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1. Nov. 2: Huai-Liang Chang: Mixed-Spin-P field moduli and its
virtual fundamental class

Thanks to the organizers for inviting me here. I will try to introduce this newly
developed technique to approach the calculation of [unintelligible]in higher genus.
Let me start from some history about this problem. In mirror symmetry, physics
starts from this 2d sigma model. Witten tried to but supr symmetry and [unintel-
ligible]with geometry. They perform the A and B twists. The classical version of
mirror symmetry is to compare counts of holomorphic curves in a compact Calabi–
Yau. On the B side it’s something related to the period but something more
mysterious in higher genus. Around 99, in genus zero, the A side, well Givental
and LLY. This was done in 90 by Candelas et al. on the B side. In genus one,
around 2009, Zieger–Li calculated this for the quintic. On the B-side, Vafa and
other people did this around 91. BCOV did genus 2, and HQK extended to genus
less than 51. The things on the B-side are not defined. On the A side, the path
integral is known to be the Euler class of the following setup.

The talk today, I want to highlight this point. The true virtual phenomena
appear in positive genus. I will try to define this. The way this appears is via the
so-called ghost map, which is captured by the mixed Spin P moduli spaces, using
FJRW theory. This is some framework I’ll try to explain.

Let me start with a short definition of Gromov–Witten. You take the count of
all curves of genus g and degree d to your quintic. We have

E∞ = ⊔fΩ
0,1
R (f∗TQ)

��
M∞ =Msin

g (Q, d)

[some fast discussion] In algebraic geometry you can recover all your information
by intersecting this cone with the zero section. This doesn’t help us calculate the
Gromov–Witten invariant at all.

Kontsevich’s approach to calculating this is, look at the moduli of stable maps.
This will be a subset of the stable maps to P4. From this point of view, this moduli
is obtained by cutting out those things where f51 + · · · + f55 = 0. In genus 0, this
V is a bundle. If I write this as quintic sections, then we write [Mg(Q, d)]

vir is
recaptured as the Euler class of this model. This is only true in genus 0. This is
the genus zero approach. Every part of this fails when the genus is 1. The main
reason this fails is because of the following new sheaf. You pull back O(5) and get
another sheaf over your moduli space, which is 0 for g = 0. There exists a stable
map [picture]. Over a curve (that contracts a genus one component to a point) V ′
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is nonzero. Because it’s not zero, V is not a bundle. So approximating a virtual
fundamental class as an Euler class fails.

The observation is that if you have f : C → Q, then you can write down the
following sequence

0 → H0(C, TQ) → H0(C, TP4) → H0(C,O(5)) → H1(C, TQ) → H1(C, TP4) → H1(C,O(5)) → 0

So the first entry is just the deformations of the curve in the quintic and in P4 (the
fourth and fifth nonzero entries are obstructions in this moduli problem). Then
H0(C,O(5)) is the obstructions of extension between Q and P4. So the final thing
is a higher obstruction that isn’t clear from the point of view of geometry. There’s
no longer a bundle. The f , we call it a ghost elliptic curve. Over the ghost you
have a higher obstruction. We spent a long time trying to throw away the higher
obstruction. The counting of curves in the quintic is governed by obsruction theory
in X. Similarly for P4. In the higher genus case, the existence of these terms tells
us that we sholud enlarge our moduli space, taking duals and adding to the moduli.

Y p := Mg(P4, d)P = {f : C → P4, p ∈ P (C,ωc ⊗ f∗O(−5))}
This will be a moduli space over Dg = {(C,L)} which is notoriously big and hard
but at least smooth. Then ObY p/Dg is H1(C,L)⊕5 ⊕H1(ωcL

−5).
Now talking about this obstruction, a bad part of this YP is that you get a

non-compact moduli space.
[missed a bit]
The theorem is that you can use σ to do a perturbation and you get [Y p]vir which

is equal to [Mg(Q, d)]
vir up to a sign. At that time we were very surprised that

this kind of thing can happen. In genus zero, this is the Euler class of your vector
bundle. Near the boundary, you have a preferred perturbation of your zero section.
This is actually a typical phenomenon in so-called Landau–Ginzburg theory after
you quantize on the A-side. That finite dimensional model admits a Hamiltonian
Floer homology description, where the Hamiltonian is almost like that σ.

Now, we cannot calculate both, still, we cannot do many things. But if you
restrict to the case where you have only maps of degree 0, then that P can be
understood as, I should say Mg(P4, d)P is “Mg(KP4 , d).” Now using this point of
view and the form of σ as, well, look at the superpotential [missed] then the critical
locus is the quintic.

This is nothing but counting curves in this Landau–Ginzburg space. SoMg(Q, d)
vir,

up to sign is [Mg(P5, d)P ]vir. You can look in C6/C∗ with weights (1, 1, 1, 1, 1,−5).

You can get an orbifold if p ̸= 0, this is C5/Z5 with superpotential W =
∑5

x5i .
This is good because it’s affine.

If you quantize everything here, then roughly speaking you’ll get a curve (C,L) ∈
Dg along with sections f1, . . . , f5 in Γ(C,L) and p ∈ Γ(c, ωc ⊗ L−5). When x ̸= 0
then the fi have no common zeros and the p has no constraint. This is the moduli
space we had on the left. If instead, p is nonzero and f1 through f5 have no
constraint, then L⊗5 is isomorphic to ωC , and then this isomorphism tells you
you’re taking the fifth roots of the canonical line bundle, and take five sections.
This moduli is nothing but the moduli giving the FJRW theory. To make this
possible you need your degree to be divisible by 5. To make freedom to make this
possible, you let Cbe an orbi-Riemann surface.

Roughly speaking, if you allow orbi-Riemann surfaces with a lot of orbipoints
and one additional numerical condition—because ω has [missed].
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Now you have freedom. So this moduli, given the numerical condition, is written

as M
1
5

g,m1,...mℓ
and you can come up with a virtual cycle, which is exactly the Floer

homology with [unintelligible]. Since this is about singularities, you can calculate
that the virtual dimension is

∑
(2−mi) and if g > 0 the only nonzero virtual cycle

happens only in the case M
1
5

g,2a,1b .
It’s funny, this comes up in Witten’s work in a different context.

This has virtual dimension, and the virtual dimension is zero for [M
1
5

g,2a ]. This
is primitive FJRW for the quintic.

The problem is that there’s no reason for these two numbers to be related, they
are just stimulating each other to exist.

Here comes the great idea of [unintelligible]. He says let’s quantize the Kähler
parameter. He had this great idea for two years, and eventually I became convinced
that this may help. What do I mean by quantize? Before you take all your maps
to your target, [missed]

A mixed spin P field is a collection of objects (C,L,N, ϕ, ρ, ν) where C,L are
orbifold, N a line bundle, ϕ a section of (C,L⊕5), ρ a section of (c, ωcL

−5) and
ν = (ν1, ν2) a pair of sections of (C,L⊕N ⊕N) where (ϕ, ν1) have no common zero
and (ϕ, ν2) have no common zero.

Now you impose one more serious condition, which is that this collection of data
has no automorphism, Aut ξ <∞. This is a mapping space of curves to something
called “variations of GIT.” [too fast]

[pictures]
Somehow W is [Wg,ℓ,d0,d∞ ] where d0 is the degree of L⊗N and d∞ the degree

of N , and then you can take the virtual fundamental class, once you prove that

ObW
σ−→ OW is proper, this is a very difficult, serious thing, due to W.-P. Li and J.

Li.
A common technique is

∫
[W ]vir t

rd W = 0. [pictures]

The consequence is that we can link the two invariants. Tracing the link you
obtain the relation, and FJRW determines Gromov–Witten, in fixed genus. The
consequence is that for genus g degree d Gromov–Witten, they are determined
by the first [[unintelligible]] Gromov–Witten and θg,k. So [Ng,d]d for g = 2 is
determined only by θg=2,22 . There are no curves, this only uses Mg,n and the spin
version. This number can be determined explicitly. It also shows that the FJRW
invariant can be calculated in genus 1 no matter how many 2 you put.

Okay thanks.

2. Huijin Fan: Analytic theory of gauged linear sigma model

[I do not take notes at slide talks]

3. Hiroshi Iritani: Global mirror symmetry for toric stacks and its
applications

We’ve been studying functoriality of quantum cohomology. The theme today,
the content today, I’ve talk several times about. We have some small progress, grad-
ually, and there are many things we haven’t written. Today I’d like to concentrate
on some small technical piece, a certain compactification.
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When we are talking about mirror symmetry, classical cohomology is maybe
already know. As it turns out, it is useful to have [unintelligible]in the picture,
which gives a certain compactification of the mirror.

Let me start with an example. We consider P2, this is a fan of P2

OO

//

����
��
��
��

Then the mirror is W = c1x+ c2y +
c3
xy , which is a Laurent polynomial on (C×)2.

This is mirror in the following sense. If I rescale x and y then I get x + y + q
xy

where q = c1c2c3. This is in C×. They are mirror to each other in the following
sense.

This q on this side for W , plays the role of the complex structure. The q cor-
responds to the Kähler parameter for P2, in H2(P2,C×), the so-called Kähler pa-
rameter.

For instance, we haveQH∗(P2), some commutative algebra structure on (H∗(P2), ⋆q),
which should be isomorphic to the Jacobian ring of W .

This Jacobian ring is C[x±, y±]/(∂xW,∂yW ).
This is one instance of mirror symmetry. We also have a quantum connection of

P2, also called the Dubrovin connection. I’m not going to go into the details, but in
formulas, this is a connection on a one parameter family of the form q ∂

∂q +
1
z (p⋆q),

this is a trivila bundle over C× equipped with this connection. This quantum
connection should be isomorphic to, let me call it Saito theory, some singularity
theory with connection associated toW . Here I can write this as H2(Ω(C×)2 [z], zd+
dW∧) where z is the same variable and this is algebraic differential forms and we
take cohomology. This symmetry is somehow known, an almost easy computation.

I should also say that the corresponding connection is the Gauss–Manin connec-
tion.

In this case it is very natural how to compactify this picture. What I want to
add is [unintelligible]. I just want to add some compactification, I want a partial
compactification. I just write w1 = x and w2 = y and w3 = q

xy . Then the Landau–

Ginzburg model should be compactified in the following way. I have

C3 = {(w1, w2, w3)}
W //

��

C

Cq

and let me look at the fiber at q = 0. Then in this fiber, we see the singular variety,
W = w1+w2+w3 on the variety w1w2w3 = 0. Then we want to study the Jacobian
ring on this variety. We want to give this a log structure. I want to consider the
logarithmic vector field tangent to this variety. We consider the following. Here
the logarithmic tangent sheaf is generated by ⟨wi

∂
∂wi

− wj
∂

∂wj
⟩ and what we get,

in this case by an elementary calculation, is

Jac(W ) = C[w1, w2, w3]/(w1w2w3, wi − wj)
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which is C[p]/p3 which is the classical comohology of P2.
This is true in the quantum level but I want to get some nice compactification.
This example has been generalized to weighted projective space by de Gregorio–

Mann. They consider weighted projective space. This example is very simple,
but if you consider weighted projective space, for instance P(1, 1, 2), which is
C3\0/(λ, λ, λ2). Then we consider

C3 = {(w1, w2, w3)}
W=w1+w2+w3 //

q=w1w2w
2
3

��

C

Cq

If you do the same computation you don’t get the correct answer.
In this case the log tangent sheaf is generated by w1

∂
∂w1

−w2
∂

∂w2
and 2w1

∂
∂w1

−
w3

∂
∂w3

Then

Jac(W ) = C[w1, w2, w3]/w1w2w
2
3, w1 − w2, 2w1 − w3

and this is C[p]/p4 ≇ H∗
CR(P(1, 1, 2)).

The solution to this discrepancy due to de Gregorio and Mann is the following.
The correct mirror, we should compactify it as a stack. This is just a variety
compactification. We should pull back the mirror family by q = t2, and then I
get {w1, w2, w3, t)|w1w2w

2
3 = t2} and then take a normalization, so that I add a

rational function t/w3, called u, nad what I get is

{w1w2, w3, u|w1w2 = u2}

This is equipped with a similar projection to the t plane and by W . If you consider
this, maybe I omit the calculation, you get the correct cohomology. Indeed, you
should think of this as an orbifold. There is a Z/2Z action on this model because
I take a square root of q, where t 7→ −t and u 7→ −u. If I take the quotient in the
coarse moduli space I recover the picture that gave the wrong answer. We should
think of this thing as an orbifold, as a stack.

Somehow we want to generalize to something more general than toric stacks and
then you get the following. I’m not going into the details of the construction. Let
N = Zn. In general one can allow torsion, but for simplicity let me have this be
the fan lattice. I fix a finite set S inside N , arbitrarily big. In the P2 case I start
with Z2 and (1, 0), (0, 1), and (−1,−1). But I could add irrelevant ghost vectors.
Then I can cook up the following abstract sequence

0 → L → ZS β−→ N → 0

The map ZS → N is the tautological map, and L is defined to be the kernel of β.
We consider the dual sequence, which is

0 → N∗ → (ZS)∗ → L∗ → 0

and then we construct a Landau–Ginzburg model by tensoring C× by the second
and third term. So what I get is (C×)S mapping to L∗ ⊗ C× and also equipped
with a map to W by summing variables over S.
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This model should be partially compactified. How can I do this? At the level
of varieties this is a standard procedure. The partial compactification, the so-
called “secondary toric variety” first considered by Gelfand–Kapranov–Zelevinsky
and appears in recent work of Demer–Katzarkov–Kerr.

They work in a slightly special situation where the finite set S lies in some hy-
perplane of distance 1 from the origin. There’s also some stacky version considered
here. It seems slightly different from theirs but I’m not completely sure.

We can take a stacky compactification (C×)S ⊂ Y and L∗ ⊗ C× ⊂ M with
Y →M , both of these singular toric DM stacks, some singular orbifolds.

So if you have a simplicial fan Σ such that Σ(1) is in R≥0b for b ∈ S, then we
can consider every simplicial fan such that the set of one dimensional cones [unin-
telligible]. This corresponds to some toric chart UΣ ⊂ M such that 0corresponds
to, this is q = 0, the large radius limit. This is an affine chart. Let me give the
following example.

Let N = Z2.

(1) Let S be three points (−1, 1), (0, 1), and (1, 1). I have two charts. I have
two cones and the other chart we have is this one [pictures].

In terms of geometry this corresponds to O(−2) over P1 and the other
one to C2/(Z/2).

This is the first example.
Let me write the corresponding compactified Landau–Ginzburg model.

I consider these points as 1, 3, and 2, then I have

{(w1, w2, w3)|qw2
3 = w1w2}

over M = P(1, 2). The other chart is around q = ∞, the first is around
q = 0. The q = ∞ part is the orbifold point.

This example I have a crepant resolution.
(2) The other example is, I have three vectors (0, 1), (1, 1), and (1, 0). I can

consider these two fans [pictures].
I have (sorry if it’s similar)

{(w1, w2, w3)|qw3 = w1w2}
over P1, non-stacky P1, with coordinate q. Again q = 0 is the first chart
and q = ∞ the second one. This is a discrepant resolution from C2 blown
up at the origin to C2.

In general it’s much more complicated.
What we can show in this setting is that

Theorem 3.1. Coates–Corti–I–Tseng (in preparation) The big quantum connec-
tion of XΣ is isomorphic to the Saito theory associated to W restricted to the formal
neighborhood of 0 inside UΣ.

We can consider a formal version of Saito theory for this.
We also have a correspondence between the Poincaré pairing and the higher

k-residue pairing.
This gives you a way to compare quantum cohomology for toric stacks related

by these transformations.
I need some convergence to say things about these crepant [unintelligible]. The

new thing here is the big quantum connection, first of all, and the big quantum co-
homology, I take redundant vectors which correspond to big quantum cohomology.
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Maybe I’ll state this as a conjecture but it’s probably true. When we work over
C[[z]], then the mirror isomorphism extends to an analytic neighborhood of 0 ∈ UΣ.

