the complex.

This might be wrong but a lot of it will be right.

4



Now let’s study the preimage. When you have one of these maps and you take the preimage
of something, you get nice pieces so that unless you’re at a vertex, you have some breathing
room for the homeomorphism type of the fiber. Here’s a nice one: map a tetrahedron to
a line by taking opposite edges to the endpoints; then in the middle you get a square or a
rectangle everywhere.

[The preimage of a point is a simplicial complex?]

It’s a cell complex.

[As a topological space it has singularities?]

Yeah. It’ll pick up the same singularities as the space.

The map is roughly a projection near a boundary. I’m sort of verifying again what I just
said; the only place there will be a singularity is at a vertex. Some edges will be going to
vertices greater than k and others to less than k.

This is very elementary, there’s nothing to this, just some linear algebra. What happens,
gosh, well, I’ll explain this in more detail, but some of the lines are coming into the point
and others are going out. Some are being crushed and some are being created. The complex
generated on one side is being crushed and another is blown up.

So everything else is preserved; all that happens is that at each integer a set is crushed to a
point and then something else is blown up out of that point.

We’ll discuss this more.

0.1 Informal talk by Kevin Costello:
Algebraic topology and moduli of Riemann surfaces and topo-
logical strings and deformation of complex structures and what-
ever

We’re going to informally start. This is Kevin Costello from Imperial College, London. He’s
going to give an informal talk and then another couple tomorrow at CUNY. I’m going to ask
a leading question. What is string theory, in the context of algebraic topology? If you work
on string theory, what do you work on?

I suppose everyone knows what a topological field theory is. We have a category S with
objects I finite sets and morphisms are Riemann surfaces with parametrized bands. There is
no identity. That doesn’t matter because there kind of is on homology. This is a symmetric
monoidal category. A CFT is a tensor functor F from this functor to whatever. For example,
you could have a Hilbert or vector space valued one. The target also has to be one of these.
We’ll be approximating spectra with chain complexes. Anyway, what this means, say we’re
going to vector spaces, is that F (I)⊗ F (J) → F (I q J).

I don’t know what string theory is. I don’t know if topological string theory and topological
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conformal field theory are different. TCFT would have more topological targets. We replace
the category with singular chains on moduli spaces. So we have C∗S with the same objects
and morphisms defined in the obvious sense, C∗S(I, J) = C∗(S(I, J)). AS long as C∗ is a
tensor functor this gives a category.

A TCFT is a tensor functor so we can get C∗(X) ⊗ C∗(Y ) → C∗(X × Y ). Up to homotopy
it doesn’t depend on choices of tensors and ∗. So a TCFT is F : C∗S →complexes up to
homotopy. The diagram is:

C∗S

∼=
��

P // complexes

There exists a minimal model for this which is unique, though not uniquely unique. This is a
differential graded category. The idea of an enriched category is where you say the morphisms
are blah. The functor along the bottom has to preserve the differential.

When I say topological string theory, I’m referring to this. So this seems to be what arises
geometrically.

[Gromov-Witten theory is not exactly this, since it uses compactified moduli spaces. You’re
later going to bring this in?]

So a first approximation to CFT is φ : φ(Σ) : F (I) → F (J). The first approximation is a
topological field theory, where this is independent of the complex structure. φ(Σ), that is, as
a function on moduli space, is locally constant, so to go from this kind of thing to a TCFT
we replace a locally constant sheaf with a resolution.

This operation is a function on the moduli of Σ, so this can be broken up into components.
You can imagine this but with values in some locally constant sheaf in moduli space, that
seems to arise as well.

So the jump on S(I, J) we have a sheaf, here a constant sheaf, Hom(F (I), F (J)), and we’re
taking sections of it. Over for a TCFT we replace Hom(F (I), F (J)) with its canonical
resolution Hom(F (I), F (J))C ⊗C∗(S(I, J)). This concept here is really the correct one, and
the first one is a truncated version.

One thing this picture shows, is that if we have Σ ∈ S(I, J) it’s a 0-chain so it gives an
operation Φ(Σ) : F (I) → F (J). But if Σ1,Σ2 are connected then Φ(Σ1),Φ(Σ2) are (chain)
homotopic and whatever.

an n chain here is an n-parameter family in moduli space.

I said at the beginning that this functor is defined only up to homotopy. But if it’s an
exact functor, if we can conncect Σ1,Σ2 with a path then this is the boundary because you
commute with the differential.

Φ(dα) = [d, φ(α)].
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We say that we work up to homotopy because we’ve made an arbitrary choice. I don’t think
this is really a derived category.

