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1. March 4

I want to start to talk about the tools and methods that are available to us in
symplectic topology. Let me begin with:

Floer homology

Let (M,ω) be a symplectic manifold, either closed or open with suitable nice
behavior at ∞. These are always the assumptions. What Floer homology does is
the following. In symplectic topology, there is a kind of creed that says everything
is a Lagrangian submanifold. For those who do not know,

Definition 1.1. A submanifold L ⊂ (M,ω) is called Lagrangian if dim L is
1
2
dim M and i∗ω = 0.

We’d like to study the intersection theory of these basic objects. Suppose L0

and L1 intersect transversally. For now let’s assume for convenience that M and
all Lagrangians are closed submanifolds.

Then there will be only a finite number of intersection points. Fix a coefficient
ring. Denote

CF (L0, L1) = R[L0 ∩L1];
this is a free R-module with canonical basis L0∩L1. We want to define a “boundary
map”

∂ ∶ CF (L0, L1)→ CF (L0, L1).
Eventually we want to regard these as graded modules with some grading. This
boundary map will have grading −1.

Any linear map can be written as a matrix in our basis, so n(q, p), well ∂q =
∑p∈L0∩L1

n(q, p)p.
So how do we define this n(q, p)? We need some kind of probe to investigate this

manifold with Lagrangian submanifold. We want to look at the motion of branes
in the ambient space.

For this one, we need some auxilliary structure, another essential object from
the point of view of symplectic topology, the so-called almost-complex structure.
After Gromov introduced pseudoholomorphic curves, it’s still not clear, actually,
how these things are really, how they act on the study of symplectic topology.

This almost complex structure, there are plenty of almost-complex structures J
on a symplectic manifold. They are abundant. Furthermore, Gromov proved that
there is a particular choice, a class of J , so-called compatible, interacting with the
given symplectic form in a nice way:
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i Positivity: ω(v, Jv) ≥ 0 with equality only when v = 0.
ii Symmetry: ω(v, Ju) = ω(u, Jv).

As a consequence, the bilinear form gJ = ω( , J ) defines a Riemannian metric.
Sometimes we call (M,ω,J) an almost-Kähler manifold and gJ an almost-Kähler
metric.

Gromov proved that Jω, the space of such J , is a contractible infinite-dimensional
manifold.

So when you’re given, we then study some equations, Cauchy–Riemann equations
on a symplectic manifold. We want to find some holomorphic strips between L0

and L1.
Let me draw, [pictures]. We require that the map u ∶ Z = R× [0,1] to M satisfies

∂u

∂z
+ J ∂u

∂t
= 0

with u(z,0) ∈ L0 and u(z,1) ∈ L1. I should have as well that u(−∞) = q and
u(∞) = p.

We need some machinery of studying the existence question for solutions of this
equation.

This equation at the moment is coordinate-dependent. This implicitly uses the
conformal structure on the strip z + it. This infinite strip Z is isomorphic to the
disk with two points removed. What’s important is just the conformal structure.
That equation can be written in a coordinate independent way. Temporarily let me
denote the set of solutions of that equation by M̃(q, p). This set, in general may
have no structure. But the matrix element will be defined by counting the number
of elements in this set.

Now n(q, p;J) will be defined by “counting” #M̃(q, p;J), which may not even
make sense because the set may not be finite.

So we have to ensure that this set of solutions has some nice structures and is in
particular finite. This means there are two critical issues. The first is smoothness
of the space M̃(q, p;J); the second is compactness of M̃(q, p; j). The compactness
is something in PDEs, it has to do with the “a priori estimate” and the smoothness
issue is related to deformation theory and transversality (of something). How do
we handle these two issues? Here comes some hidden structure in this equation
here. This is not an arbitrary equation. There is something hidden in the form of
the equation that we have to understand, the hidden structures. For this one, we
need to study so-called

Offshell formualtion of the equations

In this stage I can now talk about the players in symplectic topology. Let me
make some comparisons between symplectic and differential topology. In general
topology you are going to look at a differential manifold. In symplectic topology you
look at (M,ω) a symplectic manifold. You compare diffeomorphisms to symplectic
diffeomorphisms.

A fundamental object of study is fixed points of diffeomorphisms and for us the
fixed points of symplectic diffeomorphisms. We know that this is the same thing as
the intersection of the graph of ϕ with the diagonal in M ×M . In the symplectic
case the graph of ϕ is Lagrangian with respect to (M ×M,π∗1ω − π∗2ω).

So this is a natural subset of Lagrangian intersection theory.
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So isotopy invariants are interesting in topology, but somewhat mysteriously it’s
not just symplectic isotopy but Hamiltonian isotopy that has to do with the study
of these Cauchy–Riemann equations.

This is the reason that the interplay between Lagrangian intersection theory and
Hamiltonian dynamics has so much traction in symplectic topology.

So invariants in the differential setting are preserved under isotopy. On the
other side are invariants that are preserved under Hamiltonian isotopy. Of course,
Hamiltonian and symplectic isotopy differ only when the manifold is not simply
connected. It’s more than that actually.

M differential manifold (M,ω) symplectic manifold
ϕ a diffeomorphism ϕ a symplectic diffeomorphism

Fix ϕ Fix ϕ
Graph ϕ ∩∆ ⊂M ×M Graph ϕ ∩∆ ⊂M ×M
intersection theory “Lagrangian intersection theory”

isotopy Hamiltonian isotopy
isotopy invariants invariants preserved under Hamiltonian isotopy

Some-

how size matters in symplectic topology. Here somehow, some kind of size can be
measured in symplectic geometry. Let’s study T 2 as a symplectic manifold with
Ω the area form. Look at the meridian θ. The rotation along the longitude φ
preserves the area form and so is symplectic. So look at C ∩Rϕ(C), and it’s empty.
But you can’t do this by Hamiltonian isotopy. So C ∩ ϕ(C) is nonempty for any
Hamiltonian diffeomorphism. So you never separate the circle by any Hamiltonian
diffeomorphism.

What kind of invariants satisfy these properties? It turns out that Floer homol-
ogy can distinguish between symplectic things that are not Hamiltonian isotopic.

You may think this won’t happen if the underlying manifold is simply connected.
Let S2 be the sphere with Ω the standard area form. In this case, the size of a
Lagrangian manifold matters. I’m going to look at some circle C and by the way,
the sphere is simply connected, so any symplectic diffeomorphism isotopic to the
identity is a Hamiltonian diffeomorphism.

So C can be decomposed into two regions B+ and B−.

(1) When the areas of the two pieces are different. There are area-preserving
diffeomorphisms such that ϕ(C) has empty intersection with C.

(2) When the areas of the two pieces are the same, then Poincaré noticed that
in this case, the number of intersection points of ϕ(C) and C is at least
two for any area-preserving diffeomorphisms.

So something is different here. There is an invariant that detects these two cases.
This is some kind of evidence that this property is crucial, interacts, with thes Floer
homology theories.

I should now at least give you a definition of Hamiltonian isotopy.
We say H = H(t, x) ∶ [0,1] ×M → R is called a time-dependent Hamiltonian.

Then

Definition 1.2. Let h ∶M → R. The Hamiltonian vector field Xh associated to h
is given by the equation Xh⌟ = omega = dh

This implies LXh
ω = 0.

You study a non-autonomous ODE ẋ = XHt(x), Hamilton’s equation, and this
defines a Hamiltonian flow on M , ϕH(t)→ ϕt

H from R to Symp(M,ω).
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Each H gives rise to a Hamiltonian path ϕH . You may wonder what kind of
path will come from these Hamiltonian; the condition that x ⌟ ω is exact where

X = ∂ϕt

∂t
(ϕt)−1, then there exists an H such that ϕt = ϕt

H .