Then we have some chance to compare the two things. Maybe just look at
the Jacobian ring before comparing the quantum connections themselves. For the
Jacobian rings, this is similar to the work of González–Woodward. They consider
the toric minimal model program and how quantum cohomology changes under toric
mmp. Their result can be understood more easily in terms of this compactification.

If we consider the family of Jacobian rings Jac(Wq) over M, then the previous
examples,

(1) (crepant case), we have the following. The Jacobian ring, this is over
M = P(1, 2), the dimension of the cohomology is the same, they’re two
dimensional, and I have a double point. I’m doing the spectrum of the
Jacobian ring. There is some singularity at q = 1

4 where the Jacobian ring
is infinite dimensional.

(2) discrepant case, you have over M = P1, if I calculate the ring, we have a
branch that just diverges at ∞. In some sense this is expected, we have a
C× action, the Euler field acts trivially in the crepant case but non-trivially
here. A non-constant section should then always be like this, depending on
how the Euler field acts on P1, is it positive or negative?

We consider some toric curve C inside M in general, which connects two toric stacks
X1 and X2, and you either see the crepant or discrepant picture.

In the crepant case, we have the following. In this result we just work, we don’t
know the answer to the conjecture, but we’re almost close. First I’ll state the
theorem.

Theorem 3.2. (Coates–I.–Jiang) In the crepant case, you can upgrade this to
a quantum connection, QConn(X1) ∼= QConn(X2) under analytic continuation

across some formal neighborhood of this curve Ĉ inside M.

Moreover, in this theorem, we didn’t use mirror symmetry, this is compatible
with derived equivalence. The vertical map is called the Γ-structure. In the crepant
case, in the discrepant case, what we have, the corollary of the previous conjecture
and the mirror theorem is the following. I assume some convergence, then we can
say that

Corollary 3.3. QConn(X1) is a direct summand of QConn(X2) on a neighborhood
of C.

Here means I tensor over C[z] with C[[z]].
Maybe I finish my talk by considering a non-completed version of this. We

make the following conjecture. There is some Stokes phenomenon, this quantum
connection has irregular [unintelligible], but if you choose some sector, an angular
sector I, then there exists an analytic lift of the following shape QConn(X1)|I ∼= L⊕
QConn(X2)|I⊕R (where arg z is in I). This is a lift of this direct summand relation
which corresponds to a semiorthogonal decomposition of the derived category of
coherent sheaves Db

coh(X1) = ⟨L,Db
coh(X2), R⟩.

We have some evidence for this, for example from the gamma conjecture. If you
have a toric morphism X1 → X2, not just a birational map, then there is some
evidence, this should be identified with the [unintelligible]pullback. Maybe I’ll stop
here.
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4. Miles Reid: Ice cream and orbifold Riemann–Roch

∞∑
i=0

[
3n

7

]
ti =

t3 + t5 + t7

(1− t)(1− t7)

This is intended to be a very elementary talk. I’ve written down this very obvious
formula. I’m taking the integral part, when i = 0 I get 0, when i = 1 I get 0, and
then when I get to 3, I get an integer solution, 1t3 + 1t4 + 2t5 + 2t6 + 3t7 + · · ·
and it continues in a periodic way. There are jumps at 3, 5, and 7 modulo 7. The
(1− t) bit tells you to look at the jumps. The (1− t7) tells you this is periodic with
period seven. This quantity t3 + t5 + t7 has some structure. This tells you a lot of
things about orbifold Riemann–Roch.

You can take this t3+ t5+ t7 and think about it as, if you are allowed to change,
on day 1 we’d get 3

7 , on day 2 you’d get 6
7 , I’m losing −3

7 , −
6
7 , −

2
7 , −

5
7 ,

1
7 ,

−4
7 , and

0.
The point I want to make, this list of numbers here, this is some kind of Dedekind

thing. This is palindromic, and it’s centered at 5, this t3 + t5 + t7. What’s 5 got to
do with it? The number we get here, 15

7 , this is 1
7 , so 5 is InverseMod(7, 3). Why

would you want this?
Let’s say I have an elliptic curve and I want a polarizing divisor, I’ll write A =

3
7P , I’ll allow a rational function to have 3

7 of a pole. If I write the section ring

R(E,A), this is an easy bit, and I add t3+t5+t7

(1−t)(1−t7) , this corresponds to E being a

curve of degree 15 in the weighted projective space P2(1, 5, 7). I’m having slightly
more complicated weighted projective spaces than in the last talk. You’re supposed
to count three things, since this is a plane, and I want to multiply to make it of
degree 0, and that’s −13. So KE = 2A where 2 = (15− 13), the elliptic curve I’m
talking about has a point on it p which is of type 1

7 (5). This is the same 5. My

orbifold points are polarized, 1
7 (5) is the same as 1

7 (1) or anything else, but these
are polarized, so I’ve specified which one is which.

There’s another example, where E′ = E(9, 10) ⊂ P(2, 3, 5, 7). If you get bored,
you can calculate a similar thing for this example.

When I have a variety X and a divisor D. Normally [unintelligible]. There’s
something called R(X,D), the “section ring” which is

⊕∞
m=0H

0(X,OX(mD)).
You want to calculate this ring by generators and relations. This has a Hilbert
series. Each vector space is finite dimensional. You write Pn(X) = dimH0(mD),
and PX,D(t) =

∑
Pm(t)tm. If D is Cartier and ample then P is polynomial divided

by (1− t)n+1. You can get this formula if you know Riemann–Roch but this comes
much earlier.

My case is that X is an orbifold and I’m only interested in cyclic quotients,
isolated cyclic quotient points.

I’m going to use this notation 1
r (a1 · · · an), where this is [unintelligible].

In this case there’s a wonderful theorem. I need to say one or two more words.
I told you what happens if D is Cartier and ample. I want that KX = kxA, for A
the polarizing divisor.

So then χOx(mA) = χOXkxmA up to a sign (−1)dimX . If you know Riemann–
Roch or Serre duality, this is Serre duality.
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The ring R(X,D) is a Gorenstein ring. I won’t give the definition of this, but the
way to think about this is, a hypersurface, codimension 2, any complete intersection
is okay. It’s like [pictures].

And this condition is sort of like homology sphere. To put it another way, lots
and lots of cohomology groups [unintelligible]. Anyway, what I want to say is that
R(X,D) is Gorenstein of weight kX , the same kX . This is an internal property,
then D(X,KX) has this symmetry,

tkPx([unintelligible]) = (−1)[unintelligible]PX(t)

So the result is that if X is an orbifold and R(X,D) is Gorenstein, then the
Hilbert series PX(t) is the sum of terms, At/(1− t)n+1, exactly what happens with
an ample Cartier divisor, plus a sum over the orbifold points,

Porb(
1

r
(a1, . . . , an), kA)

Let me say what’s happening. So A(t) is the integral of a palindromic polynomial
of degree c which is kX + n+ 1. This c is called the coindex, a term introduced by
Mukai, for instance, projective space has coindex 0. A nonsingular quadrant has
coindex 1.

If c < 0 then A(t) is 0. Otherwise this is 1 + a1t + · · · + a1t
c−1 + tc. This

is then determined by the first [c/2] coefficients. Now B, the orbifold points, I’m
writing a whole basket of them, not giving them special names. Now Porb has as its
denominator (1− t)n(1− tr) and numerator B(t), with X(t) a palindromic integral

polynomial in the interval [c/2]+1, . . . [c/2+n−1]. It’s InverseMod( 1−tr

1−t ,
∏

1−tai

1−t ).
If I only have one of these terms, I’m doing ice cream. This is something you

can do by hand, it’s written out explicitly so I can do it by computer.
Let me give you a kind of family of examples. So for S = P(1, 1, 3), then

A = O(5). The coordinates here are u1, u2, and v. The u1 and u2 are in [unintelli-
gible]. I’ll get degree 5 symmetric monomials in u1 and u2 and degree 2 symmetric
monomials in these times v. I’m writing down its generators in degree 1, these are
them, there are nine of them in H0(S,A). In degree 10 for H0(S, 2A), I’ve got
S10(u1, u2), and at the end I get u1u2v

3. In degree H0(S, 3A). I’ll call these guys
y1 and y2 and call v5 by z. Then P is the cone and z(P ) is nonzero so I can set it
to 1 to normalize. Then y1 and y2 are orbinates at P . If I want to see the point
P close up, I need to take y1/z

[unintelligible], have I got that right? Something like
that.

So this means that this point here is something like C2/ 1
3 (1, 1), and y1 and y2

get an ϵ2. According to my formula, there is an expression, which is 1+6t+t2

(1−t)3 +
t2

(1−t)2(1−t3) . I want to blow S up at one or two or more poitns, at d general points,

where d = 1, 2, 3, . . . 8, so I replace 6 with 6− d. When d = 0, the first thing I want
to know with a projective variety, what’s the dimension? It’s three, the number of
factors in the bottom. I sum the coefficients in the numerator to get the degree,
it’s 8 + 1

3 , so it’s 25
3 . This variety blown up d times is a log del Pezzo surface, and

the case d = 8, the most complicated one, this is S(10) in P(1, 2, 3, 5) if I’ve got it

right. The Hilbert series is 1−t10

(1−t)(1−t2)(1−t3)(1−t5) . This is counting the number of

homogeneous polynomials in each degree. The other part is [unintelligible].
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So [unintelligible]and Liana [unintelligible]have classified all log del Pezzo sur-
faces with [unintelligible]. I’ve told you nine families, the others mostly belong to
similar cascades.

What time did I start? Half past? So if I want to talk about the proof of
this, when we make databases of Fano three-folds, they were using this technology.
[missed a little]

Let me try to get the flavor of the proof. This is reduction to global quotient
case. If I have this surface P(1, 1, 3), then locally at this point I can take a third
root, I get a cyclic cover. It’ll be ramified at the divisor z = 0, and then there’s
a local analysis to say that the function Porb exists and in the local quotient case,
this depends only on 1

r (a1, . . . an), kX . In the global quotient case, we use this
thing called Lefschetz, holomorphic Lefschetz fixed points. Probably the last one
of these is sort of the easiest to explain. If I’ve got a variety Y , and I take a group,
divide out by Z/r, I write X/Z/r. If I do this map π, if I take π∗(OY ), then the
invariants, this has the action of µr, this breaks into eigenspaces,

⊕
Li. The fixed

point formula says if I have an equivariant sheaf F on Y , then I can ask for the
group g∗ acting on the cohomology of F , Hi(Y,F). That’s the same as a certain
sum of the element g acting in

⊕
Li. If I take the alternating sum of these, the

trace of these, this is called the Lefschetz number L(g,F). Then any formula of

this kind lies in ch.Td. In our case F = O. We imagine ϵi

det(1−g∗|Tp )
.

Let me try to say this in a kind of simpleminded way. The proof of this is in our
papers. The way we refer to this, we are referring to Atiyah Singer and Segal.

Maybe I’ll explain something more basic. The thing here is a gorup acting on
[unintelligible], the fixed point theorem means that it localizes to poreperties of
F at the fixed points of the group action. This group here, I made the kind of
restriction at the very beginning, the only fixed points are isolated fixed points.
If you look at the group, the trivial element fixes everything. Then this formula
is acting for χ(OY ) if g = id and it’s a local function of 1

r (a1, . . . an) at g ̸= id.

When the group is acting onthe tangent space, a basis is gien by ∂
∂xi

and you get

det(1− ϵ−ai).
I don’t want to know L(g,F), I want χ(Li). The way I’m thinking about this

problem, there are r of these sheaves Li. These are r-points satisfying r linear
equations. One of them is

∑
χ(Li) is χOX . The other is, I have no idea what I’m

supposed to be writing here, something like
∑
ϵχ(Li) =, let me not try to write

that side.
This is written out explicitly as a Vandermonde matrix, and the other side is a

column vector. Then this gives a formula for χ(Li)− 1
rχ(OY ). These are Dedekind

sums. They involve taking the index. This means that [unintelligible].
The local analysis, let me say reduction to the [unintelligible]is easy to say, I

can make a proof on the spot in two minutes that [unintelligible], I could make it
[unintelligible].

For example, suppose I have 1
3 (2, 2). Let me resolve the singularity, I’ll see a

−3 curve, and there’s a discrepancy functor, so I have KS is globally, well, in any
case, if T is the minimal resolution then KT = KS − 1

3E. The thing is f∗KS ,
most algebraic geometers of my generation resolve singularities. We resolve the
singularity, f∗(KS) = KT + 1

3E. Then when I try to calculate H0(m − f∗KS), I

get (−mKT − 2m
3 E) which is −(KT +E) + m

3 E. This one here is nef and big so I
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can apply Riemann–Roch. What does it mean to apply Riemann–Roch to m
3 E. If

a rational function has poles, it has only integral value poles. You round down.
The moral is that by resolving the singularity you get an expression, evaluated

by Riemann–Roch.

5. Nov. 3: Viktor Ginzburg: Non-contractible periodic orbits in
Hamiltonian dynamics on closed symplectic manifolds

Well, thank you, it’s a pleasure to be here, it’s not my first time in Hong Kong
but it’s my first time on this campus and I’m enjoying it enormously.

This subject hasn’t been studied much, for good reason, that I’m going to ex-
plain. I’ll say that there is something there to talk about. Most of what I’m going
to say is joint work with B. Gürel.

Of course non-contractible periodic orbits have been studied by many people [list
of names] and the usual logic is that you take Floer theoretic invariant and calculate
it for a certain Hamiltonian and find it’s nonzero, so it’s nonzero by invariance for
any other Hamiltonian in the class you’re interested in. The invariant does not
have to be the full Floer homology. It could be the torsion or something else, but
it’s an invariant.

If you take a Hamiltonian diffeomorphism on a closed manifold there need not
be any non-contractible periodic orbits so anything you choose will be zero.

I’ll use Floer homology indiscrimately. It’s a complex generated by the fixed
points of one-periodic orbits. The homology of this complex is the Floer homology.
When you look at, when you are interested in k-periodic orbits, they look like this.
[picture]. These are the fixed points of φk where k happens to be 3 in this case.
Again, k-periodic orbits generate a complex, and the homology of the complex is
the Floer homology.

This is essentially an invariant of φ and the homotopy class of an orbit. If
you have a Hamiltonian diffeomorphism without a periodic orbit in a homotopy
class then these invariants are all zero. And you can always find a Hamiltonian
diffeomorphism with no non-contractible periodic orbits.

Okay, so I’ll start with a symplectic manifold (M,ω) of dimension 2n. I denote
by π̃1(M) the maps [S1,M ] = π1/conjugation. I’ll call something in this [[x]] or f ,
and its homology class is [x] ∈ H1(M,Z)/Tors.

Now I have a diffeomorphism φH : M → M which is given by a 1-periodic
Hamiltonian H : M → R. I’ll denote by Pk(φ, f), the k-periodic orbits in f ∈ π̃1.
The loop you traverse is in the class f . We’ll say P (φ, f) is just all periodic orbits
in f .

In one hand we’re talking about a map, and in the other about an isotopy. To
say that an orbit is in f I need a continuous orbit. Given the end map φ, you can
include it in many homotopies. But the free homotopy class is determined by φ,
this is a consequence of [unintelligible][the Arnold conjecture?]

So P(φ, f) are the guys I’m interested in.
There’s a general principle, more important than anything else I’m going to say.
If φ has more than necessary periodic orbits or orbits that don’t have to be there,

then the total number of periodic orbits of φ is infinite.
This general principle goes back to Hofer and Zander. In this more general

form it’s due to Gurel. This is based entirely on a low-dimensional result that
is called Frank’s Theorem. Let me recall what it says. It says, well, if you have
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a Hamiltonian diffeomorphisms φ on the 2-sphere, then the minimum necessary
number of fixed points is 2. This was proved by [unintelligible]in the early 1970s.