We have this category C∗S, and have picked a free resolution for it, for any differential graded
category. You take sequences of morphisms. You compose pairs and split them apart. So
you use the free resolution or the minimal model. If you just work with the minimal model
you never mention homotopy again.

One thing that this guy shows us is that on homology you have HxF (I) → HxF (J).

I should, people who haven’t seen this before, if we have a TFT with the property that
F (I) = V ⊗I . Suppose this is true. Then V is a Frobenius algebra. Here we have, say, a pair
of pants which gives a map V ⊗2 → V which is associative, by the pictures of two pairs of
pants attached waist to leg one, to leg two.

[Are the morphisms surfaces up to isomorphism or surfaces? Do you have a fixed universe?
Not all surfaces form a set.]

Is this a logic question, I don’t understand. Fix a large dimensional vector space.

Higher genus things can be broken up like this in a TFT. I actually had no idea I was coming
here to speak today. What should I talk about?

[You described TFTs as functors from a fixed category to something else; that’s also how
you describe an operad. This is the Frobenius operad?]

Not the Frobenius operad. If you take the category of disjoint unions with at least three,
then you get it commutative. If you take the minimal model, it doesn’t matter whether it’s
C∞ or E∞.

So we call this category S0. Then H∗S0 has the same objects, finite sets, and H∗S0(I, J) is
the homology space of morphisms of this form. The following theorem is due to Getzler:

Theorem 1 This is the category for the BV operad.

If you have a tensor from that category to vector spaces then it is a BV algebra. F :
H∗S0 → V ect is a tensor functor with F (I) = V ⊗I if and only if BV algebraic structure
on V, i.e., it is a commutative algebra with ∆ : V → V,∆ ∈ H1(S0(1, 1)). So S0(1, 1) ∼=
DiffS1 ×DiffS1 × R?

∼= S1.

Take any chain and take the rotation, that’s the morphism corresponding to the ∆ structure.
There’s a pretty picture which explains this.

Dennis was asking about the compactified stuff, M̄0. Instead of using surfaces we use points,
spheres with incoming and outgoing points. We do something similar, to get a Frobenius
manifold without the pairing. So H∗M̄0 has tensor functors F : H∗M̄0 → V ect with F (I) =
V ⊗I the same as {family of algebraic structures on V parameterized by V }. Each point in a
formal neighborhood of zero gives an algebra structure.
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Look at M̄0(n, 1). This is n + 1 marked points, n incoming, 1 outgoing. These guys form an
operad. This differs from the previous case because this is compactified; these are algebraic
curves with nodal singularities.

I write down M̄0(3, 1) which generically has four distinct marked points in a ball. But you can
have degenerate points where you get something else, something like two manifolds crossing,
each containing a couple of these points. So these guys are compact maniforlds. M̄0(n, 1) is
compact with dimension n− 2.

I’ll get a field theory for these guys. For V a vector space, then α ∈ H∗(M̄0(n, 1)) has
φ(α) : V ⊗n → V with the fundamental class mn : V ⊗n → V. Then this structure is going to
be the same as a family of–

[You’d get homology operations on homology of a thing if you did this with chain complexes?]

Yes

[more]

Look at T ∗M. Now look to CF∗(T ∗M), Floer chains, then that’s quasisomorphic to chains on
the loop space, since a complex is quasisomorphic to its homology. There’s a very general sym-
plectic picture. If X is symplectic then CF∗(X) should be a TCFT. The first here should cor-
respond to Chas Sullivan stuff. The operations come from Riemann surfaces, right, and you
can think of Chas-Sullivan multiplication as similar. For geometric reasons there should be a
map modulo some difficult symplectic stuff, CC∗(Fnk X) → CF∗(X). So can I just explain
why this is a family of algebras? Say v ∈ V, v1, v2 ∈ V. Then Σn≥0mn+2(v1, v2, v, v, · · · , v)/n!.
Pretend these converge; then for each v these are algebra structures. The statement is that
this operad is the operad whose algebras are this guy. This homology is precisely known and
is described by this. This is what they satify.

Theorem 2 This is commutative and associative.

[How is this related to string topology?]

You have the BV version, S0, and you have S1 in it.

A

��

⊂ // S0

��
pt // M̄0

You can quotient by the subcategory S0//A ∼= M̄0 up to homotopy. If the chain level version
of string topology existed, then S1 equivariant homology would have this structure I’ve just
been discussing.

[For each n how many operations do you get?]

It’s quite big but they’re built up. If n = 2 then you get 0. This isn’t a BV algebra. The BV
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algebra is S.
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