Definition 1.3. Finally, well, this is an awkward object, but Ham(M,ω) is the
set of Hamiltonian diffeomorphisms, namely time one images of such paths.

[picture]
Let me give you an interesting exercise, if you want to study symplectic topol-

ogy, you have to do this exercise. Show that Ham(M,ω) forms a subgroup of
Symp(M,ω). This is the set of diffeomorphisms that takes a fundamental role.

Now let’s return to the study of the Cauchy Riemann equations.
Remember we needed some boundary conditions from L0 and L1. So we have

∂0Z and ∂1Z of my strip or circle, these are R×{0} and R×{1}. This ∂ugives a map
from the boundary to L0 and L1. The behaviour could be wild near the puncture,
but near ±∞ the behaviour should be nice. This is where we will impose certain
decay conditions near ∞. We usually impose some kind of exponential decay of the
size of the derivative at∞. Any solution for that Cauchy-Riemann equation will be
like this; in the topological sense the homotopy class of such an object is classified
by maps from the square. Due to this exponential decay condition, the classification
of the topology of such maps can be studied by a map ũ ∶ [0,1]2 → (M,L0, L1) with
the boundary conditions (using coordinates s and t)

ũ(s,0) ∈ L0; ũ(s,1) ∈ L1; ũ(0, t) = q; ũ(1, t) = p.

Consider F the set of such smooth maps. Then F(B) is the homotopy class of
maps in the relative homotopy class B.

The Cauchy-Riemann equations are now coordinate dependent, and they can
be rewritten in a coordinate-free way. Let’s do that. Our derivative, it’s a bundle
map from TΣ → TM . I want to regard this as a bundle map from TΣ to u∗TM .
These are maps over the same base. Using the almost complex structure J , you
can decompose

(TΣ, j) (u∗TM,J)

Σ

into the sum of the complex linear and anticomplex linear partsHom(TΣ, u∗TM)⊕
Hom(TΣ, ū∗TM). We can denote

du = ∂j,Ju + ∂̄j,Ju.

The associated decomposition

1

⋀Σu∗TM =
1,0

⋀
j,J

Σu∗TM ⊕
0,1

⋀
j,J

Σu∗TM

all over Σ, and what are the ranks of these bundles? The rank of ∧1(u∗TM) = 4n
and the rank of ∧0,1(u∗TM) is the same as for ∧1,0(u∗TM), namely 2n, which is
the same as the dimension of TM because the dimension of Σ is two.

Some observations. With respect to this coordinate Z = R × [0,1],
∂u

∂z
+ J ∂u

∂t
= 2∂̄j,Ju(

∂

∂z
.
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So the Cauchy-Riemann equations are just that u is (j, J) holomorphic.
This is a system of 2n equations and 2n unknowns, so it’s well-posed. If the

domain has bigger dimension, then there are more equations so it’s overdetermined,
then there may not be even local solutions. Since it is well-posed, we know from
Wolff–Nijenhuis in the 1960s, they proved that these equations have many solutions
locally.

The question is the global study of these. Now I haven’t finished the unraveling
of the hidden structure of these equations. Regard u↦ ∂̄Ju (omitting small j from
now on) from F(B) to something, and this ∂̄J is a section of a vector bundle, so

to Ω(0,1)(u∗TM). By definition this is Γ(⋀(0,1)(u∗TM)). This assignment is just
a section.

I want to form the union H(0,1), the union over u ∈ F(B) of H(0,1)u where the

fiber is Ω(0,1)(u∗TM), a vector over the infinite dimensional space F(B). Then
this assignment defines a section of this vector bundle.

This is a quite important piece of geometric structure, and then we can see that
M̃(p, q;B) is ∂̄−1J (0). So think of E a vector bundle over N , and regard this as a

model for the infinite dimensional picture with H(0,1) sitting over F(B). Then the
section has a graph or image, and the moduli space is the intersection of the zero
space of the bundle with the image of the section. If this intersects transversally, it’s
reasonable to expect that there would be good structure here. The basic machinery
is the Sard-Smale theorem regarding J as a parameter.

We want to apply a parametric transversality theorem from differential topology.
In this infinite dimensional setting the only theorem is for Banach manifolds, so we
ned a Banach manifold structure. We need a completion of this space with respect
to a suitable norm. The most common choice is Sobolev spaces.

We need Fredholm property of this section in order to use the transversality
theorem. This is equivalent in the PDE framework to saying that the Cauchy-
Riemann equation is a first order elliptic equation. Then the necessary completion
of the map will be Fredholm and we can apply the Sard-Smale theorem.

Now let’s go back to the picture. As I said, we want u to satisfy the Cauchy-
Riemann equations. Assume for the moment that all the data, L0, L1, and q and
p and the homotopy class B, this set dictates the homotopy class of the maps.
To specify this data, we can give the dimension of this moduli space, linearize the
section at zero. The linearizations D∂̄J(u) will be a map:

Ω0(u∗TM)→ Ω(0,1)(u∗TM).

This is a Fredholm operator which carries a natural Fredholm index which is the
expected dimension of the moduli space.

Now compactness is another issue. Assume that the virtual dimension is 0, so we
fix the intersection points and homotopy class so that the Fredholm index becomes
zero. Suppose it’s a nice manifold and assume that the moduli space M̃(q, p;B) is
a nice compact 0-dimensional manifold. We define n(q, p;B) to be the number of
points.

The domain has translation symmetry, which you have to mod out to have this
space be good. So this should be a 1-manifold actually. So we want it to be the
number of points of M(q, p;B) = M̃(q, p;B)/R.
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This gives a boundary map ∂ ∶ CF (L0, L1)→ CF (L0, L1), and the main question
is: “is ∂2 zero?” In general, the answer is no, even when all the transversality and
compactness issues are resolved, this is not zero, especially in the open string case.

Next time I’ll say why it’s not zero and tell you, but at the moment I want to
generalize that picture, pretending that this is, and then I’ll stop.

So now temporarily assuming ∂2 = 0, given a complex ∂ ∶ CF (L0, L1)→ CF (L0, L1),
we can take the homology.

Floer homology is nothing but HF (L0, L1) = ker ∂/im∂. To make this useful
there are a lot of algebraic structures you want to associate to it, and one of these
is the product structure.

How do we define this product map? This product is defined by the “pants
product” or in this case the “triangle product” so we look at the disk with three
punctures. We see three Lagrangians involved. This time there is a marked point
at z0, z1, and z2. You want to ask for one part going to L0, one part to L1, and
one to L2. The marked point goes to the associated intersection point. You can
regard p1 and p2, and this defines a chain level product

CF (L0, L1) ×CF (L1, L2)
m2ÐÐ→ CF (L0, L2).

This can be given by matrix elements, given again by counting these triangles. So
m2(p1, p2) = ∑n(p1, p2;p0;J)p0.

In that picture you can regard p1 ∈ CF (L0, L1), p2 ∈ CF (L1, L2), and p0 ∈
CF (L0, L2). Then m2(p1, p2) is

∑
p0∈L0∩L2

n(p1, p2;p0)p0.

This n(p1, p2;p0) itself will be defined when the given data L0, L1, L2 and (p0, p1, p2)
(call all this data B)—now we’ll look at maps, holomorphic, from a disk to M
satisfying these boundary conditions. These should be written as homotopy classes
of maps. So we’ll encode these homotopy classes too. One way of encoding these
is to introduce a formal parameter which splits n as follows.

Maybe I’ll do this next time. This picture you can generalize for any angles, any
number of marked points, into this, and you’ll count the holomorphic polygons with
associated boundary conditions, which you’ll regard as a multilinear map which will
define the operations mk from CF (L0, L1)×⋯×CF (Ln−1, Ln)→ CF (L0, Ln). Now
the thing I’ll explain next time, this starts from n = 0 and defines the so-called A∞
structure.