If you have φ and the number of fixed points is greater than 2, then the number
of periodic orbits is infinite. This was proved in the 1980s, but I think the only
complete symplectic proof took a very long time to compute. So until recently this
was the sole evidence for this principle. This calls for an idea of how to prove it.
You should look at the complex and how it looks under iterations, somehow this
hasn’t taken anyone anywhere. If you take an orbit with some specific features,
then the features of the orbit can be used to prove something.

Coming back to the problem in question, I’m talking about non-contractible
periodic orbits. We don’t need to have any, but we assume we have 1, then by the
principle we have infinitely many.

Theorem 5.1. (Gurel–G) Let M be atoroidal, this means that
∫
T 2→M

ω = 0. For
instance any surface with genus at least two.

Assume φ has x ∈ P1 with [x] ̸= 0. I’ll let the free homotopy class of x be denoted
f and it’s not 1.

The assertion is that this principle is correct and indeed, for every large prime p
there exists a simple periodic orbit in the class fp. Its period is either p or p′, the
next prime.

When we talk about periodic orbits, there are two types I want to consider.
They could be simple or iterated. If you go around a circle twice, that’s iterated.

One extra remark, moreover, if π1 is hyperbolic and torsion free, then the con-
dition that [x] ̸= 0 can be replaced by the condition [[x]] ̸= 1.

Let me discuss a little bit the hyptheses of this.
What manifolds do I know that fit here? Examples. Well, surfaces of genus

greater than or equal to 2, Kähler manifolds with sectional curvature negative, and
some others that are neither of these classes. How likely am I to have a Hamiltonian
diffeomorphism with one noncontractible periodic orbit? I’d say this. Given a free
homotopy class, there is always a Hamiltonian diffeomorphism with a 1-periodic
orbit in this class.

I really need x to be nondegenerate. I really want P1 to be finite (otherwise your
set is already infinite and there’s nothing to talk about).

I want to say, given f there is always φ with [[x]] in f , and such φ form an open
set. So at least for any M , this class is nonempty.

Conjecture 5.2. Assume that π̃1 or H1 is large enough. Then φ with noncon-
tracible orbits form a C∞ Baire second category set. Generically you have a non-
contractible periodic orbit.

The only manifold for which this is known is the 2-torus. This uses several
nontrivial results in low dimensional topology.

I don’t even know where to start to prove this for the n-dimensional torus.
The theorem and the other results I’m not going to talk about do not apply to

the n-torus.

Conjecture 5.3. The theorem holds for the 2n-dimensional torus.

It’s currently known (and easy now) for T 2.
Let’s talk a little bit about generic existence. For a free homotopy class f , look

at the collection of Hamiltonian diffeomorphisms with at least one non-degenerate
periodic orbit in the class f .
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Inside it, I have a collection of Hamiltonian diffeomorphisms with infinitely many
periodic orbits. I’ll specify a collection of free homotopy classes, fN, that’s the
collection of powers of f .

Theorem 5.4. I’ll assume that no power of f is equal to 1. For example the
homology class of f is nonzero. Then the set F∞

f = {⟨φ|#P(φ, fN) = ∞} is C∞

second Baire in Ff .

Within this set, almost everything has infinitely many.
This is actually easy. The way the proof goes, Floer theory, to guess that—the

Floer homology of φk, fN is zero, which implies, basically, that there is a non-
contractible non-hyperbolic orbit. It’s known that when you have an orbit like this,
you have infinitely many periodic orbits. This is called Birkhoff–Lewis–Moser.

One point here is that til recently, maybe five or ten years ago, people in symplec-
tic topology tended to ignore C∞ generic questions. It’s useful to apply symplectic
topology to these questions, you can often see quite a lot.

Maybe I want to say, state another theorem, a bit on the technical side, but,
it slightly generalizes the first theorem, I want to go beyond the class of atoroidal
manifolds. It’s like going to monotone manifolds, I’ll go to atoroidal monotone
manifolds. These are manifolds where the integral of ω over any torus is λ times
the first Chern class applied to that torus.

This is similar to monotonicity, except I used tori instead of spheres.
When this is true I can look at NT , the minimum toroidal Chern class. This is

simply the positive generator, this is determined by the condition that the group,
the subgroup of Z generated by all such integrals, is NTZ.

Theorem 5.5. Let M be toroidally monotone and assume that NT > 4
2 +1. Then

everything else is as in the first theorem, excpt that φ has a hyerbolic orbit x with
nonzero homology class.

This is again along the lines of the general principle, instead of counting orbits,
I’m specifying a type of orbit.

In some sense the mechanics of this proof is totally different from the generic
existence proof. Here I’m using a hyperbolic orbit nad there I used a non-hyperbolic
orbit.

Before I try to explain how the proofs work, let me say that the second theorem
combined with the first conjecture should tell you that if you take a manifold with
big enough π1, you get infinitely many periodic orbit (generically).

Now a word about the proofs. I’ll focus on the first theorem.
First, for open manifolds, how do people use Floer homology? If you can calculate

some Floer theoretic invariant and show that it’s nonzero, then it’s nonzero for any
choice of Hamiltonian. The idea here is different. The first guy here, x, is a seed
that generates infinitely many periodic orbits. In contrast with [unintelligible]these
don’t have [unintelligible], you have to run your flow many times before x develops
[unintelligible].

If I take the Floer homology filtered by the action, HF f (φk), for k large, this
will look more or less like the Morse cohomology of f(x) + ϵ sin(ωx). So we think ϵ
is fixed and ω goes to ∞. There are two parts of this, f is responsible for invariants
and things, and the noise is responsible for infitely many periodic orbits, the general
principle.
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I’m not going to talk about the proof. So maybe I’ll just finish early. In contrast
to other approaches, the noise part is what we’re trying to track down in the proofs.

This brings up sort of one connection I wanted to mention.
When you look at the proofs, which I have not talked about, they look awfully

sort of similar to what people do in bar codes and persistent homology. Recently
there have been a couple of papers in symplectic topology using these techniques,
one by Polterovich–Scheluknin and the other by Usher–Zhang. It would be inter-
esting to see if this could be improved. The bar codes also focus on the stable part,
while what we need is the noise part. Maybe some sort of statistical machinery is
what is needed.

The second part I want to bring up, of course for filtered Floer homlogy, you
can take various filtered invariants, like the filtered Euler characteristic or filtered
torsion, and see how that part changes under iteration. It’s interesting to wonder
if you can use these tools to prove the theorem or the conjecture for the torus.

There’s one more point, about Floer homology of symplectomorphisms. I have
a student who proved one theorem about noncontractible periodic orbits of sym-
plectomorphisms. There are clearly parallels. That’s probably pretty much what I
wanted to tell you today.

6. Suguru Ishikawa: Spectral invariants of distance functions

Thank you for inviting me. I’m interested in the superheavy set in a closed
symplectic manifold. This notion was introduced by Entov. This is defined using
spectral invariants.

Let (M,ω) be a closed symplectic manifold of dimension 2n. Let Ω0M be the

space of contractible loops in M . Let Ω̃0 be the standard covering space, which
is (X,U) where x is a loop and u a map from D → M whose restriction to the
boundary is x. The pairs (x, u) and (y, v) are equivalent if x = y and x − y is in
the kernel of c1.

Let H be a Hamiltonian and XH its time-dependent vector field, ιXω = −dH.
Let φH

t its flow. We say H is nondegenerate if and only if, for every contractible
closed orbit of H, the linearization does not have eigenvalue 1.

For Φ : [0, 1] → Sp(2n), with Φ(0) = id, the Conley–Zehnder index is the
intersection number with {A ∈ Sp(2n)| ker(A − 1) ̸= 0}. This is a half-integer,
since the intersection at the endpoints counts as a half. We say Φ is nondegenerate
if and only if ker(Φ(1)− 1) = 0. In this case, then the Conley–Zehnder index is an
integer.

The action AH of the Hamiltonian H is a map Ω̃0M → R defined by

AH(x, u) = −
∫
D

u∗ω +

∫ 1

0

H(x(t), t)dt.

If H is nondegenerate, we define SpeckH as the critical values (x, u) of AH such
that the critical point, the Conley–Zehnder index is −k.

My convention is that the degree of Floer homology is the negative of the Conley–
Zehnder index so that this coincides with the degree of Floer homology.

Floer homology is, roughly speaking, a chain complex Ck generated by the crit-
ical points of AH and the differential is defined by counting. It is well known that
this is actually a chain complex. For a precise definition we should use the Novikov
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ring, but this is a rough definition to explain the spectral invariant. This is actu-
ally a chain complex, and its homology group HF (H, J) ∼= ker ∂/im∂ is naturally
isomorphic to QH(M,ω).

A spectral invariant is some kind of [unintelligible]. For a nondegenerate Hamil-
tonian H, consider the fundamental class on M is an element of quantum cohomol-
ogy, so it can be represented by a chain in Floer homology, so take a representative
in the chains and take

max
[x,u]

AH(x, u)

that appears as a coefficient in a representative
∑
a(x,u)(x, u) of [M ]; then take the

infimum over all representatives of [M ]. This is the spectral invariant c(H) of H.
What we’ll use today from this invariant, which has very nice properties, is that,

first, c(H)−c(G) is bounded by
∫ 1

0
minX(Ht−Gt)dt below and

∫ 1

0
maxM (Ht−Gt)dt

above.
This property implies that the spectral invariant is Lipschitz continuous with

respect to the C0 norm of H. We can define for degenerate Hamiltonians the
spectral invariant and then the spectral invariant of the function 0 is 0. Moreover,
another important property is that if H is nondegenerate, then c(H) ∈ SpecnH.

[unintelligible]defined the homogenization of the spectral invariant, they called
it the partial symplectic quasistate,

ζ(H) = lim
k→∞

1

k
c(kH)

for H ∈ C∞(M)

Definition 6.1. Let X be a closed subset of M . Then X is heavy if and only if,
for any H ∈ C∞(M) that vanishes on X, it has ζ(H) ≥ 0. It’s called superheavy if
for any H ∈ C∞(M) that vanishes on X, it has ζ(H) ≤ 0.

Theorem 6.2. (Entov, Polterovich 09) If X is heavy, then X cannot be displaced
by Hamiltonian diffeomorphisms.

If X is superheavy, then it cannot be displaced by symplectic diffeomorphisms.

Another important property is that heaviness and superheaviness are preserved
by products. If X is (super)heavy and Y is (super)heavy then X×Y in the product
ambient symplectic manifold is (super)heavy.

This implies that if you find a new example of a superheavy set, then you
know the product of already known superheavy sets with the new one is also non-
displaceable by symplectic diffeomorphism.

An example of a superheavy set is the torus {(z0, · · · zn) ∈ CPn : |z0| = · · · =
|zn|}.

My main theorem, I found a new example of a superheavy set. Assume c1 = κω
on π2(M) for any κ in R. Then assume Uj ⊂ R2n, ωi is a strictly convex open set,
and Uj ↪→ (M,ω) symplectically.

Theorem 6.3. (I.) For any function in C∞(M) which vanishes outside of ⨿Uj,
then κ ≤ 0 implies that the spectral invariant is bounded above by max c0(Uj), and
if κ > 0 and max c(uj) ≤ n

κ , then the spectral invariant of F has a bound depending
only on Uj, c(F ) ≤ maxj c(Uj).

Here c0 and c are constants I’ll explain later.
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Corollary 6.4. If κ ≤ 0 then X =M\ ⨿ Uj is superheavy. If κ > 0 and Uj is not
so big, then X is superheavy.

The definition of the constant c, for a strictly convex open subset U ⊂ R2n

containing 0, define f : R2n → R by t, y 7→ t2, y = ∂U and t > 0. [for whatever
reason] D2f > 0, and c0(U) measures its positivity,

c0(U) = inf{2π/a, a > 0D2f > wh}

For example, if U is an ellipsoid E(r1, . . . , rn), then f =
∑

i
|zi|2
r2i

. Then c0(U) = πr21

and c(u) = πr2n.
An example of the corollary is, consider Σg with g ≥ 1. There is a CW decom-

position e0 ∪ e1 ∪ · · · ∪ e1 ∪ e2.
So π2 vanishes and we can apply the corollary, which says that the complement

of the 2-cell is superheavy.
This example was already known.

Remark 6.5. For the case that κ is positive, it is known that the largest ball whose
complement is superheavy in CPn is

{[z0 : · · · : zn] ∈ CPn :
|z0|∑
|zi|2

>
1

n+ 1
}.

The constant c(β) is n/κ, the largest ball such that the complement is super-
heavy.

Theorem 6.6. (Seyfaddini) Assume further that Uj is a ball and each Uj is dis-
placeable and E(Uj) ≤ 1

2|κ| . Then the same conclusion holds, for all F : F |M\⊔Uj
=

0, we have

c(F ) ≤ max
j
c(Uj)

This version uses displaceability but my version doesn’t need that, howover big
this thing is.

Let’s talk about the proof of the main theorem. I’ll talk about the version where
κ = 0, the other case is similar.

Lemma 6.7. If Ψ : [0, 1] → Sp(2n) is C0-close to Φ then the Conley–Zehnder
index of Ψ is bounded by the Conley–Zehnder index of Φ plus 1

2 dimker(Φ(j)− 1),
and we’ll call this sum the maximum Conley–Zehnder index of Φ.

We also need that

Lemma 6.8. For H : R2n → R with D2H <


−C

0
. . .

0

, then the

maximum Conley–Zehnder index of φH
[unintelligible] is at most −n− 2[ c

2π ].

Lemma 6.9. Let H be from rR2n → R and χ : R → R. Then the maximum
Conley–Zehnder indices differ by at most 1.
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Let’s start the proof for κ = 0. Let fj be a quadratic function of Uj . Assume the

inequality is satisfied for D2fj >


a

0
. . .

0

. The goal of the proof is that

for any function F that vanishes outside Uj , we have spectral invariant less than
2π
a We’ll prove it for special H and then use monotonicity to prove it for general
H.

Let ϵ be a small constant and χ0, χ1 be functions with a graph like this [picture]
which is linear on [0, 1 − ϵ] and its slope is less than 2π

a and vanishes near 1. Its

maximum should be less that 2π
a .

Then χ1 is similar, but goes to 1−2ϵ. Let χs = χ0+sχ1. The special Hamiltonian
Hs is

∑
j χ

s ◦ fj :M → R. Then H has the following graph: [picture]

We claim that c(Hs) = c(H0) for all s in (0,∞).
The proof, let x ∈

⨿
{fj ≤ 1 − ϵ} then the slope of χ0 is less than 2π

a , so

χ(fj)Dfj(x) <


−2π

0
. . .

0

 .We can estimate the Conley–Zehnder index

using the third lemma, the difference is bounded by 1. Then we can use the second
lemma, since the first term is bounded in this way by 2π, so this is boundde by
−n−2+1 < −n and if x is in the complement of that reogion, then the function is
independent of s. If Gs is a perturbation of H, then this implies that SpecnG

s =
SpecnG

0. The orbit appear in this region does not have degree n, so the spectral
set is independent of s. So c(Hs) = c(H0).

By making Hs large, arbitrarily, so any function F , there is some Hs bigger, so
this implies that c(F ) ≤ c(Hs) = c(H0) which by monotonicity is at most maxH0,
but by construction, this is at most 2π

a . This is the end of the proof, and the end
of my talk. Thank you.

7. Ching-Hao Chang: The isotopy problems of nodal symplectic
spheres and J-holomorphic spheres in rational manifolds

Thanks to the organizers for inviting me. This is my first time here since I
was an elementary student. I’ll say something about this isotopy problem. My
spheres are two dimensional and my rational manifolds four dimensional. A sym-
plectic submanfiold X of (M,ω) is first a submanifold and second of all X, ι∗ω) is
symplectic.