2. March 11

Okay, so I mean, this business, because, it’s usually very complicated. I should
be clear at least about the setting.

Let (M,ω) be closed, with L a compact Lagrangian submanifold. For symplectic
geometry, this additional data is not very important but it’s very important from a
physical point of view, so L will be a flat line bundle with an associated connection
∇.

I’ll denote the pair c = (L,L). This is the object. I’ll write C, later the Fukaya
category Fuk(M,ω), and I’ll denote the morphisms HomC(c0, c1) =∶ C(c0, c1) for
the pair c0 = (L0,L0) and c1 = (L1,L1).
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I’ll denote BkC(a, b) as the direct sum (I’ll explain the notation in more detail
later)

⊕
a=c0,...,ck=b

C[1](c0, c1)⊗⋯⊗ C[1](ck−1, ck)

I have a collection of Lagrangian submanifolds, intersecting sequentially, that’s the
picture. For now k ≥ 1.

What I’m trying to do is define mk ∶ BkC(a, b)→ C[1](a, b).
When a = b = c, that is, when C has only one object c, denote C(c, c) = C, a

graded R-module, and BkC = C[1]⊗k.
Then mk ∶ BkC → C[1] is a multilinear map.
So divide the boundary of a disk into k + 1 segments, and map this into the

Lagrangians, count the maps u with ∂̄Ju = 0, with fixed asymptotic boundary con-
ditions, and I’ll denote by π2(L⃗, p⃗) for L⃗ = (L0, . . . , Lk), where p⃗ = (p0, . . . , pk) (at
the moment assuming all pairwise intersections are transverse) as relative homo-
topy classes with fixed boundary conditions. The marked points are mapped into
the chain of intersection points as specified by p⃗.

Each J-holomorphic map u with given boundary conditions carries such a homo-
topy class [u]. In particular it has an area. Then mk, a priori we want to encode
all such holomorphic maps of degree 0 (I won’t talk about degree at the moment).

We denoteMk+1(L⃗, p⃗,B) as the set of all such u with [u] = B, modulo PSL(2,R).
This moduli space has a virtual dimension, which we assume is 0 and agrees with
the expected dimension.

This mk will be defined by counting Mk+1. To count this you need to worry
about smoothness and compactness. Then such a map carries the homotopy class
B. The associated area will all vary. The compactness theorem holds only when
you give an upper bound for the area. If not, the number of such disks may be
infinite. We need to use all of them; either you need to worry about convergence
of areas or use formal power series.

The mk map has the decomposition

mk = ∑
B∈π2(L⃗,p⃗)

mk,BT
ω(B)

where T is a formal parameter.
Here ω(B) = ∫ u∗ω is positive since B is realized by a J-holomorphic map. I

want to exclude constant maps.

Remark 2.1. When k ≥ 2, then the disk has at least three marked points. This
configuration is so-called stable, in that there are no automorphisms. Here an auto-
morphism fixes these marked points. When k = 1, then you have two marked points,
this is not stable and has one dimension of automorphisms. In this business you
mod out by automorphisms. You really have to mod out by these automorphisms.
If you don’t mod out these automorphisms you don’t get any compactness. This
actually makes some of the structure different for k = 1.

However, the mk is supposed to map

C[1](c0, c1)⊗⋯C[1](ck−1, ck)→ C[1](c0, ck).

Recall that

C(c, c′) = ⊕
p∈L∩L′

Hom((L0)p, (L1)p))
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so that a morphism is a pair (p, v) where v is a map between the fibers above p.
I should also describe what happens to the maps. The associated map to v, you

follow the line bundle with the connection, parallel transport v0, well, regard v0
as a homomorphism from L0 to L1, then you do parallel transport along the first
Lagrangian submanifold, and then go over, follow parallel transport, et cetera.

[much discussion]

P∇(∂k+1D2) ○ vk ○ ⋯ ○ P∇(∂1D2).

So ⟨mk(x1, . . . , xk), x0⟩ has the form

∑
B∈π2(L⃗,p⃗)

#(Mk+1(L⃗, p⃗;B))Tω(B), hol∇(u(∂D2))

where h∇(u∂D2) is this map we’ve built.
Where does this live? Actually, let me decompose this, we have

⟨mk(p1, . . . , pk), p0⟩ =#(Mk+1(L⃗, p⃗,B))Tω(B)

The second component is hol∇(u(∂D2))(v1, . . . , vk). You read off the coefficients
from the moduli space. They live in ΛR

0,nov.
Why do we have to use the Novikov ring? The operations are defined rigorously

when we extend the coefficient ring. That’s the reason why from the beginning we
want to consider C(a, b) as a module over the Novikov ring ΛR

0,nov, which is

Definition 2.1. The Novikov ring ΛR
nov

∑
i=1

aiT
λi ∣ai ∈ R and λ1 < λ2 < ⋯, λi →∞( or the sum is finite)

Then ΛR
0,nov has all λi ≥ 0 and ΛR

+,nov has all λi > 0

Now I can define

C(a, b) = ⊕
p∈L∩L′

HomR(Lp,L′p)⊗ΛR
0,nov.

It turns out this moduli space has, there is a certain relation, the A∞ relation.
Let me just say, in this case of Fukaya categories, there is an m0 map. You should
have only one marked point. I need {mk}∞k=0. So this is ΛR

0,nov → C[1](c, c) for any
c.

You’re looking at a Lagrangian submanifold, and a holomorphic disk with an
evaluation mapM1 → L. The evaluation cycle depends on the homotopy class, so
it’s ev0 = ∑B∈π2(M,L)[ev0,B]Tω(B) where ev0,B ∶M1(B) → L. To define this m0

you have to extend to the case where the Lagrangian manifolds intersect cleanly.
Then it’s a little more complicated.

I want to finish how this A∞ relation appears and next time I’ll talk about some
homological algebra.

There are two cases. Let’s talk first about the unfiltered case. This is the classical
case of Stasheff. In this case, the mk tart from 1. Now the A∞ relation on the
algebra (the category with only one element). This is due to Stasheff. The relation,
in my sign convention is,

n

∑
j=1

n−j+1
∑
i=1
(−1)∣x1∣′+⋯+∣xi−1∣′mn−j+1(x1, . . . , xi−1,mj(xi, . . . , xi+j−1), xi+j , . . . , xn).
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This structure comes from reading off the boundary of the moduli space. If you
think of a moduli space of disks with circles on the boundary. If you try to com-
pactify this, the boundary will happen by bubbling off some disks, and the relation
corresponds to a degeneration, you can put parentheses in between. This term that
appears is the summation over all possible nontrivial parenthesization of letters.

There is another component in the compactification. In the compactification
of the disk with two marked points, it’s different from the other case, because we
modded out by R-translation in the definition. There is another possible compact-
ification, which is related to the unstable component, it’s different from how we
treat the stable case. This corresponds to m1.

I’ll talk about this in more detail next time. Let’s not talk about why or how it
appears. Roughly the relation is based on the sum of the boundary components.
The relation is nothing but the fact that the oriented sum of the sign of any com-
pact one manifold is zero. To define this operation, we required the moduli space
has dimension 0. You need to look at the moduli space of one-dimensional compo-
nents. That can be described by this pinching off. The origin of all this relation is
essentially, it follows from that.

Now let me talk about the filtered case. We’re going to look at mk from 0 to ∞.
You look at the same sum but you start with j = 0 instead of j = 1.

For each n you get one relation. I’ll look at the case where n = 1, we have in the
unfiltered case m1m1(x) = 0 so that m1 is a differential and we can define homology
of C with respect to m1. What is n = 2? There we have three, m1m2(x, y) +
m2(m1(x), y)+ (−1)∣x1∣′m2(x,m1(y)) = 0. If you define homology, you only look at
the cycles. If you apply this to cycles, you get, m2 defines a product in homology.
If you put cycles in, the result is a cycle.