So CP1 embedded in CP2 appropriately is a symplectic submanifold.
So the question is about isotopy of symplectic submanifolds in a symplectic

manifold. For i0 : S → (M,ω) and ii : S → (M,ω), the question is whether there
exists an isotopy H : S× [0, 1] →M which is continuous, with H0 = i0 and H1 = i1
and Ht always a symplectic submanifold.

For a submanifold, you can talk about embedded and immersed submanifolds,
so we could also ask the question about immersed submanifolds.

There are multiple ways to deal with this problem. One is to, well, say S is a
submanifold satisfying some sectional curvature condition and a mean curvature
condition. Then the flow will have a long time existence and will converge to
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something good like a holomorphic curve in a Kähler manifold. You have to deal
with a second fundamental form, an almost complex structure, some other things,
to ensure long time existence of the flow. I don’t want to talk about this approach
today.

I want to use the isotopy of J-holomorphic curves in a manifold to study this
instead.

I’ll define a J-holomorphic curve. A map between two almost-complex manifolds,
at least C1, is pseudoholomorphic if it satisfies the Cauchy–Riemann equation,
which is, du+ JduJs = 0 at every point. This is if and only if Jdu = duJs. In the
holomorphic case this is the Cauchy–Riemann equation.

This definition has nothing to do with the symplectic manifold. This only relies
on almost-complex structures. In order for J to be related to the symplectic man-
ifold, I’ll define what it means to be ω-tame. We say J is ω-tame if ω(u, Ju) > 0
for all u. We can collect Jω which is the set of ω tame almost complex structures
for fixed ω.

To tame J we can associate the Riemannian metric gJ = 1
2 (ω(u, Jv)+ω(v, Ju)).

Sometimes you have a correspondence between symplectic submanifolds and J-
holomorphic maps for some tame J . One direction is trivial and the other direction
is also not so hard.

When we have this fact in some subcategory, you can consider the isotopy of
J-holomorphic curves instead of symplectic submanifolds. The almost-complex
structure can vary as t varies.

The J-holomorphic curves are not as good as holomorphic maps. For example,
you have for the holomorphic case, you have f is holomorphic if and only if it’s
analytic and if f (n)(z0) = g(n)(z0) then f is g on a neighborhood of z0 and so for
the whole connected component of z0. For J-holomorphic curves you don’t have
this, you have something “vanishing to infinite order.”

What you have is that
∫
|z|<r

|ω(z)|dz = O(rk), this is vanishing to infinite order.

So if u and v, if their difference vanishes to infinite order, then you know [unin-
telligible].

If you have a J-holomorphic curve, smooth, defined outside a point, then you
can extend it to the point to become J-holomorphic and smooth. So it’s not as
good as the holomorphic case but not quite a disaster.

The first theorem is given by Gromov.

Theorem 7.1. Any symplectic sphere in CP2 of degree 1 is symplectically isotopic
to an algebraic line.

An algebraic line can be written a1x + a2y = a3. So there’s only one isotopy
class in this homology class.

So the question is how many isotopy classes are there in a fixed homotopy class.

Theorem 7.2. (Barrand) Any nodal symplectic sphere of degree d in (CP2, ω) is
symplectically isotopic to an algebraic curve.

This result was extended to arbitrary degree.
As a corollary, there are only finitely many isotopy classes in a homology class.
What does “nodal” mean? This was embedded in Gromov’s theorem, but now

it’s immersed, with good self-intersection, it intersects itself transversally. For J-
holomorphic curves, the intersection, this is either zero or two dimensional. The
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intersection of the tangent bundle is transversal, there is no du|Z = 0, and no triple
intersections. Also, you don’t want anything reducible.

If an immersed curve of degree d has these properties then we call it a good
nodal curve.

So you can have the following result.

Theorem 7.3. (CH Chang) Let (M,ω) be a rational symplectic four-manifold.
Then A ∈ H2(M,Z) with c1(M)A > 0, then the space of nodal symlpecitc spheres
in the class A, called S0

A, has only finitely many isotopy classes.

Rational means it’s a finite blowup of CP2 or CP1 × CP1.
We prove this by studying the isotopies of J-holomorphic curves.

Theorem 7.4. (CH Chang) For A ∈ H2(M,Z), and c1(M) · A > 0. Let J0 and
J1 be ω-tame on (M,ω). Then let u0 be a J0-holomorphic sphere. Three is a ut so
that ut is a Jt-holomorphic curve for all t.

You have some kind of adjunction formula for J-holomorphic curves. In the
same homology class A, you have 2
delta(u) ≤ A ·A− c1(M) ·A+χ(S), if the self-intersection is transversal, then this
is an equality. The number of self-intersections is then fixed by fixing A, the Chern
class, and χ. So we are interested in

PA = {(u, J)|u = CP2 →M, [u(CP1)] = A}

We’re only discussing P
A,{pi}

dA
i=1

where dA = c1(M) ·A− 1. So we’re talking about

hitting this many points to lower the moduli space’s dimension to what we want.
We have to deal with the bad curves. What are the bad curves? We have triple

intersections, this is a bad curve. Or PA,{pi} with du|za = 0. Or non-transversal
intersection. Or irreducible curves could limit to reducible curves. When this
happens, the number c1(M) ·A− 1, then the sum

N∑
j=1

c1(M) ·Aj − 1

will be strictly less that dA. So we can take that part, with enough marked points,
this is a bad part.

The next thing, all these moduli spaces are in fact separable Banach manifolds.
They are intersections of Banach manifolds. [picture] In fact this is a Banach
bundle. One section is ϕ(u, J) is du+[unintelligible]. The other is the zero section.
If they intersect transversally, their intersection is also a Banach manifold, in fact
a J-holomorphic curve.

So if they intersect transversally, it is equivalent to considering the linearization
of the section. The question is, or any α, can you always solve dΦ(u,J)(v, δJ) = α
and Dv + (δJ)du(Js) = α.

If you have a marked point, can you always find v(zi)+du|zi([unintelligible]) in
TpiM .

If you look at this kind of thing, you have at a point (u, J), with zi, that [couldn’t
understand]

[commutative diagram].
From this commutative diagram you have an induced map and then short exact

sequence and then long exact sequence of cohomology. Since the Gromov operator
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is Fredholm, it’s a bounded linear operator between Banach spaces with finite
dimensional kernel and cokernel. By some exact sequences, this will eventually
control the porjection [picture] which will become Fredholm.

Then you have

Theorem 7.5. (Sard–Smale) For a Fredholm map from one Banach manifold to
another, the regular values will be of second category in M provided that f is smooth
enough.

To be exact, if the index of dπ, the dimension of the kernel minus the dimension of
the cokernel, is k, then you should be Ck+1. A projection is always smooth enough.
So the regular values of π are smooth in our moduli space. When the number is
positive enough, we can know that this map [unintelligible]is always surjective.
We can calculate that the kernel is of six real dimensions, the dimensions of the
automorphisms of CP1.

We say that J is generic if it’s a regular value of these things. It’s a local
submersion and it doesn’t admit bad curves. For a generic J you have a curve
connecting them. It has cokernel 1 or 0. But if it’s a good J , then the cokernel
is 0. It can’t have cokernel 1. That’s why the generic space of almost–complex
structures is a subspace of the ω-tame structures.

That’s why when you have (u0, J0) you can always find some path to (Ut, jt).
[missed a little]
That’s an example of how to use the isotopy of J-holomorphic curves to study

the isotopy of symplectic submanifolds.

8. Byeongho Lee: Orbifolding Frobenius manifolds

Let’s start with Frobenius manifolds, let’s review. What is a Frobenius manifold?
We’ll say M is Cn, in general we affine manifolds, but first let’s look at Cn, and
fix a basis for M , {∂i} and I’ll be identifying M with its tangent space. Let xi

be the dual basis (flat coordinates) and OM is analytic functions on M , and TM
is holomorphic vector fields on M . Because M is a vector space, we can say g is
a non-degenerate symmetric bilinear form and I want to view this as a constant
metric on M . If you use coordinate vector fields, then gij will be constant.

Let’s pick an analytic function Φ ∈ OM and define a multiplication ◦Φ on vector
fields as the following

∂i ◦Φ ∂j = Φijkg
kℓ∂ℓ

where Φijk is ∂i∂j∂kΦ. So this is commutative but not necessarily associative.
We also should have associativity, the so-called WDVV equation ϕabkg

kℓΦℓcd =
Φadkg

kℓΦℓbc.
Let me review semisimple Frobenius manifolds, since I’ll be working with them.
So (M, g,Φ) is semisimple if the tangent spaces are isomorphic to Cn as C-

algebras. We have a multiplication structure on each tangent space. If we have
one, we have canonical coordinates.

We have been using flat coordinates but we also have canonical coordinates. I’ll
write them as {ui} with vector fields {ei} such that eiej = δijej .

If you look at this formula, it’s automatically associative. If you calculate
g(ei, ej), it’s no longer constant, we need another constraint, so it’s flatness of
g. Let’s see the other piece of data is a metric potential η ∈ OM so that g(ei, ej) =
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δijeiη. Then the flatness of g is a condition on the metric potential, the Darboux–
[unintelligible]equation. The form of the equation is not that important so I won’t
state it, but it’s simpler than WDVV.

There is an important theorem, one of the important theorems about semisimple
Frobenius manifolds, which is that flatness of g guarantees the existence of Φ. What
this means, suppose we don’t know we have a Frobenius manifold. We want to define
a semisimple multiplication. If g satisfies the flatness condition, then we have Φ.
The proof is in Manin’s book. The idea is that there’s another formulation in terms
of flat connections, and he uses that to prove the theorem.

So these are the ones I’m going to use.
What is orbifolding? Before talking about Frobenius manifolds, let’s talk about

Frobenius algebras, so there have been the work in the A-model of Fantechi–
Göttsche and in the B-model the work of my advisor, Kaufmann. In their setting,
they start with X a complex manifold and there’s a finite group G that acts on it,
they consider global quotients. Then they build something called H∗(X,G), which
is

H∗(X,G) :=
⊕
g∈G

H∗(Xg,Q)

and they have a noncommutative product on this thing using geometric data of X
and G. The details are not important to us.

The important properties are, they take the G-invariants of this larger ring,
H∗(X,G)G is isomorphic to H∗

CR([X,G]).
In the B-model, Kaufmann’s setting is a Jacobian Frobenius algebra of some

polynomial f , this means that it’s a Jacobian ring and then a Frobenius algebra
on that, and G a finite group acting on the domain of f such that f is invariant
under this action. Similar to that case, he writes down a larger ring, the algebra is
a direct summand of the larger ring, a G-Frobenius algebra from fixed points and
group cohomological data of G, again non-commutative, called A, and then AG is
a new Frobenius algebra.

Let’s look at the common features. You start from a Frobenius algebra and a G-
action, the sources are different, and then we build a Frobenius, well, a G-Frobenius
algebra, after giving a non-commutative structure the thing is a G-Frobenius alge-
bra containing the original one as a summand, then take G-invariants. That’s a
new Frobenius algebra. This is something we want to get.

So that was orbifolding a Frobenius algebra.
Let’s start thinking about Frobenius manifolds. The first approach changes

Frobenius algebra to Frobenius manifold and then do the same thing, build a G-
Frobenius manifold and take G-invariants.

So the step of building a G-Frobenius manifold is problematic. My thesis wrote
about the definition of this. There are a lot of question marks, I have no idea. So
I started thinking about a simpler question, a milder goal. Let M be a Frobenius
manifold, think of M0, the Frobenius algebra at the origin, suppose we know the
orbifolding of this Frobenius algebra, we do that and get N0. Can we find a com-
patible Frobenius manifold on N0? This is a much milder question? I claim that
there is something to be said about this question.

I’m going to talk about this question.
What does compatible mean? Let’s look at my favorite example. Let A2n−3 go

to Dn, from the Frobenius algebra to [unintelligible]that was done by Kaufmann.
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The general case is very similar. Then the universal unfolding of A3 is 1
4z

4+a2z
2+

a1z + a0. What about D3? It’s 1
2xy

2 + 1
4x

2 + a2x + a0 + a∗y. This is a universal

unfolding. We identify the polynomials with C3, they are (a2, a1, a0) and in the
other case (a2, a0, a∗). They have the same form in flat coordinates.

The Kaufmann orbifolding gives us a Jacobian algebra at the origin, so if we take
the Jacobian algebra at the origin, his procedure give us an algebra at the origin,
the metric is given by the residue pairing. If we take the Jacobian ring, then we
have a family of Frobenius algebras, two families, parameterized by C3, semisimple
generically, I’m using a coordinates, but these are not flat coordinates. So there is
a way to find a flat coordinate system, I won’t go into detail but I’ll show you the
answer. Let a2 = −t2, and a1 = −t1 and a0 = −t0 + 1

2 t
2
2 and then a∗ = −t∗. Then

the top two, [unintelligible]. Then out of this you can calculate the Φ and things,
but what you want to look at is the metric potential η.

For A3, I won’t show the calculation, but it’s a2 = −t2. Tdhis is in Manin’s
book. For D3 you can do a similar thing and you see that it’s also a2 = −t2. The
metric potential matches. This is what I call compatible.

Let’s generalize. My setup, I start with two semisimple Frobenius manifolds
(M, gM ,ΦM ) and (N, gN ,ΦN ) and flat coordinates {xaM} and {xaN}. These are
semisimple so I have canonical coordinates {uaM} and {uaN} and then I’ll assume I
have aG action on the Frobenius algebras at the originM0 andN0. Then we assume
that N0 is an orbifolding of M0. Then N0 should be decomposed as Nut

0 ⊕ N tw
0 ,

the untwisted and twisted sectors.
This means that MG

0 is identified with Nut
0 and then we have several natural

maps, like the projection N ∼= N0 → Nut
0

∼= MG
0 ↪→ M0

∼= M , so we have a map
N → M . Then since these are semisimple, we have metric potentials ηN and ηM .
We also have gN obtained from gM by orbifolding. So I didn’t say this before, we
should also, I didn’t say this before, but, uh.

Okay, here’s my definition of orbifolding.

Definition 8.1. N is an orbifolding of M compatible with the orbifolding M0 to
N0 if

(i ◦ π)∗ηM = ηN

Compatibility is expressed as a system of partial differential equations.

∂

∂xi
=

∑
α

∂uα
∂xi

∂

∂uα

and so

gij = g(
∑
α

∂uα
∂xi

∂

∂uα
,
∑
β

∂uβ
∂xi

∂

∂uβ
) =

∑
α

∂uα

∂xi

∂uα

∂xj
∂η

∂uα

and so that’s ∑
α,β

∂uα

∂xi
∂uα

∂xj
∂xβ

∂uα
∂η

∂xβ

Theorem 8.2. If we have M orbifolding M0 → N0 and a solution of this differen-
tial euation then we have an orbifolding N of M compatible with M0 to N0.

The change of coordinates is given by the solution to this equation. There’s
another thing, this implies the flatness of the metric.

There are other trivial theorems
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Theorem 8.3. The universal unfolding of Dn is an orbifolding of the universal
unfolding of A2n−3 compatible with the orbifolding Frobenius algebras in Kaufmann’s
sense.

There’s nothing to prove here, but let’s check the equation. It’s a fun calculation,
so let me show you.

Pretend that we don’t know the metrics match. The metrics are given by the
orbifolding, on the levels of Frobenius algebras and pullback. We can show

∂u1
∂t2

∂u1
∂t0

∂η

∂u1
+
∂u2
∂t2

∂u2
∂t0

∂η

∂u2
+
∂u3
∂t2

∂u3
∂t0

∂η

∂u3
= g0,2 = 1

Let’s just check this case. So JFD3 is ⟨ 12y
2 + 1

2x + a2;xy + a∗⟩ which defines 3
points generically, (βi, γi). Then I claim that ui = FD3 |(βi,γi) solves this equation.

So u1 = β1γ
2
1 + β2

1 − t2β1 − t0 +
1
2 t

2
2 − t∗γ1.

We should use the product rule here, ∂u1

∂t2
is just −1 and the same is true for ∂u2

∂t0

and ∂u3

∂t0
. So those terms are all −1. Then we know that η = −t2 so ∂η

∂ui
is − ∂t2

∂ui

after change of variables, and this is ∂u1

∂t2
∂t2
∂u1

+ ∂u2

∂t2
∂t2
∂u2

+ ∂u3

∂t2
∂t2
∂u3

and if you look at
this, the second colomn times the second row is 1. So I think my time is up. I’ll
stop.

9. Nov. 4: Yong-Geun Oh: Topological extension of Calabi
invariants and its application

Thanks to the organizers for giving me a chance to talk here. I enjoyed this visit
very much. What I’d like to talk about is some old subject about C0 symplectic
topology. Let me talk about Eliashberg–Gromov C0 rigidity.

Consider the C0 closure, say M is compact without boundary for now, the
C0 closure of Symp(M,ω) inside Homeo(M). Then you take the intersection of

Symp(M,ω) with Diff(M). The theorem of Eliashberg is that this intersection is
Symp(M,ω).

If you decode what this means as a statement, this is called C0 rigidity. If
I translate this identity, it means that if ϕi is a sequence of smooth symplectic
diffeomorphisms converging to some homeomorphism ϕ in C0, suppose this happens
to be differentiable at x ∈M . Then dϕ(x) is symplectic.

This theorem is the beginning of the whole subject of symplectic topology. The
proof turns out to involve non-squeezing type theorems. Therefore, it makes sense
to define symplectic homeomorphisms as the elements in that closure.

Definition 9.1. The group Sympeo(M,ω) is the C0 closure Symp(M,ω).

There is another group, of Hamiltonian diffeomorphisms. This is very non-
orthodox, it’s just a historical accident. Recall that we have the group Ham(M,ω),
a subgroup of Symp(M,ω), and the definition is rather odd. The elements ϕ ∈
Ham(M,ω) are defined as follows. Let me define a path Pham(Symp(M,ω), id).
These are paths λ : [0, 1] → Symp(M,ω) where λ = ϕH for H = H(t, x), with
t ∈ [0, 1]. So ϕtH is the Hamiltonian path associated to the function H.

Then there is a natural map Ham(M,ω) = ev1(Pham).

Lemma 9.2. Ham(M,ω) is a subgroup of Symp(M,ω).

To define the C0-analog of Ham, first we have to take a closure of Pham inside
the set of paths in homeomorphisms. We have to use a particular metric.
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So dHam(λ, µ) = maxt∈[0,1] d̄C0(λ(t), µ(t)) + ||Dev(λ) −Dev(µ)|| where Dev(λ)
is the associated normalized Hamiltonian, that is, if λ = ϕH , then Dev(λ) = H.
I normalize to define this uniquely. I should also say d̄C0(ϕ, ψ) := dC0(ϕ, ψ) +
dC0(ϕ−1, ψ−1).

Denote by Pham(Sympeo(M,ω), id) the closure of Pham(Symp(M,ω), id).
One of the main theorems in this subject is

Theorem 9.3. (Muller–O., Viterbo,[unintelligible]-Seyfaddim) Suppose Hi satisfy
that

(1) ϕHi converge in C0,
(2) Hi converge in L1,∞, that’s L1 in time and L∞ in space.

Then ϕHi
converges to the identity if and only if Hi converges to 0.

In the smooth case, you can recover the Hamiltonian from the flow by taking
derivatives. We can now define a continuous Hamiltonian path associated to H,
you look at the limit of the Hamiltonians in this topology, and there is a canonically
define continuous path inside sympeomorphisms, and vice versa.

I call this the C0 Hamiltonian topology. Once you define this particular set of
paths inside the group of homeomorphisms, you can define Hamiltonian homeo-
morphisms, which I’ll abbreviate hameomorphisms. You evaluate Hameo(M,ω) is
the evaluation of Pham(Sympeo(M,ω), id) at time 1.

Theorem 9.4. (Müller–Oh) This forms a normal subgroup of Sympeo(M,ω).

The main question is whether this is a proper subgroup or not.
This question becomes particularly interesting if you restrict to the 2-dimensional

case.

Theorem 9.5. (Smoothing theorem) Let (M,ω) be two dimensional. Then Homeoω(Σ)
is the closure of Diffω(Σ).

I gave the proof of this some time ago (O.–Sikorav) although I think it was
known to experts.

But as we know, symplectomorphisms in 2-dimensions are area-preserving dif-
feomorphisms. So

Corollary 9.6. Hameo(Σ, ω) is a normal subgroup of Homeoω(Σ).

This was a well-known question.

Theorem 9.7. (O.) Hameo(D2, ∂D2) is proper in Homeoω(D2, ∂D2) = Sympeo(D2, ∂D2).

Let me talk about the boundary case. They denote by Homeoω(D2, ∂D2) the
group of area-preserving homeomorphisms supported on the interior of D2.

For example, for any ϕinHomeoω(D2, ∂D2) there is η > 0 so that the support
of ϕ is in D2(1 − η). This is some kind of direct limit topology over compact sets
in the interior.

The main ingredient of this proof is the socalled Calabi homomorphism on D2.
There are two ways of defining it. In both cases, say you look at ϕ ∈ Diffω(D2, ∂D2),

and we know this is the same as Ham(D2, ∂D2) in the smooth case.
Suppose now that ϕ = ϕ1H , and suppose that the support of H, the union of

SuppHt is contained in the interior of D2.



EASC 25

The Calabi invariant is

Cal(ϕ) :=

∫ 1

0

∫
D2

H(t, ω)ωdt

and the proposition is that the right hand side does not depend on H as long as
ϕ1H = ϕ. This uses Stokes’ theorem so it needs differentiability.

For the second definition, we can write ω = dα on D2, and then ϕ∗ω = ω
implies d(ϕ∗α − α) = 0. Further ϕ∗α − α has support in the interior of the disk.
But H1(D2, ∂D2) is zero so this is dhα, and this is a function with support in the
interior of the disk.

The Calabi invariant is then
1

2

∫
D2

hαω
n

The second definition also involves taking a derivative of the diffeomorphism ϕ.
It’s well known that this Calabi homomorphism cannot be extended to area-

preserving homeomorphisms. People in dynamical systems have tried to see whether,
let me see, one of the consequences of the presence of this homeomorhism is the
following.

The kernel of the Calabi homomorphism is a proper normal subgroup. One of
the fundamental theorems is that this kernel is simple.

The main question was, is Homeoω(D2, ∂D2) simple? As a corollary of my
result, the answer is negative. It’s not simple.

You’ll get a contradiction using this extended Calabi invariant.
The main ingredient is an extension of Cal : Diffω(D2, ∂D2) = Ham(D2, ∂D2) →

R to a homeomorphism Cal : Hameo(D2, ∂D2) → R.
Then non-simpleness follows by the alternatives: either Hameo(D2, ∂D2) is

proper in Homeoω(D2, ∂D2) or Hameo(D2, ∂D2) is equal to Homeoω(D2, ∂D2)
and the kernel of Cal is a proper normal subgroup.

I gave a construction before of such a wild homeomorphism assuming that there
was an extension of the Calabi invariant.

An example of an area-preserving homeomorphism not contained inHameo(D2, ∂D2),
was explained to me by Fathi before, under this assumption that this extension ex-
ists.

Roughly, you take the rotation supported on annuli, and make the rotation spin
faster and faster as you go to the center of the disk. [picture]

You first start with a Hamiltonian path Pham(Sympeo(D2, ∂D2)). I’m going to
define the path version

Cal
path

(λ) =

∫ 1

0

∫
M

Dev(λ)ωndt

and the main question is whether this descends to Hameo(M,ω). That is, does the
right hand side depend on the path or just on λ(1)? This does not hold in general
but the main theorem, let’s say in the disk case,

Theorem 9.8. (O.) The question is answered affimatively for D2.

So say for a topological Hamiltonian loop, λ : [0, 1] → Homeo(D2, ∂D2) with
λ(1) = id. The question is whether the integral∫ 1

0

∫
D2

Dev(λ)ωdt = 0?
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In the smooth case this is just Stokes’ formula. If λ is differentiable, then there
are several facts. Diffω(D2, ∂D2) is contractible and so simply connected. So any
smooth Hamiltonian loop can be contracted to the constant loop. Using that and
Stokes’ formula proves the right hand side vanishes. As I said, if the path is not
differentiable, then Stokes’ formula is no longer available. However, the analog still
works.

Theorem 9.9. (O.) The Alexander isotopy in the homeomorphism category can be
defined in hameomorphisms.

One hopes to use this contractibility to prove the vanishing.
Here comes all theose constructions in symplectic geometry to avoid Stokes’

theorem.
To overcome the non-availability, I need many constructions in symplectic ge-

ometry.
The first one is, the Lagrangization of Hamiltonian isotopy. Given ϕtH :M →M ,

we have the groph of ϕtH in (M,ω)× (M,−ω) and this is a Lagrangian isotopy.
I want to put, well, the graph of ϕtH is {(ϕtH(y), y)|y ∈ M}. For (D2, ∂D2),

embed this into S2 where ϕtH is the identity on one half and 0 on the other half.
The graph of ϕtH avoids the antdiagonal, it’s in S2 × S2 − ∆̄. You can regard

this inside T ∗Ω, the image contained completely in the unit disk bundle.
The second construction is so-called Lagrangian suspension. You can think of the

whole isotopy as a Lagrangian submanifold, a Lagrangian isotopy and then suspend,
take (t,q) ∈ [0, 1]×∆ → T ([0, 1])×T ∗∆ where (t,q) 7→ (t,−π∗

1H(t, ϕtH(q), ϕtH(q))).
The problem is, you take this approximation sequence, that smooth Hamiltonian

path may not be closed. That’s a stumbling block. The problem is, the approx-
imation sequence ϕtHi

may not be a loop. As it is, I cannot use the Lagrangian
intersection theorem. The essential step is the so-called odd-doubling. You double
this one and go back. This whole thing is contractible. Then you can apply a
version of Lagrangian intersection theorems. There is some ingredient of transfer,
some rearrangement theorem of Hamiltonian mass. I’m sorry, I’m a little bit rushed.
Then you can prove this by contradiction. You assume the integral is nonzero and
get a contradiction. This whole construction replaces Stokes’. I’ll stop here.

10. Fumihiko Sanda: Computations of quantum cohomology from
Fukaya categories

Let me start by talking about A∞ categories.
An A∞-category consists of the following data.
First, a set of objects. Then, for X and Y a Z/2Z-graded vector space over k

A(X,Y ).
Thenmk ∈ Hom2−k(A(X0, . . . Xk), A(X0, Xk)) where the domain here isA(X0, X1)⊗

· · · ⊗A(Xk−1, Xk).
The mk satisfy the so-called A∞ relations, and we have ex ∈ A(X,X), a strict

unit. If we have mk = 0 for k ≥ 3 then this is a category and eX is a strict unit.
From an A∞ category, we can define two invariants.
The first is Hochschild cohomology HH∗(A), which is a Z/2Z-graded ring. This

is defined as the cohomology of this complex∏
Hom(A(X0, . . . , Xk), A(X0, Xk)
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with respect to a differential I won’t define. Second, you have Hochschild homology,
which is a Z/2Z-module over HH∗A, and the complex is

⊕
A(X0, . . . , Xk, X0).

If A is proper, i.e., the dimension of H∗A(X,Y ) is finite, then we can define a
pairing ⟨, ⟩shk on Hochschild homology to the base field.

Theorem 10.1. (Shklyarov) If A is smooth then ⟨, ⟩shk is nondegenerate.

Definition 10.2. An A∞ category is called cyclic if the dimension of A(X,Y ) is
finite and there is a nondegenerate even degree pairing A(X,Y ) ⊗ A(Y,X) → k
such that

⟨x0,mk(x1, . . . xk)⟩ = ±⟨xk,mk(x0, . . . , xk−1)

If A is cyclic then HH∗(A) ∼= HH∗(A)
∨ and we can define Z : HH∗(A) →

HH∗(A).

Corollary 10.3. (Shklyarov) If A is smooth then Z is an isomorphism.

11. Lagrangian intersection Floer theory

Let (X,ω) be a compact sypmlectic manfifold, and L a Lagrangian, compact,
oriented, spin, without boundary, and let E be a rank one complex flat vector bundle
on L. Then Λ is the ring

∑
aiT

λi where ai ∈ C, λi ∈ R, and λ1 < λ2 < · · · → ∞.
There is Λ+ sitting inside of this where λi > 0.

Theorem 11.1. (Fukaya–Oh–Ohta–Ono) There existsmE
K : H∗(L,Λ)⊗k → H∗(L,Λ)

for 0 ≤ k such that (H∗(L; Λ),mE
k , ⟨, ⟩PP , eL) is a gapped filtered cyclic A∞ algebra.

I won’t define these things but if mE
0 is 0 then this is a cyclic A∞ algebra.

Definition 11.2. Let b ∈ H1(L,Λ+). Then b is weak Maurer–Cartan if and only
if there is a W (L, b) in Λ such that

∞∑
k=0

mE
k (b, . . . , b) = V (L, b)eL

By using a weak Maurer–Cartan element, we can deform mE
k and construct an

A∞ algebra H∗(L,Ω),mE,b
k , with k ≥ 1.

(1) Now we assume that there is a cyclic A∞ category Ac where c is a constant
and the objects of Ac are {(L1, E1, b1), · · · (Lk, bk, Ek)} such that W (Ei, bi)
is defined by holomorphic disk counting. We assume Li = Lj or Li ⋔ Lj .

We define the Fukaya category as
∏
Ac.

(2) We assume the existence of a closed open and an open closed map q̂ :
QH∗(X) → HH∗(A), a ring homomorphism and p̂ : HH∗(A) → QH∗(A),
a QH∗(X)-module homomorphism, such that p̂ preserves the pairings.

We assume the following diagram is commutative.

QH∗ q̂ //

∼=
��

HH∗(A)

∼=
��

(QH∗)∨
p̂∨

// HH∗(A)
∨.

This implies that Z = q̂ ◦ p̂.
Next I’ll explain my main lemma.
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Lemma 11.3. If A is smooth, then there exists an idempotent eA in QH∗(X) such
that QH∗(X)eA ∼= HH∗(A) as a ring.

The proof is very easy. Since A is smooth, Z is an isomorphism. So there exists
α in HH∗(A) such that Z(α) = eHH∗(A). So p̂(α) ∗ p̂(α) = p̂(q̂ ◦ p̂(α)∩α) since p̂ is
a module map. Then this is p̂(α). So we define the idempotent eA as p̂(α). Since
Z = q̂ ◦ p̂, this implies p̂ is injective.

If imp̂ ⊂ QH∗eA then p̂ : HH∗ → QH∗eA is surjective since it’s a module map
that hits this idempotent.

So let β ∈ HH∗(A). Then p̂(β) = eAp̂(β) + (1 − eA)p̂(β). Then eAp̂(β) =
q̂(α) ∗ q̂(β) = p̂(q̂p̂(α) ∩ β) = p̂(β). So p̂(β) is eAp̂(β) is in in QH∗eA.

The next lemma is to check smoothness, I think due to Shklyrov.

Lemma 11.4. If H∗(A) is smooth then A is formal. Higher products vanish, and
HH∗(A) is isomorphic to the center of H∗(A).

Let me give an example.
IfH∗(A) is equivalent to Cln, thenA is formal and smooth. Moreover,HH∗(A) ∼=

Λ.
Let me talk abut a decomposition of A, due to Benson–Iyengar–Kunse, Seidel.