In the second case, for a curved A∞ algebra, it’s one with m0 ≠ 0. In the filtered
case, this comes in very naturally. Let’s see what the consequences are in this case.

Since we start with m0, we should look at n = 0, this corresponds to the case
m1(m0(1)) = 0. That means that m0(1) is a cycle if m1 turns out to be a boundary.
You’ll take partitions of 2. So m1m1(x)+m2(m0(1), x)−m2(x,m0(1)) = 0. This is
an interesting relation. So if m0(1) is not zero, this doesn’t have to be a differential
(unless m0(1) is in the center). There are special cases. To mention the special
case, I should talk about one definition.

For a unit, we have to extend our discussion for the clean intersection case. I
don’t have time, maybe it’s a good time to stop. Next time I’ll introduce the unit
and its consequence.

3. March 18

So let R = C and T a formal variable. Define

Λnov = {
∞
∑
i=1

aTλi ∣ai ∈ C, λi →i ∞}.

We’ll define Λ0,nov so that the λi ≥ 0 and Λ+,nov so that λi > 0. There is a

vauation v ∶ Λnov → R given by v(∑aiT
λ
i ) = λ1. This satisfies the properties of a

non-Archimedean valuation. We have v(α1α2) = v(α1) + v(α2) and v(α1 + α2) ≥
min{v(α1), v(α2)}.

By convention v(0) = +∞.

Definition 3.1. A filtered A∞ category C consists of
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(1) A class of objects Ob(C),
(2) A set C(c1, c2) of morphisms which is a filtered Λ0,nov-module carrying a

filtration given by ℓ ∶ C(c1, c2)→ R. Denote

Fλ(c1, c2) = {x ∈ C(c1, c2)∣ℓ(x) ≥ λ}.
(3) A set {mk}∞k=0 of linear maps

mk ∶ C[1](c0, c1)⊗⋯⊗ C[1](ck−1, ck)→ C[1](c0, ck)
of degree 1 for k ≥ 1 and (specializing to k = 0) m0 ∶ Λ0,nov → C[1](c, c)
with ℓ(m0(1)) strictly greater than 0. so that
(a)

mk(Fλ1C[1](c0, c1)⊗⋯⊗ FλkC[1](ck−1, ck)) ⊂ Fλ1+⋯+λkC[1](c0, ck)
(b) The collection {mk} satisfies the A∞ relations

Definition 3.2. Let c ∈ Ob(C). We say an element ec ∈ C0(c, c) = C[1]−1(c, c) is a
unit if it satisfies the following:

(1) m2(ec, x1) = x1 for any x1 ∈ C[1](c, c1),
(2) m2(x2,ec) = (−1)∣x2∣′+1x2 for any x2 ∈ C[1](c2, c),
(3) mk+ℓ+1(x1, . . . , xk,ec, y1, . . . , yℓ) = 0 whenever this makes sense for k+ℓ ≠ 1.

In particular m1(ec) = 0.
Definition 3.3. An A∞ category with one object is called an A∞ algebra.

Let me recall the first two A∞ relations, restricted to C = C(c, c).
m1(m0(1)) = 0;

m1m1(x) +m2(m0(1), x) + (−1)∣x∣
′
m2(x,m0(1)) = 0.

Here is a key observation for this whole theory:

Proposition 3.1. Let c be a unital filtered A∞ algebra. Suppose m0(1) = λe for
some λ ∈ Λ0,nov. Then m2

1 = 0.
Proof. There is a very nice cancellation. If we substitute λe into the A∞ relation,
we get that

m1m1(x) +m2(λe, x) + (−1)∣x∣
′
m2(x,λe) = 0

which, we can pull out λ and get

m1m1(x) + λ(m2(e, x) + (−1)∣x∣
′
m2(x, e)) = 0

which is
m1m1(x) + λ(x + (−1)∣x∣

′
(−1)∣x∣

′+1x) = 0
and so therefore m2

1(x) = 0 for all x. □
A corollary is that in this case you can define the cohomology of m1.
We want to develop a deformation theory for A∞ algebras. You can change this

A∞ structure for any element b ∈ C[1]0 = C1 with ℓ(b) > 0 (this is an important
condition) we define a new mk map mb

k ∶ C[1]⊗k → C[1] by the following:

mb
k(x1, . . . , xk) =∑

∗
m∗(b, . . . , b, x1, b, . . . , b, x2, . . . xk, b, . . . , b).

Remember that in practice you consider the disk with k+1 points on the boundary.
Then mk inserts objects at k points and read out at the remaining disk. So you
insert b between the marked points a finite number of times.
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Proposition 3.2. The collection {mb
k}∞k=0 is also an A∞ algebra.

In other words, it satisfies the A∞ relations.
In particular,

mb
0(1) =

∞
∑
k=0

mk(b, . . . , b).

This is an infinite sum so you have to worry about convergence. This is one reason
we require the level of b to be strictly positive. Then this is well defined as a formal
power series.

Definition 3.4. We say that a filtered unital A∞ algebra is weakly unobstructed
if the equation mb

0(1) ≡ 0 mod Λ0,nov{e}e has a solution b. Here e is a degree 2
grading parameter

Definition 3.5. We define Hb(C) ∶= H(C,mb) for b ∈ M̃(C,m) where b (called
a weak bounding cochain) is an element in the set of solutions to the A∞ Maurer-
Cartan equation.

3.1. Geometric realization. Now I’ll go back to (M,ω) a symplectic manifold
with L a closed Lagrangian. We denote by C(L) the A∞ algebra we will construct.

Roughly this is C(L,L), but we always assume these are transversal but we need
C(L,L). In Floer homology, this corresponds to the Floer chain complex for the
clean intersection case.

Then the generator of that module is not finite, so we have to define this on the
singular or de Rham complex.

Now let’s say that C(L) is a singular chain complex of L over Λ0,nov. Now I

want to define the mk maps C(L)[1]⊗k → C(L)[1]. I’m going to use C for C[L].
We denote

Mk+1(L,β)
to be the set of holomorphic disks in (M,L) together with boundary marked points,
with homology class β, up to PSL(2,R).

In general, this is the Gromov set M̃(L,β), the set of holomorphic disks in
(M,L), the virtual dimension is n + µL(β) where µL(β) is the Maslov index of
β. This is a topological index that I’m going to skip, this is a special case of the
Atiyah–Singer theorem. Hence the dimension ofM(L,β) is n +muL(β) − 3. Now
you add the marked points and get

dimMk+1(L,β) = n + µL(β) + (k − 2).

Decompose mk as

∑
β

mk,βT
ω(β)e(µLβ)/2

I’ll completely ignore this but you should keep this to treat the filtered case.
Now I will define mk,β ∶ C(L)⊗kC → C(L) and define what it is. This is defined

by

mk,β(p1, . . . , pk)
is

Mk+1(L,β) × (p1, . . . , pk), ev0
where the fiber product is taken by evaluation (ev1, . . . , evk). By definition, this
can be regarded as a chain onM.
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Now let’s count the degree, what is the grading? We define the degree of P as
the codimension of P which is n − dimP .

The codimension of mk,β(P1, . . . Pk) in L is, well, the fiber product is a subset of
Mk+1(L,β) ×ev+ (P1, . . . , Pk). You regard ev+ as a mapMk+1(L,β) to L ×⋯ × L,
k times. You’re given a subset P1 × ⋯ × Pk. Assuming this is transverse, you can
compute the codimension. The codimension of ev−1+ (P1, . . . , Pk) should be the same
as the codimension of P1 ×⋯ × Pk in Lk which is kn −∑dimPj .