[missed some]

Lemma 11.5. For e and e′ in QH∗(X), with ee′ = 0 then for X ∈ Ae, and
Y ∈ Ae′ , H

∗(A(X,Y )) = 0 so H0(perf(A) ∼=
∏

prim idemH
0(Ae).

Conjecture 11.6. Let B ⊂ perfA, and B is smooth then there is eB so B splits
[unintelligible]AeB .

My main lemma almost completely proves this.
Finally, I did an example of computation.
Let X be a P2 × P1 and C a degree three curve in X := P2 × {0}. Let X̃ be a

blowup of X along C. So C should also satsify some technical condition.

Proposition 11.7.
QH∗X̃ ∼= Λ× · · · × Λ︸ ︷︷ ︸

6

×H∗(C,Λ)

as a Z/2Z-graded ring.

By AAK, X̃ has a Lagrangian torus fibration. We can compute “potential func-
tion” W and by direct computation, it has 6 nondegenerate critical points. So
the Floer homology, there exist 6 objects corresponding to the six nondegenerate
critical points. Then [unintelligible]is isomorphic to the Clifford algebra. So there
are six of these and the complement is a very small, this Frobenius algebra. By a
simple algebraic argument we can conclude this proposition.

12. Nov. 5: Chung-I Ho: Minimal genus problems in 4-manifolds

[I do not take notes at slide talks]

13. Chris Wendl: Tight contact structures on connected sums need
not be contact connected sums

Let me thank the organizers. It’s wonderful to have the opportunity to speak
at an event like this so far from home. The title is basically the theorem. This is
joint with K. Niedengrüger and P. Ghiggini.
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There hasn’t been that much talk about contact structures so let me get us on the
same page. M is an odd dimensional manifold and ξ is a hyperplane field that is the
kernel of a 1-form. dα restricted to ξ is nondegenerate. If you’re used to thinking
about symplectic manifolds, these are the things that arise at the boundaries of
symplectic manifolds. If I have a symplectic manifold W and its boundary is M
along with the convexity theorem that there’s a vector field directed outward at
the boundary. If this is a Liouville vector field, then dλ = ω, for λ := ιV ω, then α
which is λ|TM satisfies the nondegeneracy condition.

Up to isotopy, then you get a uniquely defined contact structure at the boundary
of a convex symplectic manifold.

Another important example of such an object, if I take a symplectic manifold
that looks like a trivial cobordism [0, 1]×M , and write ω = d(etα), if α is contact
then this will be symplectic. It has a Liouville vector field that points along the
cylinder. You can more generally talk about cobordisms between different contact
manifolds.

Now, contact manifolds have a connected sum operation. Let me draw a picture
of it.

Start by constructing the trivial cobordism for each of them. Attach a 1-handle
to this trivial cobordism. I claim that you can do this in a way that naturally
produces a connected sum of the contact structures. On this handle, you choose
a natural Morse function with a critical point at the intersection of the core and
the cocore. This is Weinstein’s handlebody construction, you can do this with a
k-handle whenever k ≤ n, but I’m doing the case k = 1 which is the connect sum.
You have this gradient of a Morse function. The stable and unstable parts become
coisotropic and isotropic. Your vector fields point inward at the handle attachment
and outward at the new boundary. The behavior at the corners lets you round them
in a natural way. That’s the contact connect sum viewed in a symplectic light.

I need to recall a few facts about contact structures in dimension 3. The first fact
is true in all dimensions but we’ve only known them for a couple of years. There’s
a dichotomy into tight and overtwisted contact structures. There are those that
are flexible (overtwisted) and those that are rigid (tight). The classification of over-
twisted structures is easy. The classification restricts to homotopy-theoretic data.
There’s a hyperplane field, maybe with a symplectic bundle in higher dimensions,
these are “almost-contact” structures. For overtwisted contact structures, up to
isotopy they are in correpondence with almost-contact structures up to homotopy.
For what’s left, the classification is a hard problem.

The second thing I need to recall, in dimension 3, there is a result from 1997
due to V. Colin, that tells you what every tight structure on a connect sum is,
if (M1#M2, ξ) is tight then ξ = ξ1#ξ2. There’s more to it than that, there’s a
whole prime decomposition theorem. I want to tell you why there can’t be any
such theorem in higher dimensions.

First, a remark. Colin’s theorem is false for overtwisted contact structures. This
is easy to see from homotopy theory. An arbitrary overtwisted structure on a
connected sum, there’s a 2-sphere at the center of the tube. You want to know
if you can cut there and glue in balls, and extend across these balls. That’s not
always possible from the homotopy point of view. There’s a nontrivial statement
in the background, if you have a contact structure in that kind of homotopy class,
it can’t be tight, it’ll have to be overtwisted.
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So it’s only possible to have this theorem in the tight case. A natural question
is, is this true in higher dimensions? The answer is no.

Theorem 13.1. Suppose n ≥ 3 I have (M2n−1, φ) an almost-contact manifold,
say it’s not a homotopy sphere but it admits a Morse function with unique local
maxima and minima and otherwise critical points of index n− 1 and n only.

The connected sum −M#M admits a Stein-fillable (by a standard theorem this
implies tight) contact structure ξ such that ξ is homotopic to the almost-contact
structure φ̄#φ. Here φ̄ is the same data but automatically has a different coorien-
tation. However, ξ is not equivalent to ξ1#ξ2 for any two contact structures ξ1 on
−M and ξ2 on M .

This critical point condition, obviously spheres have this, but you could take an
Sn−1-bundle over Sn. So unit cotangent bundles of spheres satisfy this condition.

So there are more tight contact structures. It defeats the purpose of my talk, but
this is not surprising. The higher you go in dimension, the more room you have for
exotic structures, whatever kind of structure you’re talking about. In dimension 3
it doesn’t work now because of convex surface theory, so this is also bad news for
people who want to do convex surface theory in higher dimensions.

To explain the proof I want to give a little background on Stein fillings.
There are a number of nice results about Stein things. Eliashberg showed in 1990

that in dimension 3, it’s possible to say what all the Stein fillings of a connected
sum are.

Namely, every Stein filling of the connected sum M1#M2 is obtained in a kind
of obvious way, but it only exists if both M1 and M2 are Stein fillable themselves,
you just take those fillings and attach a Weinstein 1-handle.

[picture to discuss proof]
So let me mention another recent development related to this. A little over a

year ago, maybe two years ago by now, there was this paper by Bowden–Crowley–
Stipsicz. They said that Eliashberg’s theorem was not true topologically in higher
dimensions. In particular there exist Stein-fillable contact structures ξ on a con-
nected sum M1#M2 so that ξ is homotopic to a connect sum of almost-contact
structures but these almost-contact manifolds are not Stein fillable.

This was meant to be a contradiction, although it’s not quite that. I’m only
specifying the homotopy class of ξ as a contcat structure. Our theorem implies ξ
is actually not a contact connect sum. Eliashberg’s theorem still could be true in
higher dimensions.

So when we started this project, we actually wanted to ask a related question,
is Eliashberg’s theorem even plausible topologically in higher dimensions? One
can phrase this the following way. You can view this as classifying uniqueness of
symplectic fillings. In dimension 4 we can use intersection theory of holomorphic
curves. There’s a famous theorem of Eliashberg–Floer–McDuff that classifies the
homotopy type of cobordisms. We wanted to ask a similar homotopy-theoretic
question, something like “if I have a Stein filling of a connected sum,” (and thus
contains a belt sphere) “then must the belt sphere be nulhomotopic?”

That’s the minimal thing that has to be true if you’re a boundary connected
sum. This seemed like a reasonable thing to try to prove and we didn’t succeed,
but we proved something similar.

What might you more generally expect? In general, I don’t have to just think
about connected sums, I can think about Weinstein handles in general, index k
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surgery on a contact manifold, you attach Dk × D2n−k. Your new thing has a belt
sphere which looks like S2n−k−1. Eliashberg used this as a boundary condition for
pseudoholomorphic curves. It needs to have dimension at least n. It could contain
totally real submanifolds if and only if its dimension is at least n, so if k ≤ n− 1,
what we call subcritical surgery. What we’re talking about is fillings of manifolds
made by subcritical surgery.

You have lots of good reasons to think that subcritical surgery is reasonable, it’s
the trivial case of this kind of surgery.

Definition 13.2. In (M2n−1, ξ), a Legendrian open book, or Lob, is a closed sub-
manifold Ln of M with an open book decomposition π : L\B → S1, where B is
codimension 2, the binding, and the pages are Legendrian.

This is a completely different notion than Giroux’s. We only have this n-
dimensional submanifold. In Giroux, they’re symplectic subthings.

Let me give you a more concrete example that we’ve already seen. For M3, I
could take L = S2, and B could be S0, and the latitudes [sic?] connecting the poles
are the pages.

Whenever you have a Legendrian open book, you get a “Bishop family” of holo-
morphic disks u : (D2, ∂D2) which map to the bottom half of the symplectization,
((−∞, 0]×M, {0} × (L\B)).

The other important observation is that there’s a strong level of topological con-
trol over the boundaries of these disks, because of the maximum principle. The
holomorphic disks, in the r direction, there are never extrema except at the bound-
ary. This translates to u|∂D is transverse to the pages of the Lob. In particular, the
Bishop disks, the boundaries go exactly once around the family of pages, and that’s
true always because of transversality. That’s a very strong condition; in particular
it prevents bubbling.

The main geometric observation which is not especially deep, but non-obvious
enough that it took us a long time, is, suppose (M2n−1, ξ) contains the belt sphere
Sn+m
belt of a contact surgery of index k = n − 1 − m. Here m ≥ 0. Then after

a suitable deformation, the belt sphere is foliated by an m-dimensional family of
Lobs. So I have a smooth family of boundary conditions for J-holomorphic disks.

Then we do analysis. Assume Sn+m
belt is in (M, ξ) which is the boundary of (W,ω),

assumed to be symplectically aspherical, [ω]|π2(W ) = 0. Then for a generic tame
J on W , there exists a compact oriented n + m − 1-dimensional moduli space
M of J-holomorphic disks u : (D2, ∂D2) → (W,Sbelt) such that ∂M ∼= Sn+m−2

and the evaluation map (putting a marked point on my holomorphic disks) (M ×
D2, ∂(M × D2)) → (W,Sbelt) which takes (u, z) 7→ u(z), and the evaluation map is
a diffeomorphism on some neighborhood of the preimage of the binding, the unions
of the bindings of all those Lobs, so in particular its restriction to the boundary is
a map of degree 1 to the belt sphere.

This fact about being a diffeomorphism in some small neighborhood is a unique-
ness result about holomorphic disks in some neighborhood of the binding. This
traces back to Eliashberg.

So the boundary of the moduli space has this degree 1 to the sphere. Now I can
prove the main theorem.

The construction here is something we borrow from Bowden–Crowley–Stipsicz.
We have M as in the statement. We get rid of the top critical point by removing a
ball. Then we choose a Morse function on that complementM∗ with critical points
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of index 0, n− 1, and n. We can have the gradient of that function point outward
at the boundary.

Let W be [−1, 1] ×M∗. That’s an object with boundary and corners. After
smoothing the corners, then ∂ ∼= −M#M and remember I also have an almost-
contact structure φ on M , which gives me one on M∗. I can turn that into an
almost complex structure on W , and the boundary of an almost-complex manifold
is always an almost-contact manifold.

This Morse function f can be extended to the product as a Morse function f̃
with critical points of index at most n and a gradient pointing outward.

Now there’s a big theorem of Eliashberg that tells me that this almost complex
structure is homotopic to a Stein structure on W which is filling some contact
structure ξ necessarily homotopic to φ̄#φ.

That’s the contact structure I claimed exists. I still have to show you that it’s
not a contact connect sum. Why not?

The crucial property of a contact connect sum, if (−M#M, ξ) were (−M#M, ξ1#ξ2),
then I’d have a belt sphere, which is {0} × ∂M∗. My claim is that can’t be true,
because, well, consider my moduli space,

(M × D2, ∂(M × D2))
ev−→ ([−1, 1]×M∗, {0} × ∂M∗)

proj−−−→ (M∗, ∂M∗)

This is a map of degree 1 between compact manifolds with boundary. I can tell
you where to find the rest of the argument. This is almost what happens when
you prove the Eliashberg–Floer–McDuff theorem. By their argument, the result of
their theorem was that the filling has to be contractible. Here I’m talking about
th map from the moduli space to M∗, this shows that M∗ is weakly contractible,
and thus contractible, and so a ball. But my initial assumption is that M was not
a homotopy sphere. This is a contradiction.

I’ll stop there. Thank you.

14. Bohui Chen: Quantization of Kirwan morphism

Thanks for the introduction and to the organizers for the invitation and the
local organizers for their hard work in making this conference happen. This is joint
with Bai-Ling Wang in Australia. I’ll start by talking about the background, the
Kirwan morphism, I’ll start by talking about (X,ω) a compact symplectic manifold,
and suppose G is a compact Lie group which has a Hamiltonian action. We have
µ : X → f∗, the moment map. If we have τ a central element, regular for the
moment map, then we can take the symplectic reduction, µ−1(τ)/G, and there’s
a natural symplectic form on this one. I’ll call this quotient Zτ and the level set
before the quotient Yτ . This Zτ is usually denoted X//τG.

We have a principle, a G-equivariant theory of X should imply the theory of
Zτ . So for example, we have a cohomological theory, H∗

G(X) should imply some
homology theory on Zτ . How do we get this one? We have the restriction H∗

G(Yτ ),
by restriction you get this, and then there’s an isomorphismH∗

G(Yτ )
∼= H∗(Zτ ), just

assuming that G acts freely on Yτ (otherwise you need to get into orbifolds). We
easily construct such a map, and this map H∗

G(X) → H∗(Zτ ) is called the Kirwan
map Kτ , which is surjective, everything in the Zτ can be seen in the equivariant
theory. Another property is that this is a ring morphism. If we consider this with
the cup product, then it’s very easy to see that this is a ring morphism.
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The main question we want to consider is, we said the G-equivariant cohomology
ring of X implies the cohomology ring of Zτ , but is it true at the quantum level?
Does the quantum G-equivariant cohomology of X imply the quantum cohomology
of Zτ? We can ask the generalization where Zτ is an orbifold.

For Zτ , by Gromov–Witten theory, we have QH(Zτ ,Λτ ). This is a candidate for
the right side. Then people try to see, do we have the equivariant cohomology for
X? We have an equivariant Gromov–Witten theory, by Givental. This somehow
gives you this quantization QH∗

G(X,ΛX). Then you can ask if there is a Kirwan
map, here we emphasize the ring structure. The answer is kind of negative. I don’t
believe there is a ring morphism between these two guys.

Theorem 14.1. Quantization of Kτ ,

• We have a new quantization Q̃H
∗
CR(Zτ ). Here I’ll include the Chen–Ruan

orbifold case.
• We have the quantization H∗

G(X)CR

• We have the quantization QKτ of the Kirwan map.

Now I will explain the details. The starting point is the sypmlectic vortex equa-
tion. It’s better to think of this as a Gromov–Witten type theorem for Zτ based
on the “ambient space” (X,ω). [didn’t understand some]

So the motivation is, originally, we have Σ → Zτ . Then Yτ is a principle bundle
over Zτ . So you can pull this back to a principal bundle P on Σ and lift the
map to Zτ . There’s a preferred connection on Yτ because there’s a horizontal
[unintelligible]. Then you can pull back this connection and get a connection on
the P side. and somehow generalize the ∂̄ operator and say ∂̄u∗Aφ = 0. This is
the version of this being a holomorphic map from the equivariant version. You also
have µ(φ) = τ . So the image is in the level set.

We want to generalize this equation. We consider P → X to be the G-equivariant
map, and now we want A to be a parameter, a connection on P . Then the equation
is

∗νFA + µ(φ) = τ, ∂̄Aφ = 0.

Here ν is the volume form on Σ.
There’s a very nice point of view on this equation, we consider the space C of

pairs (A,φ) such that ∂̄Aφ = 0. Then G is the gauge group of P . It turns out
that this acts on the space of pairs. Then the moment map Ψ : C → Lie(G) takes
(A,φ) 7→ ∗νFA + µ(ϕ). Then {Φ−1(τ)}/G is the moduli space of symplectic vortex
equation. So we consider the solutions as above and then mod out by the gauge
group.

The equation was introduced by Salomon and his student, and also by [unintel-
ligible]Mundet. This appeared in physics earlier as the gauged σ-model.

If you have φ : P → X and it’s G-equivariant, [φ] ∈ HG
2 (X,Z). I don’t want to

write down the energy equation, but the energy of (A,φ) is ⟨ω − µ+ τ, [φ]⟩2.
So okay, let me say, this isn’t completely finished, but let me discuss Hamiltonian

Gromov–Witten invariants. In this talk for simplicity I’ll think of Σ as S2 with three
marked points. You regard this moduli space and map

ev : Mτ,[B],0,3(X) → X/G

where [B] ∈ HG
2 (X).
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Then there is a three point function ψτ
B : (H∗(X/G))⊗j → R. People replace

H∗(X/G) with H∗
G(X). If you cook up the [unintelligible]then you get an invariant

theory like this.
People expectMτ,[B],g,n, but the compactification has some problems. You have

the phenomenon that energy is lost. They say they have several hundreds of pages
for this issue. In the algebra case, for example Woodward and his collaborators
have some work on this.

I want to mention our version. We have L2 − SV E and Σ = (S2, 0, 1,∞) a
punctured surface. If I look at this equation, the SVE, I emphasized that there’s
a volume form. I probably think of a punctured point and wonder what metric
to put on the marked points. I want cylindrical ends. The L2 theory means that
thee energy is finite. This equation on cylindrical ends reads as a gradient flow of
a certain function Lτ of Bott–Morse type.

The critical points of this gradient flow are IZτ , the inertial set of Zτ .
Assuming that everything works here, denote the moduli space N τ

[B],0,3 with an

evaluation map to IZτ . Then ψ[B] : (H∗(Zτ ))
⊗3 → R. You need to consider 0, 4

to see that this defines a ring structure. The conclusion is that we have a Gromov–
Witten type theory on Zτ by considering such a moduli space with a cylindrical
end metric. The three point functoins define the ring structure.

Now I move to the next part, the equivariant side. I should have said, we can
only do this next part for G Abelian, so I’ll assume for simplicity that G is S1.

Let me review Givental’s theorem. Then G acts on this moduli space, and
you can consider the G-space of this, the invariants, EG ×G M(X). I want the
equivariant theory so I’ll take Σ → XG = S2∞+1 ×S1 X → CP∞. Now we’ll take
the special case that u has the class of the point. Then it’s easy to get M[B](XG)

which is S2∞+1 ×S1 MB(X). We can try to generalize this picture, think of the
more general case.

On the other hand, I need our picture to motivate the equivariant case. [pictures]
So I have Mτ to quantize Zτ and I want to cook up a quantization C of X so

that there’s a symplectic reduction to Mτ .
The idea to get the picture is very easy. For Mτ we have the equations

∗ FA + µ(φ) = τ

∂̄Aφ = 0

This is all taken modulo G′, the based gauge group so that G/G′ = S1. So I take
the union over τ and that gives me a new space C, and hopefully this quantizes X.

Now I can write this one as dτ = 0, so τ is any constant. Roughly speaking,
this is what I want to consider. So for example, if I consider Σ = (S2, 0, 1,∞), and
[B] = 0 then [unintelligible].

Okay, this is the motivation for the construction. We do this using the L2

theorem, so we should do that in this equation. We have to modify the equation
to fit it with our picture for the L2 case.

So ∗FA +µ(φ) = τ and ∂̄Aφ = 0. This is a family with parameter τ . Remember
that for each equation I’ll consider the L2-theory. The equation will be gradient
flow of Lτ on the cylinder ends.

If you think of this this way and then think of the flow converging to the critical
points of Lτ , then this one is actually, for each Lτ , you have Yτ , you put them
together, there is some extra thing. I had forgotten to mention, only when τ is
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regular [unintelligible]. When τ is not regular, you get some extra part, because
it’s not Bott–Morse type. That makes this picture fail because we don’t really want
the extra. The family version does not really work.

The family version, for each τ I get Lτ , and it turns out that if I treat τ as a
variable, I have this function. Then when I consider the gradient flow for this one,
Crit(L) = X. We can cook up an equation and on the cylinder ends is the gradient
flow for this L.

The gradient flow of L is

{
αt + µ(u)− τ = 0
φt + J(φθ +Xα) = 0 τt + hol(α) = 0.

so then [missed

a little, degenerates into questions]
Using this moduli space you really get the three-point function

ψG : (H∗
G(X)⊗3 → H∗

G(pt)

and you can prove associativeity and this gives you a quantum product. Let me
just, three minutes. The quantum Kirwan, on one side we use the augmented part,
and this on the other side, the natural part, and this is how we define the morphism.

Let me add some final comments. We already have the equivariant homology
H∗

G(X) and equavariant Gromov–Witten, and then on the other sideH∗(Zτ ). Then
we can [unintelligible], and you can [too fast] The quantum Kirwan morphism,
Woodward tried to draw a map like this [picture], we have a project to do this,
anyway, I’ll finish here.

15. Toru Yoshiyasu: On Lagrangian submanifolds in the complex
projective spaces

First of all, I thank the organizers for giving me a chance to talk here. I’m
really enjoying this stay and listening to good talks and eat good Chinese food.
Let me start. The contents of this talk is as follows. In section 1, I will explain
my motivation and main theorem. In section two, I’ll talk about Lagrangian self-
intersections, and then in section three I’ll discuss the proof.

I’ll discuss an existence result in CP3 and CP1 × CP2. We consider the set
of Lagrangian embeddings. It is important to study the topology of Lagrangian
submanifolds. We know only a few necessary conditions on these. They are far
from classification. They have some topological constraints. For example, Gromov
and Viterbo and Seidel and so on. On the other hand, we can put them inside the
set of Lagrangian immersions. These are classified by Gromov’s h-principle. The
existence of a Lagrangian immersion is reduced to, or classified by, [unintelligible].

The principle does not give an explicit characterization, but we can obtain some
characterization. They are dominated by immersion and homotopy theory.

We don’t know the topological classification of embeddings and so we don’t know
the difference between embeddings and immersions. How are they different? There
are some results about this.

First, there’s Maslov class rigidity. Immersed Lagrangians are not restricted in
the same way. There are also non-existence results for Lagrangian embeddings,
some manifolds have immersions but no embeddings.

I’m concentrating here on how the two notions are different. I’ll talk about the
difference between Lagrangian immersions and Lagrangian embeddings.

The following is the main theorem.
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Theorem 15.1. Let X be the complex projective space CP3 or CP1×CP2. with the
Fubini–Study form ω3 or ω1 × ω2. Let L be a closed oriented connected 3-manifold
and f : L#(S1 × S2) → X a Lagrangian immersion.

Then there exists a Lagrangian embedding g : L#(S1×S2) ↪→ X such that g ∼ f
as a continuous map.

I have to comment on the existence of a Lagrangian embedding.

Remark 15.2. Ekholm–Eliashberg–Murphy–Smith (EEMS) proved that there exists
a Lagrangia embedding of L#(S1 ×S2) into C3 (the standard symplectic 6-space).
Their result says that there is a contractible such submanifold in any 6-fold. But our
theorem cannot be reduced to this because it provides non-contractible Lagrangian
embeddings.

15.1. Lagrangian self-intersections. Let me talk about the h-principle. This is
for Lagrangian embeddings that are concave with [unintelligible]boundary.

Theorem 15.3. (Eliashberg–Murphy, 2013) Let n ≥ 3 and L a connected n-
dimensional manifold with a negative end. Let (X,ω) be a symplectic 2n-dimensional
manifold with negative Liouville end.

Assume that (X,ω) has Gromov width infinite if n = 3.
Let f : L ↪→ X be a proper embedding satisfying

• the embedding is cylindrical at the negative end,
• [f∗0ω] = 0 ∈ H2(L,R) and there is Ft : TL → TX homotopy of monomor-
phisms such that F0 = df0 and F1 is Lagrangian, and

• the asymptotic Legendrian boundary of f0 has a loose component.

The conclusion is that there exists an isotopy ft : L → X which is fixed at −∞
such that f1 is a Lagranian embedding.

In their paper, they mention that the∞ Gromov width is a technical assumption.
We don’t know if it’s necessary or not. Actually, this is not necessary (due to the
speaker).

The statement includes some unusual definitions. I will draw a picture instead
of giving precise definitions.

[picture]
Negative means there exists an end component which is a cylinder. A negative

Liouville end means that there is an end obtained by the negative symplectization,
the product with the negative half-line. The Liouville vector field points inward
from the end.

Being cylindrical at the end means it’s an embedding on some contact slice and
the end is a linearization of that embedding. The image of the embedding in the
slice is the asymptotic Legendrian. The cohomological condition is a trivially nec-
essary condition. Taking the differential satisfies the homotopy of monomorphism
conditions, so that is also a trivial necessary condition.

Before starting a proof, I define looseness. Let n ≥ 3 and (Y 2n−1, ξ) be a contact
2n−1 manifold and (Λ) a connected Legendrian submanifold of Y . Then Λ is loose
if there exists Λ′ such that Λ is Legendrian isotopic to a stabilization of Λ′.

There is one more unusual definition, a stabilization of a Legendrian is a local-
ization move.

For any Legendrian submanifold and any point p [unintelligible]we can take a
Darboux neighborhood of p such that there is a cusp singularity at the origin in
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the front projection, with ξst = ker dz − ydx. We move the lower branch around
the upper branch [picture] and this is called a stabliization of Λ′. The meaning of
stabilization is not clear. It makes a Legendrian manifold flexible. Recall [unin-
telligible]theory, [unintelligible]theory, Gromov’s [unintelligible]theory, and Eliash-
berg’s classification of overtwisted contact structures. Normally solving differential
equations is hard. But [missed].

The looseness is crucial for Murphy’s h-principle, which says loose Legendrian
submanifolds are dominated by algebro-topological properties.

For general Legendrian submanifolds, they do not have such a property. I for-
got the example, but there are two submanifolds which satisfy algebro-topological
homotopy conditions but are not Legendrian isotopic.

Let me start a brief sketch of the proof of the main theorem.
I’ll start with a modified Whitney trick, due to Eliashberg–Murphy.

• For a Whitney pair of an exact Lagrangian immersion, if the symplectic
area of the Whitney disk is 0, then there exists a Darboux ball containing
the Whitney pair such that [picture]. For general Lagrangian immersions,
this condition is not satisfied, the symplectic area can be changed by a
small perturbation of the Whitney disk. So it’s a special condition.

• We have to construct a procedure to make the conditional step satisfied.
There is a deformation to make the previous condition satisfied.

• The Lagrangian intersections with the Whitney pair can be cancelled by
Legendrian regular homotopy if and only if their boundaries are unlinked
in the Legendrian category. In general, this is false. We have to use loose
Legendrians at the negative ends. We can check by using asymptotically
loose Legendrian boundary and the h-principle. In general, the right-hand
side statement is false. But now we can take the connect sum of a Legen-
drian sphere and a loose Legendrian, then the behavior of this Legendrian
is dominated by algebraic properties. [missed] In the smooth category they
are unlinked, and then they are also unlinked in the Legendrian category.

This is a brief sketch of the theory of Legendrian immersions. There is the
infinite Gromov width. To do this they need many many Darboux points. We
encounter the volume problem of the whole symplectic manifold X. They are in
distinct Darboux balls, if the volume is small, we cannot take this picture.

What I improved in their deformation was to prove that the infinite width as-
sumption was not necessary.

In the last section I prove the main theorem.

15.2. Proof of the main theorem. My first proposition

Proposition 15.4. Let L be a 3-manifold and γ3 → CP3 the tautological line
bundle. Then there exists a bijection [L,CP3] → H2(L,Z) where [d] 7→ −h∗c1(γ3).
The proof is elementary. First, K(Z, 2) = CP2, which is its 6-skeleton. If we
change from CP3 to CP∞, and then H2(L,Z) = [L,CP∞]. We can change the the
target space.

We want to study Lagrangian immersions and embeddings by Gromov’s h-
principle.

Proposition 15.5. Let L be a closed oriented connected 3-manifold and h : L →
CP2 continuous. Then the following statements are equivalent.
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(1) There exists a Lagrangian immersion L→ CP3 homotopic to h.
(2) [h∗ω3] = 0 in H2(L,R) and there exists a Lagrangian monomorphism H :

TL→ TCP3 which is a lift of h.
(3) h∗c1(γ3) is 4-torsion in H2(L,Z).

Non-contractibility corresponds to this cohomology class. The contractiblity
corresponds to being zero in the integral cohomology.

Let me start the proof. I’m only going to do the case when X is CP3, the
essentials are the same but the homotopy class statement is complicated so I won’t
explain the details.

Proof. The first and second are equivalent by Gromov’s h-principle. The second
and third are equivalent by a computation of cohomology classes, [ω3] = −c1(γ3) ∈
H2(CP3,Z), which implies that h∗c1(γ3) is torsion. The existence of H can be
treated by obstruction theory. You can show that the only obstruction is c1h

∗TCP3

which is −4h∗c1(γ3) ∈ H2(L,Z). □

Let me talk about about the proof of the main theorem for X = CP3.

Proof. We have a Lagrangian immersion L#(S1 × S2) → CP3. We construct a
Lagrangian embedding homotopic to f .

We restrict to L\D3 → CP3. Then [h] is in H2(L\D3,Z) ∼= H2(L,Z). We can
take an extension of h as a continuous map. This satisfies the third condition of
the proposition, and so does the extension. Then we apply the proposition to the
extension of h. There exists h′ : L → CP3 a Lagrangian immersion, homotopic to
h. via the identification above.

By the Whitney trck, the number of double poits of h′ is one. At last, applying
Polterovich’s surgery, we get an embedding of the connected sum into CP3. They
are homotopic by computing that g∗c1(γ3) = f∗c1(γ3).

□

16. Nov. 6: Bohan Fang: Global mirror curve of a toric Calabi-Yau
3-fold

Thank you for the chance to speak here. This is joint with C.-C. Lie and Z.
Zong. I’ll be talking about toric Calabi–Yaus. So X is a toric Calabi–Yau, the
defining polytope Σ and a triangulation. If X = OP2(−3) then the defining polytope
is [picture], a triangle with corners (1, 0), (0, 1), and (−1,−1). If you look at
X = C3/Z3, that’s a polytope with no further triangulation [picture] and then the
fan looks like this: [picture]

Mirror symmetry has this to say. If X is a toric variety, I think by Givental
he constructed its mirror as a Landau–Ginzburg model, a holomorphic function
W : (C∗)n → C. The combinatoric data defining this toric Calabi–Yau tells you
thisW has to be in the form ofXnH(X1, . . . , XN−1). By [unintelligible], this can be
further reduced to some noncompact Calabi–Yau, which gets to the more traditional
line of thinking, that the mirror of a Calabi–Yau should be a Calabi–Yau.

What about toric Calabi–Yau threefolds? The right side, by Hori–Vafa in
physics, can be further reduced to {H(X,Y ) = 0} in (C∗)2. This is a mirror
curve. This is a quick overview of the mirror of a Calabi–Yau threefold.