Therefore the dimension ofMk,β(P1, . . . , Pk) is the dimension ofMk+1(L,β) −
(kn −∑dimPj) but we know that dimension, which is n + uL(β) + k − 2 −∑degPj

where we’re grading Pj by codimension. So this can be written n + µ(β) − 2 −
∑k

j=1(degPj)′.
We want to regard this as a chain in L. So under this evaluation map at the

zeroth marked point, the degree of mk,β(P1, . . . , Pk) as a chain in L is dimL− (n+
µL(β) − 2 −∑k

j=1(degPj)′) so we get

deg′mk,β(P1, . . . , Pk) = 1 − µL(β) +
k

∑ ∣Pj ∣′.

Therefore the degree shifted degree of mk,β(P1, . . . , Pk), multiplying by the formal

parameter Tω(β)eµL(β)/2, I get the whole overall degree 1+∑ ∣Pj ∣′. Hence the mk,β

is shifted degree 1 so I can add them over all β to get degree one overall.
This is using the topology of the disk. If you apply to higher genus Riemann

surfaces, it’s governed by the Euler characteristic of the domain Riemann surface.
Now we can specialize our definition of weakly unobstructed objects. The con-

clusion is that each Lagrangian submanifold naturally carries a filtered A∞ algebra
structure. In general, m0(1) is not zero, it has a very nice geometric interpretation.
The homotopy unit of (C(L),{mk}) is the Poincaré dual of the fundamental class
[L] of L.

What is the meaning of m0(1)? By definition, we know that m0(1) is this

∑
β∈π2(M,L)

m0,β(1)Tω(β)eµ(β)/2

where

m0,β(1) = [M1(L,β), ev0]
You have a chain provided by the boundary values of a holomorphic disk. [picture].
Then this is the so-called one-point invariant.

[example in pictures.]
Now here is a definition

Definition 3.6. Assume L is oriented and relatively spin (I won’t talk about this)
and furthermore as a consequence of orientability the Maslov index is even. Then we
can associate (C[L),{mk}) as before, a filtered A∞ algebra over the Novikov ring
Λ0,nov. This carries a natural level structure ℓ ∶ C(L) → R0 the filtration function.
Okay then we say that L is weakly unobstructed if the A∞ Maurer–Cartan equation
has a solution.

That means that you can actually define this Floer homology. We denote the
Floer homology HF b(L,Λ0,nov) as H(L,mb

1) and call it the b-deformed Floer ho-
mology.

One theorem is
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Theorem 3.1. There is a canonical isomorphism ΦH ∶HF b(L,Λnov)→HF (ϕ
1
H)∗b(ϕ1

HL,Λnov)
for any time-dependent Haimiltonian H =H(t, x).

If your original thing is unobstructed then the pushforward is unobstructed. This
will play the role of the generators of the Fukaya category.

In conclusion, the Fukaya category Fuk(M,ω) is generated by (L, b) where L
is a weakly unobstructed Lagrangian and b is a bounding cochain, which can be
regarded as a Λ0,nov-local system.

By definition, L is weakly unobstructed if mb
0(1) can be written as λb times the

fundamental class of L for some λb ∈ Λ+,nov and some b. So you deform by this
bounding cochain b. Suppose you have such a b. Then you consider all possible
such b, M̃(L), and regard b ↦ λb as a function M̃(L) → Λ0,nov called PO. This
we call the FOOO potential function. This is the rigorous analogue of the Landau–
Ginzburg potential function in the toric case. Next time maybe I’ll talk about this
a little bit. It looks a little complicated but fortunately all of this construction can
be done explicitly for toric things.

Next week I’ll be away so I’ll continue after two weeks.

4. April 1

Okay, so let me briefly recall what we’re doing here. So C is a filtered graded
Λ0,nov-module. We’re given this A∞ structure {mk}∞k=0. We are given b ∈ C[1]0 =
C1 and ℓ(b) > 0. Then our A∞ Maurer–Cartan equation is

∞
∑
k=0

mk(b, . . . , b) ≡ 0 mod Λ+,nov

where is the unit.
Then M̃weak(C) is the set of solutions of the Maurer–Cartan equation, and we

call any such b a weak bounding cochain. We’ll mod out by gauge invariance. I’ll
need to talk a bit about the homotopy theory to talk about gauge equivalence, I
might do that next time.

This is defined on M̃weak(C), and we denote the quotient byMweak(C). Then
we define PO(b) be the relation

m(eb) = PO(b)

where

m(eb) ∶=
∞
∑
k=0

mk(b, . . . , b)

; that is, eb = ∑ b⊗k. Since this involves different tensor powers, you apply the
appropriate mk. Then this notation makes sense.

This is a simple way of denoting these things.
Then I continue this notation. We apply the above to the module C = C(L,Λ0,nov)

for a Lagrangian submanifold L ⊂ (M,ω). Now we’ll look at pairs (L0, L1). This
corresponds to the study of A∞ bimodules. Let me first study the case when L0

and L1 are the same.
We want to define some operator δb0,b1 , a deformation of m1 using our bounding

cochains. So this will be C[1] to C[1]. So

δb0,b1(x) = ∑
k0,k1

mk0+k1+1(b0, . . . , b0, x, b1, . . . , b1) =m(eb0xeb1).
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Let’s compute its square. We use the relationm○m = 0, so that∑(−1)(?)m(. . . ,m(. . .), . . .) =
0.

Then our notation was that m̂k is the coderivation of the bar complex BC →
BC. This is how we define m̂k. We apply this to n elements, this is (up to sign)

x1, . . . , xi⊗mk(xi+1, . . . , xi+k)⊗ . . . Then I define d̂ as ∑ m̂k. If I write this without
a hat, it’s the projection. So I want to compute this δ2. Any questions?

[some discussion]
So let’s compute.

Lemma 4.1. For any b0 and b1 in M̃weak(C), we have

δb0,b1 ○ δb1,b0(x) = (PO(b1) − PO(b0))x.

Corollary 4.1. If b0 = b1 = b then δ2b,b = 0.

Proof of Lemma. This follows from the A∞ relation m ○ m̂ = 0. So 0 = m ○
m̂(eb0xeb1).

There is a simple formula. Let’s compute m̂(eb0xeb1). You get

m̂(eb0)xeb1 + eb0δb0,b1(x)eb1 + (−1)∣x∣
′
eb0xm̂(eb1).

Therefore, we get

0 =m (m̂(eb0)xeb1 + (−1)∣x∣
′
eb0xm̂(eb1) + eb0δb0,b1(x)eb1) .

When we apply to the last part we get δ2b0,b1(x). When we apply in the other case,
we get

m(PO(b0)xeb1 + (−1)∣x∣
′
PO(b1)eb0x).

By the unit properties, this all vanishes except PO(b0)m2(, x)+(−1)∣x∣
′
PO(b1)m2(x, ).

Now I can apply the unital property. My total sum then becomes

PO(b0)x − PO(b1)x + δ2b0,b1(x).
□

Definition 4.1. The Floer homology HF ((L, b)) is HF (C[1], δb,b).

Now consider the case of L0 and L1. They intersect transversally.
Why do we need to extend the coefficient ring? Let’s motivate why we have to

consider bimodules over L0 ∩ L1. Let’s study Λ0,nov(L0 ∩ L1) and we extend this
to a (BC(L0),BC(L1))-bimodule. We want to define a differential δ

δ ∶ Λnov(L0 ∩L1)→ Λnov(L0 ∩L1)
by considering the space of holomorphic strips of this type, where ∂u

∂z
+ J ∂u

∂t
= 0,

with u(z,0) ∈ L0, with u(z,1) in L1, and with u(±∞) ∈ L0∩L1. Recall that we had
a moduli space of theseM(q, p,B) for B ∈ π2(q, p,L0, L1). We counted the size of
this thing when µ(B) = 1 (that is, the dimension ofM(q, p,B = 0)).

Assuming M(q, p,B) is smooth, this can be achieved for generic choice of J
when L0 and L1 are orientable. Still we need to worry about compactness or we
can’t count.

In this case of µ(B) = 1, the only possible way, the splitting does not occur. The
only possible source is bubbling of holomorphic disks. Assuming transversality,
each thing must have positive index (if it’s orientable). So if both are orientable,
this cannot occur either. If we have u0 +w where u0 is the principal part and w is
the bubble part.
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When q ≠ p4, since u0 is not zero. Since index is additive, this cannot occur.
The same holds in index two. This is a side remark.
So our map ∆ is compct and we can define

δ(q) =∑
p
∑
B

#M(q, p,B)Tω(B)p

In this example from the Riemann mapping theorem [picture], so M̃(q, p,B+) is
reparameterizations of the obvious strip in the picture, and similarly for M̃(q, p,B−).

Now let’s look at the index two case. Here we have M(q, q,B) where B is
the concatenation of B−#B+. Both splitting and bubbling are possible because
[picture]. The bubbling is very limited. This is the image picture. What’s going on
in the domain? In the domain, it’s easier to regard it as a disk with two punctures.
We use the stable map type compactification.

[more pictures]
In summary, this, we need to count the number of such #(M(q, q,B)) of index

2. This is nothing but a holomorphic disk whose boundary is on L1 and passes
through a point. This is the one-point open Gromov-Witten invariant of genus 0.
It doesn’t depend on the choice of q.

For the good case (e.g., monotone Lagrangian submanifolds), that open Gromov-
Witten invariant does not depend on q. In general the story is more complicated.

So the conclusion is the following. In general, δ2(q) is, well, we can write ⟨δ2q, p⟩,
and the off-diagonal part is zero. If q = p it’s POL1(b1) − POL0(b0). So δb0,b1 is a
diagonal matrix, in fact a multiple of the identity.

Studying this kind of equation leads to so-called matrix factorization (in general).
That’s one consequence. A second consequence is that when POL1(b1) = POL0(b0),
the Floer homology is defined. If you consider the Fukaya category generated by
these Lagrangian submanifolds, only those with the same potential values interact.
Otherwise they don’t interact.

In Fuk(M,ω), generated by weakly unobstructed Lagrangian submanifolds (this
is the right object, this is the definition) together with a bounding cochain is de-
composed into the sum of categories Fukλ(M,ω).

Let me at least once describe this one geometrically.
[pictures]
So what is an A∞-BC1-BC2-bimodule? Recall that an A∞ structure was de-

scribed by {mk}. This bimodule structure will be described by nk0,k1 where k0 and
k1 are nonnegative.

You put as many bubbles as you want in BC1 and BC0. So nk1, k0 ∶ Bk1(C1)⊗
D ⊗Bk0(C0)→D.

Whenever you are given such a multilinear map you can extend it to a bicomod-
ule homomorphism. We canonically extend this to a bicomodule homomorphism
n̂k1,k0 ∶ B(C1)⊗D ⊗B(C0)→ B(C1)⊗D ⊗B(C0).

Let me be more precise. So

n̂k1,k0(Q1 ⊗⋯⊗Qn1 ⊗ ⟨p⟩⊗ P1 ⊗⋯⊗ Pn)

is the sum over applying n and m in all possible places.
In the geometric picture, what is

⟨nk1,k2(P1, . . . , Pk1 ∣q∣Q1, . . . ,Qk2 , p⟩?
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We have points in order on the boundary of the holomorphic strip, the P on one
side and the Q on another.

The associated moduli space, this is

∑⟨nk1,k2,B(P1, . . . Pk1 ∣q∣Q1, . . .Qk2), p⟩Tω(B) ∈ Λ0,nov

This number is the moduli space of holomorphic disks with k1 boundary punctures
on side and k0 on the other side (maybe I’ll use k0), with one limit at q and one at
p. I want the class B and I’ll take the fiber product with P1×⋯×Pk1 ×Q1×⋯×Qk2 .
There’s an evaluation map on one and the other side. Count the number of points
in this fiber product, pulled back over evaluation.

That’s not quite right. This is a moduli space in general. We have two evaluation
maps in general. Let me be more precise.

You have evaluation maps

evL0,i ∶Mk0,k1(q, p,B)→ L0

and
evL1,j ∶Mk0,k1(q, p,B)→ L1

and I am taking the products of these.
Then n̂ is the sum of n̂k0,k1 . This is a map from BC1⊗D⊗BC0, and it satisfies

n̂2 = 0. Taking Floer cohomology corresponds to, the question now, my n̂0,0, does
it square to zero? Not necessarily? We can make it zero by deforming it along the
weak bounding cochain b0 and b1 by the formula I wrote before, so

nb0,b1(q) = n(eb0qeb1).
Then you compute that n̂b0,b1(q) = (PO(b1)−PO(b0))q. Next time I’ll look at the
toric case.

5. April 8

Today I will not be that long. We talked about this potential function. Let me
recall what and how this potential function M̃weak(C) was defined, in the geometric
situation of C = C(L,Λ0,nov).

Basically, for weakly unobstructed Lagrangian submanifold L ⊂ (M,ω), (and
here weakly unobstructed means, well, L is called weakly unobstructed if the

Maurer-Cartan equation
∞
∑
k=0

mk(b, . . . , b) ≡ 0 mod PD[L] ⋅ e has a solution b where

deg(b) = 1 so deg′(b) = 0 and the valuation of b is strictly positive; e is the grading
parameter.)

For such solution b we deform mk to

mb
k(x1, . . . xk) =∑m(b, . . . , b, x1, b, . . . , b, x2, b, . . . , b, xk, b, . . . , b).

In particular, mb
1(x) =m(ebxeb).

Then mb
1 ○mb

1 = 0 so the Floer cohomology H∗(L),mb
1 is defined and this is the

deformed Floer cohomology. We denote HF ((L, b),Λ0,nov) ∶=H∗(C(L),mb
1).

Recall the 2nd A∞ relation m2
1(x) +m2(m0(1), x) + (−1)∣x∣

′
m2(x,m0(1)).

This is the second relation for the curved case. The assumption for weakly
unobstructed, and the same equation holds for the deformed one. Then weakly
unobstructed means that mb

0(1) = ∑mk(b, . . . , b) ≡ 0 mod ee, where e is the unit.

On the other hand, the definition of the unit, it’s (−1)∣x∣
′+1m2(x,e) = x =

m2(e, x).
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Recall that mk,β(x1, . . . , xk) = [Mk+1(β) ×ev+ (p1, . . . , pk), ev0]
So evaluating on the unit is putting the fundamental chain in for one pk. If you

put more one, it’s a degenerate constraint, the dimension doesn’t match outside
dimension two. So [M2(β) × (p ×L), ev0] ≅ [M1(p), ev0].

So POL(B) is nothing but, we have the equations mb
0(1) = POL(b)ee or

∞
∑
k=0

m(b, . . . , b) = POL(b)ee.

Denote M̃weak(L) as the set of Maurer Cartan elements in C1(L,Λ0,nov). Then

POL ∶ M̃weak(L)→ Λ0,nov. But this is too big. So we need gauge equivalence.

Proposition 5.1. If b ∼ b′ then POL(b) = POL(b′).

Define Mweak(L) ∶= M̃weak(L)/ ∼.