Let me give some examples. For the purposes of the rest of the talk, I’ll shift
the polytope for some reasons I’ll say later. As you know, this triangulation I
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gave before is equivalent to the triangle with vertices (0, 0), (1, 0), and (3,−1) with
center at (0, 1). Then X + Y + 1+ qX3Y −1 = 0. Then X = [C3/Z3] has the same
polytope but no triangulation. You still look at all possible integer lattices inside of
this. You repeat what you did, but the only preferred triangle is this one. [picture]
and you get X ′3Y ′−1 + Y ′ + 1 + q′X ′ = 0 and these two curves are isomorphic up
to the change of variables X = q′X ′, Y = Y ′, and q′−1 = q. This is explained by
them being crepant resolutions of the same singular variety C3/Z3.

How this mirror curve reflects the A-side information, mirror symmetry predic-
tions of Gromov–Witten invariants. Okay. So X is our toric Calabi–Yau 3-fold,
given by the defining polytope with a preferred triangle (the one with vertices (0, 0),
(1, 0), and (0, 1)). You can draw this so-called toric graph, which is the dual graph
of this polytope. [picture]. If you look at symplectic geometry, this is the image of
1-dimensional toric divisors under a moment map µ′

R of T ′
R, where T

′ ⊂ T , the big
torus that acts on this variety, preserving the Calabi–Yau form. The R means its
the compact part.

For X = C3/Z3 this looks like this (picture). What is the purpose of the pre-
ferred triangle? You pick a point p and can define a Lagrangian L = µ−1

R (p) +
constant argument condition, so this is a Lagrangian inside X that is homeomor-
phic to R2 × S1 ([unintelligible]-Vafa)

Now you can do a counting, or at least pretend (some definitions are up in the

air). Ng,β,µ⃗ counts [picture] where you have h boundary circles, genus g,
f−→ (X,L)

with topological type µ⃗, a tuple of positive integers, and f∗[C] = β ∈ H2(X,L;Z)
and f∗([Ri]) = µi ∈ H1(L,Z).

This is not a definition but let’s pretend that we can do this for the purpose of
this talk.

The actual function that we worry about is

Fg,h(Q) =
∑
β,µ⃗

Ng,β,µ⃗X̃
µ1

1 · · · X̃µh

h .

This is the open Gromov–Witten potential. You should add twisted insertions for
orbifold points. The first prediction, anyway, is that

F0,1 =

∫
P (X)

logY
dX

X
.

So let’s get back to the toric graph. The mirror curve looks like this [picture] and
this is the preserved point and you can choose a path to a point and integrate over
it. This is an indefinite integral.

This is Aganagic–Klemm–Vafa, and also F.–Liu and F.–Liu–Tseng.
Okay, so let’s see what we get for the mirror curve of KP2 and for C3/Z3. SO

it’s basically the same thing up to an isomorphism. So you have

F
KP2
0,1 (q,X) = F

C3/Z3

0,1 (q′, X ′)

up to change of coordinates and analaticy continuation, [something about q]
Let me state a long theorem and discuss how you can imply this kind of global

picture. This mirror curve Cq = ⟨H(X,Y ) = 0⟩ and the compactification Cq. We

have Ai, Bi ∈ H1(Cq,Z) with Ai ∩ Aj = Bi ∩ Bj = 0 and Ai ∩ Bj = δij . We have
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ω0,2, symmetric meromorphic 2-form on (overlineCq)
2,

∫
Ai
ω0,2 = 0 and you have

ω0,2 =
dxdy

(x− y)2
+ holomorphic at diagonal (only poles)

and ωg,h is constructed from ω0,2, a symmetric meromorphic n-form on (Cq)
h,

ωg,h+1 =
∑

P2,dx=0

Resp=Pα

∫ p

[unintelligible]
ω0,2(P0, )

2(y(p)− y(p̄))dx(p)

[missed some]
So this is a recursion, this is well-studied, it’s well-defined over the compactified

curve. Before I proceed, the point is that you have to remember what the ingredients
you need to cook up this higher ωg,h. You needX and Y , the meromorphic functions
on your curve with poles at your punctures, and you need A and B cycles, from
that you have ω0,2. You need not just X and Y but also the A and B cycles, this
choice.

The BKMP remodeling conjecture says that∫
P (X1)×···×P (Xh)

ωg,h = Fg,h

This was proved by Eynard–Orantin, F.–Lie–Zong.
So

Fg =
1

2− 2g

∑
P=Pα,dx(pα)=0

ωg,1

∫
log Y

dX

X
.

[missed a little]
Now what do we have? So we have this very long, we just gave some brief

introduction including the higher genus picture. Now I want to say something
about how to look at how things change under different points in the moduli space
of toric varieties. The statements I gave is just for one point in the moduli space.
That’s good, but what about, how do you fit everything into the whole moduli
space of toric Calabi–Yaus? This is a global mirror symmetry thing that actually
we did this discussion before about disk invariants, for example let X = KP2 or
X = [C3/Z3], this is the large radius limit and this is the orbifold point. In the
middle we don’t know the Gromov–Witten theory.

The crepant resolution conjecture says how to try to relate these. We at least
wrote down a change of coordinates between these two ponits. Now I’ll say for a
more general 3-fold, how to write down a mirror curve; overall they’ll form a flat
family of mirror curves.

To solve the problem of this global mirror curve, I’ll still have X a toric Calabi–
Yau 3-fold and N = Hom(C∗, T ), and M = Hom(T,C∗) with ker e3 = T . Then
M = Hom(T ′,C∗) = M/⟨e3⟩. If you know what I’m talking about, good, if not,
that’s fine, I’ll give a picture.

0 → L → Ñ =
⊕

Zb̃→ N → 0,

0 →M → M̃ → L∨ → 0,

0 →M ′ → M̃ ′ → Lv → 0.
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So you have the secondary fan ∆ in L∨ and the extended secondary fan ∆̃ in M̃ ′

given by D̃′
i, plus infinite rays of toric graphs. This is a very simple combinatoric

description.
We know KP2 , the secondary toric variety is P1, and this Di, actually you have

four, and [pictures]

There is a fan morphism ∆̃ to ∆ and this gives rise to a toric morphism M̃3 →
M3. [pictures]

I construct S a polytope given by b̃′i, say that Ñ is dual by a toric construction

to [unintelligible], and Ñ ′ is a subthing of Ñ killed by the Calabi–Yau character,
and this is not canonical but it’s fine. This defines a line bundle up to a translation
of the polytope. This gives a line bundle L on M̃B , which is fiberwise ample. Then
s =

∑
si is a section, with each si a section corresponding to an integer point in

S. Define this C as the zero set of this section. [pictures]
You have to pick Ai and Bi in the beginning. The standard notation, τij =∫
BjOi and

∫
Aj
θi = δij . Around a toric divisor in MB , you’ll see τ 7→ aτ+b

cτ+d . If you

compute all of these you’ll get a monodromy group. For example if X = OP2(−3),
then the group Γ is a subgroup of SL2Z, of level three. So you need to modify it
somehow.

Eynard–Orantin proposed something,

Ai(τ) = Ai −
∑
j

1

τ̄ − τ
Bj(τ)

and

Bi(τ) = Bi −
∑
j

τijAj

and the Ai(τ) and Bi(τ) are monodromy invariant. Once you do this, then A and
B are no longer geometric, and no longer holomorphic. But this fits into the physics
prediction. From Ai(τ) you can construct ω̃0,2 and from the E–O recursion you can

construct ω̃g,h globally defined on C.
What’s the relation? By some physics relation I’ll explain,

lim
Imτ→∞

ω̃0,2 = ω0,2

lim
Imτ→∞

ω̃g,n = ωg,n

Definition 16.1.

F̃g =
∑

Resω̃g,1

∫
log Y

dX

X

then

lim
Imτ→∞

F̃g = Fg

Theorem 16.2. (Calso–Coates–Iritani) Fg from Gromov–Witten has a unique
anti-holomorphic ocmpletion as the constant term of a polynomial in 1

Imτ with
holomorphic coefficients that is modular invariant.

So this is my version, I don’t know if this is the same as other peoples’ version.
Let me stop here.
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17. Gabriel C. Drummond-Cole: Chain level string topology
operations

I do not take notes on my own talks.

18. Yohsuke Imagi: Simple singularity of special Lagrangian
submanifolds

Before I talk about some technical things about my results, I want to comment on
the relationship between [unintelligible]and my own study. Many results use some
sort of Floer theory or Gromov–Witten invariants or pseudoholomorphic curves and
one important theorem is that you can define a moduli space of pseudoholomorphic
curves and there’s a nice compactification that you can use to define some Floer
homology.

The important point is, you have a nice compactification of the moduli space.
Some differential geometric nice compactification goes back to Yang–Mills gauge
theory in dimension 4 which is called Yang–Mills instantons, and you can also define
a moduli space of instantons and define a nice compactification of the moduli space
of them. This is not really symplectic geometry but is historically, [unintelligible]one
motivation of my study comes from these things, and why I mentioned these things.
These are all solutions to elliptic equations over some [unintelligible]manifold, in a
suitable sense, they are all elliptic nonlinear equaitons and can be treated similarly
in some way. The treatments are well-known but the special Lagrangians are more
difficult, seriously so, and so that’s why I have to restrict to only simple singularities.

This is some historical comment. I’ll start with some basic definitions of special
Lagrangian submanifolds.

I consider a Calabi–Yau manifold, that’s a Kähler manifold and in the latter part
of my talk it will have complex dimension 3. For the moment the dimension may be
arbitrary. Basically I’m interested in the higher dimensional case; in the lower di-
mensional case they are easy. HyperKähler rotation takes them to pseudoholomor-
phic curves in dimension 2, so think big. So Ω is a nowhere-vanishing (m− 0)-form
on M . I suppose Ω exists. I want to define special Lagrangian submanifolds. L is
special if ℑΩ|L = 0. It’s an extra condition on the Lagrangian submanifold. One
basic theorem by Harvey and Lawson is that special Lagrangian submanifolds are
volume minimizing. This is the basic theorem. It’s in the 1980s and they discov-
ered a large class of volume-minimizing submanifolds including [unintelligible]and
[unintelligible], some special classes of volume-minimizing submanifolds.

If you know their original definition, they originally assumed that the Kähler
metric was Ricci flat, and the special Lagrangians are volume-minimizing with
respect to the Ricci-flat metric. In the latter part I’ll explain my result and I don’t
suppose the Kähler metric is Ricci flat. Then you have to choose a metric. This
is a technical part. If this is your first time then it’s okay, it’s volume-minimizing
with respect to some certain canonical metric.

So the equation is a kind of elliptic equation and there’s some [unintelligible],
anyway, some kind of elliptic thing. And as I told you, I want to put the moduli
space of special Lagrangian submanifolds, I want to consider, I fix M and Ω and
consider the moduli space of compact special Lagrangians, I call it S.

One feature is that this is always unobstructed. Each component of S is [unin-
telligible]. I should mention McLean’s name. You have a good understanding of the
local structure. The global structure of the moduli space, I want to compactify the
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moduli space, and one way to do this is to use geometric measure theory and one way
is to just use special Lagrangians and currents or varifolds, some measure-theoretic
generalization, and this is one compactification,and the compactified space, I call
it S̄. This is very difficult to analyze. I go back here and in the well-known case,
the Yang–Mills gauge theory case in dimension 4, the instantons, you can com-
pactify by adding some singular objects. Then [unintelligible]shows that you can
[unintelligible]δ functions, compactifying the moduli space. So in this case it’s very
simple but in our case, these are the singular objects, the currents, but they may
be very complicated and the problem is very difficult. There is no classification
result, that’s the basic difference.

In 2000, Joyce, [unintelligible], I., started to study some singular objects, so one
approach is to just consider simple singularities. Ultimately, we want to consider
all the singularities like that. What we have done is to choose some simple class
of singularity and study them in detail. That’s what I’ll explain, what kind of
complete progress I can make, that’s what I’ll explain.

Now I restrict to dimension 3. In this talk I consider this class of singularity,
compact special Lagrangian 3-folds with one singular point. If you know minimal
surface theory then at each singular point there is a tangent cone to the singular
point and in general there is some multiplicity here, I suppose multiplicity 1, there’s
just one singular point and there’s also an isolated singularity in the tangent cone,
also multiplicity 1, a very simple case. What kinds of things can I put here to make
this cone special Lagrangian. The tangent space at x is like C3 and the holomorphic
volume form is dz1 ∧ dz2 ∧ dz3. Consider the SU(3) action on C3. This volume
form should be preserved along with the complex structure and the metric. So take
this maximal torus T 2, where the total rotation is 0, and you can construct the T 2

cone like this [picture]
This is Harvey and Lawson’s example. This class of X is a simple class of

singularity to study.

Theorem 18.1. We can determine a neighborhood of X in S.

In the Yang–Mills case, Donaldson proved that the moduli space is a manifold
with boundary or corners. This theorem is a local analogue of Donaldson’s theorem
in S, in the moduli space of special Lagrangian submanifolds. This is really only
local.

Theorem 18.2. There exists an example of X. More precisely, there exists a
compact special Lagrangian submanifold of (M,Ω) with just one singular point.
moedled on C with multiplicity 1.

This is historically younger, so Dominic Joyce, Haskins, we did some general
theory at first, but we had no examples, this was very unhealthy. There might be
no examples to which we could apply the theorem. But what I’m going to talk
about is that there is an example of X and that’s what i’m going to talk about.

The basic idea of the theorem is originally due to Joyce and Haskins, I learned
it from Dominic and also talked to Haskins several times, and I also talked to
Johannes Nordström, he and Haskins were in Imperial College, London. The basic
strategy is well-known to them.

In my case I should choose the Calabi–Yau very carefully. The analysis will be
more complicated as well. The basic strategy is very well-known.
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I start with a concrete method for constructing special Lagrangian submanifolds.
The trivial example is Rn in Cn, which is useful to regard as the fixed point of the
involution, antiholomorphic. If I have a Calabi–Yau manifold M and an antiholo-
morphic involution, then its fixed points will be special Lagrangian with respect to
some Ω. It’s hard to construct them in any other way. This is particular to special
Lagrangians. This always gives smooth objects, without singularities.

So I start with a singular Calabi–Yau. I take N and take some nodal 3-fold
in CP4, and I need an antiholomorphic involution. I have to choose some real
polynomial, and I take, w̄, z̄, x̄, t̄.

Now I can choose ι so that it has only one singular point, and it’s also modeled
on [unintelligible]. This involution method gives you a three-fold with a singularity
modeled on a nodal three-fold. What I want is a special Lagrangian three-fold in
a non-singular threefold. I don’t want the ambient space to have singularity. So I
take a projective small resolution here. It needn’t exist in general for all Calabi–Yau
nodal three-folds. I also choose this guy carefully so that I can take some divisors
whose blowup gives some small resolution. Let me explain what I mean.

It’s a well-studied object, but let me say, projective means the resolution is
Kähler. Small means it contains some blowdown. There is a singular point y. The
fiber over y is π−1(y), this is CP1, it’s normal bundle is O(−1)⊕O(−1). You can
change the Kähler form from here. You can prove the Kähler form, you can modify
this so that the [unintelligible]will be Kähler too.

I can pull back this guy away from the singular point. [missed some] You can
find a T 2-invariant special Lagrangian like this.

I have a T 2 cone downstairs, and I just pull back this Y , so near this CP1,
π−1(Y ) approaches this coneK, and on the other hand I have a [unintelligible]action
on [unintelligible]and I construct it explicitly, the non-compact special Lagrangian
approaching this K. Over Y the cone Z, some different cone C [picture] and this
Z is explicit, fully explicit. This is also explicit.

This is the method going back to Taubes. What we do finally is ta deform it
globally. I also rotate the tangent cone and translate this point by T 3 and then you
can do some, write the special Lagrangian equation at the linear level it’s Fredholm
and it’s also surjective and you can use the implicit function theorem and solve it
analytically.

19. Ziming Nikolas Ma: Scattering in the SYZ programme

[I did not attend this talk]