Proposition 5.2. In the toric case there is a natural embedding H1(L,Λ+,nov)
iL↪

Mweak(L). But H1(L,Λ+,nov) ⊂ (Λ+,nov)n which modulo convergence issues is
nothing but Cn. Denote WL = POL ○ iL ∶ H1(L,Λ+,nov) → Λ0,nov. This is the
Landau–Ginzburg potential function of physicists.

In the toric case all of these constructions are explicitly contstructible.

Definition 5.1. b is called gauge equivalent to b′ if there exists a family b(t) and
c(t) for t running from 0 to 1 satisfying db

dt
+mb(t)

1 c(t) = 0. There is an explicit way
to define this. So b(t) has degree deg′ = 0 and c(t) has degree deg′ = −1. There is
a way to represent these in terms of differential forms. You can write this as like
b(t) + c(t) ∧ dt.

Example 5.1 (Circles in S2). (1) One Lagrangian L, a circle in S2. You can
think about a circle corresponding to height x. You know that H1(S1,Z) =
Z. Write b ∈ H1(S1,Z) as xe1, where e1 is a Z-basis for H1(S1,Z). Later
we’ll use y = ex.

I want to write down, compute the potential function for that circle. So
any circle in the sphere is Hamiltonian equivalent to a circle at constant
height.

You recall POL(x), by definition we need to compute, we’ll need to study
mb

0(1). Let’s consider b = xe1, where e1 is Poincaré dual to the point. We
need to study ev0M2(β) × {p} → L for a generic point p ∈ L. A priori we
need to consider ev0 ∶Mk+1(β)× {p}×⋯× {p}→ L for all possible k and β
such that the dimension of the associated is one.

Denote by β± the simple class associated to the simple upper and lower
semispheres. All other homotopy classes will be kβ±0 and by dimension
counting they will all be zero. The Maslov index of β0 is 2. Therefore
all the others have larger Maslov index, but the evaluation cycle has lower
dimension. This is why the only contribution arises fromM2(β).

This story happens again for the Fano toric case.
Anyway, so by looking at the marked point moving around the circle,

you get
m±1,β(e1) = ±PD(e)

and

POL(b)ee =m1,β+(b)Tω(β+) −m1,β−(b)Tω(b−) = xeeTA+ − xeeTA−.
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This is xee(TA+ − T 4π−A+). Indeed, POL(B) vanishes if A+ = A−.
(2) This is the story for one Lagrangian. Let’s do a pair of Lagrangians, not

equal. Write them as L0 and L1 we will compute the Floer differential
CF (L0, L1) → CF (L0, L1). WE compute δ⟨p⟩ =?⟨p⟩+?⟨q⟩. The diagonal
element of this matrix ⟨δ⟨p⟩, p⟩ = 0 and likewise for q. Because we want
µB(q, p) = 1, the only possible such B is again the simple one. We only
have to compute when the starting point and ending point are different.
We want to find B and B′ such that µB(q, p) = 1 or µB′(p, q) = 1. There
are two holomorphic strips of index one, with different areas.

We compute ⟨δp, q⟩ = TA0−C − TA1−C . On the other hand, we have two
different disks, an inside and outside, and we get ⟨δq, p⟩ = TC−T 4π−A0−A1+C .

Let’s compute δ2p. This is

δp = (T c − T 4π−A0−A1+C)(TA0−C − TA1−C).

This shows that δ2 is a diagonal matrix. This implies that these vanish
only when the areas of the two circles are the same, so that’s the only time
the Floer homology is defined.

What is the cohomology? If the circle is smaller than half of the area,
you can do a Hamiltonian isotopy that displaces the circle so the homology
is zero. If it’s half the area, then the rank is two.

This story on the sphere can be generalized to the toric case. Next time I’ll start
talking about the toric case.

6. April 15: Toric geometry

Let me start with complex structures. Let N be a lattice of rank n so Zn. Let M
be the dual lattice HomZ(N,Z). We let NR = N ⊗Z R ≅ Rn and let MR =M ⊗Z R ≅
HomR(NR,R) ≅ (Rn)∗.

Definition 6.1. A convex subset σ of NR is called a regular k-dimensional cone if
there exist k linearly independent v1, . . . , vk in N such that σ = {a1v1+⋯+akvk ∣ai ≥
0} and {v1, . . . , vk} is part of a Z-basis of N . For example, if N = Z2, then the upper
right quadrant is a regular cone.

Let σ′ < σ denote that σ′ is a face of σ.

Definition 6.2. A finite system Σ = {σ1, . . . , σs} is called a complete n-dimensional
fan of regular cones if the following holds:

(1) if σ ∈ Σ and σ′ < σ then σ′ ∈ Σ and
(2) NR is the union of σ ⊂ Σ (completeness).

So for example, take the vectors v1 = (1,0), v2 = (0,1), and v3 = (−1,−1). Then
the regular cones spanned by each pair make up a fan. Let Σ(k) be the set of k-
dimensional cones in Σ. Denote by G(Σ) the set of generators of one-dimensional
cones

Definition 6.3. A primitive collection is a finite subset P = {vi1 , . . . , vip} in G(Σ)
such that

(1) {vi1 , . . . , vip} does not generate a cone in the fan Σ but
(2) if you remove one element, they generate a cone in the fan.
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In this example, P = {v1, v2, v3} is a primitive collection.
Let m be the cardinality of the set of one-dimensional generators. Let Cm have

the standard coordinates z1, . . . , zm.
Consider the exact sequence 0→ Cm−n=k → Cm → Cn → 0 where e∗j ∈ Cn goes to

vj .
Now we are going to consider for each primitive collection P = {vi1 , . . . , vip}

define the m − p dimensional affine subspace of Cn defined by zi1 = . . . = zip = 0.
Denote by Z(Σ) the union ⋃P A(P) where A(P = {(z1, . . . zm)}∣zi1 = . . . = zip =

0} and U(Σ) = Cm/Z(Σ).
Note that the kernel K is the set

{(λ1e
∗
1 +⋯ + λme∗m)∣λ1v1 + . . . + λmvm = 0}.

Now exponentiate to get an exact sequence of tori which I’ll denote 0 → K →
Tm → Tn → 0.

Physicists sometimes call K the charges. Associate to each λ1, . . . , λm in K a
subgroup which I’ll denote t ↦ (tλ1 , . . . , tλn) and regard this as a complex torus
(C∗)m. We denote byD(Σ) the group generated by these one-parameter subgroups,
which is K⊗Z C∗. So

Lemma 6.1. D(Σ) acts freely on U(Σ).
Definition 6.4. Define XΣ ∶= X(Σ)/D(Σ) as a complex manifold whose complex
dimension is n. This is the toric mannifold associated to this fan Σ.

Proposition 6.1. Denote U(σ) as {(z1, . . . , zm) ∈ Cm} for which zj ≠ 0 for all
j ∉ {i1, . . . , ik}. Then U(σ) ⊂ U(Σ).
Proof. We need to prove that U(σ) ∩ Z(Σ) = {0}. If z ∈ Z(Σ) then there is a P
such that zj1,...jℓ = 0 for j∗ ∈ P. But all zi∗ are nonzero. So then we want that j∗ is
contained in {i1, . . . , ik}. Then there is a primitive collection contained in σ. But
we know that σ is a cone so its subfaces are cones. □

Next,

Proposition 6.2. (1) If σ′ < σ then U(σ′) ⊂ U(σ).
(2) U(σ1 ∩ σ2) = U(σ1) ∩U(σ2).
(3) U(Σ) = ⋃U(σ).
Let’s look at our example [pictures].
Everything that we have made is complex geometry. What about the symplectic

structure?
I want to make a description by moment maps starting from the standard Tm

action on Cm and using the standard symplectic structure ωm =
i

2

m

∑
i=1

dzi ∧ dz̄i.

The symplectic description of X is generated by the moment polytope P ⊂MR =
M ⊗Z R.

We start with the exact sequence K → Tm → Tn → 0. But we will look at Tn as
Tm/K.

We’re given the standard action of Tm = S1 × ⋯S1 on Cm and this has the
moment map µ(z1 ldots, zm) = ( 12 ∣z∣

2
1, . . . ,

1
2
∣z∣2m).

Recall that dx ∧ dy = d( 1
2
∣z∣2) ∧ dθ.

Whenever you are given a subgroup, well, regard 0 → k → tn → tn → 0; we can
dualize this. The moment map goes from Cm to (tm)∗. The composition with the
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map to k∗ is the moment map applied to the subgroup K. More explicitly, if we
choose a basis of K which is Q1, . . . ,Qm−n.

[some discussion.] So

µk(z1, . . . , zm) =
1

2

m

∑
j=1

Qj1∣zj ∣2, . . .
m

∑
j=1

Qjk ∣zj ∣2

which I think of as some subset of tn, which I have to identify somehow with its
dual.

At the end of the day the moment map of the subtorus action [unintelligible].
Next we’ll do symplectic reduction. The general procedure is to look at the

regular values, consider a point (λ1, . . . λm) in Rm.
Consider µ−1K (λ)/K. This is the toric manifold X on which there is an action,

this Tm/K action. But that is just the torus Tn. So there is a two-step process.
You have two symplectic reductions involved.

By construction, the reduced symplectic form ω carries a natural moment map
π ∶X → Rn ≅MR ≅ t∗n.

Denote P as the image of π. This is the standard polytope associated to a
symplectic toric manifold. As it depends on λ it comes in a family depending on
the choice of λ.

What is the description of the moment polytope? It’s the U ∈MR [pictures] such
that ⟨u, vj⟩ − λj ≥ 0. As you change λ, the moment polytope shrinks and expands.

I’ll denote by ℓj(u) the difference ⟨u, vj⟩−λj . Conversely, there are the Delzant’s
theorems which say this polytope uniquely determines X as a Tn-equivariant sym-
plectic manifold modulo this Tn-equivariant symplectic diffeomorphism. In fact,
there is Guillemin’s formula, and the symplectic form can be written purely in
terms of the moment polytope.

ωP =
√
−1∂∂̄ (π∗ (

m

∑
i=1

λi log ℓi + ℓ∞))

where

ℓ∞(u) =
m

∑
i=1
⟨u,ui⟩ = ⟨u,

m

∑
i=1

ui⟩.

This is the Kähler potential. I’ll stop here. Next time I’ll write down the potential
function explicitly in terms of this data.

7. May 13

Let me give a reference, Surveys in Differential Geometry 2012, pp 229–295. The
title is Lagrangian Floer theory on compact toric manifolds. I have to finish up, I
don’t have much time. Today will have to be very quick.

The homological mirror symmetry is abstract, what is a concrete consequence?
One basic question is the following.

Question 7.1. Does homological mirror symmetry imply classical mirror symme-
try?

L‘’ike for instance, the expectation of curve counting. If it does, how will homo-
logical mirror symmetry include this kind of information. In this regard I’ll state a
theorem we proved. This is about a relationship between the quantum cohomology
of something and the Hochschild homology of some Fukaya category.
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So classical mirror symmetry has a symplectic side and a complex side, (M,ω)
mirror to (M∨, J). There should be a quasi-isomorphism between two triangulated
categories. On the left hand side, the objects should be Lagrangian submanifolds. If
you want to realize these objects geometrically, you have to allow singularities. On
the right hand side there is a complex of coherent sheaves. This is the reason you
have to allow resolutions on the left hand side. There’s no geometrically rigorous
way to construct this object. The morphisms on the left side are HF (L1, L2),
the Floer homology, and on the right hand side the Ext group Ext(E1,E2). Then
QHb(M,ω), the “big quantum cohomology” should correspond to deformations of
J , H∗

∂̄
(M∨, J).

In a way, Lagrangian Floer homology encodes things on the mirror side. The
Fukaya category should include the information from the B side. Our construction
suggests that the A-model construction includes some of the data, that’s what
homological mirror symmetry is about. So in fact there is the conjecture that there
is QHb(M,ω) which is isomorphic to HH∗(Fuk(M,ω)) under some conditions.

Theorem 7.1. (AFOOO) Let X be a toric manifold. In this case, let me de-
note by Ub is some kind of subcategory of Fuk(M,ω) (in the triangulated context)
generated by b-balanced toric fibers {(L1, b1), . . . , (Lk, bk)}. Then, first of all, Ub

split-generates Fuk(M,ω), and there is an explict “open-closed” map qb which
induces an isomorphism on homology QH∗b(M,ω)→HH∗(Ub).

Here b-balanced toric fiber is Lu ∶= π−1(u) for u ∈ Int P and b is a b-deformed
weak bounding cochain and b is an ambient cycle in the the cycles generated by
toric divisors.

I think I should define this open-closed map and start from there, let me call
this qℓ,k, which goes Ω(M)⊗ℓBxΩ(L)→ Ω(L) where BkΩ(L) is ⊗k Ω(L)[1]. Then
I want to write, let’s say,

CH∗(Ω(L)) =
∞
⊕
k=0

Ω(L)⊗(k+1)

CH∗(Ω(L)) =⊕Hom(Ω(L)⊗(k+1),Ω(L))
Then qℓ,k,β uses the moduli space

Mk+1,ℓ(β) ×Mℓ×Lk (∏Qi ×∏Pi)

Then qℓ,k,β(ω1, . . . , ωℓ, α1, . . . , αk) = (ev0)!((evint1 )∗ω1∧⋯∧(evintℓ )∗ωell∧(ev1)∗α1∧
⋯ ∧ ev∗kαk).

Then qℓ,k ∶= ∑β qℓ,k,βT
ω(β).

Now qℓ,k defines for each b a map Ω(L,Λnov)⊗ℓ ⊗BkΩ(L; Λnov) → Ω(L; Λnov)
and so a map Ω(M)→ CHk(Ω(M)). The picture in terms of holomorphic disks is
[picture].

We can expand this construction imposing the requirement that each segment
zizi+1 lies in a different Lagrangian Li. In this way you can categorify this con-
struction.

Let me prepare some homological machinery. Now CH∗(Ω(L)) has a natural
A∞ structure. Let me write this ⊕∞k=0Ω(L)⊗k+1). then ∂H(x0, . . . , xk) = ∑±x0 ⊗
⋯d(xi)⊗⋯xk +∑±(x0, . . . xi ∧ xi+1 ∧ . . . xk).

Then I define ∂H = ∂0
H +∑k,β ∂H,k,βT

ω(β), where

∂H(k, β)(x0, . . . , xn) =∑±(x0, . . .mk,β(xi, . . . , xi+k−1), . . . , xn)+∑±mk,β(xj , . . . , xn, x0, . . . , ki−1)xi, . . . , xj−1
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[pictures]

Definition 7.1. HH∗(Ω(L)) isH(CH∗(Ω(L), ∂H)) andHH∗(Ω(L)) isH(CH∗(Ω(L), δH)).
Then one can categorify by putting different Lagrangian submanifolds on each
boundary.

Now we can deform δH and the Hochschild cup product ⋃ using b, which I’ll
denote δbH and ⋃b.

Theorem 7.2.
qb ∶ QHb(X)→HH∗b(Fuk(X))

is a ring isomorphism. I might want to assume some nondegeneracy condition for
b. This is at the level of Frobenius supermanifolds.

Now here is a very important one. There is a notion of a Kodaira–Spencer map,
which we denote KSb ∶ QH∗b(X,Λ0) → Jac(POb). This is the so-called Kodaira–
Spencer map, where POb ∶ (Λ∗)n → Λ where n is the dimension of X. This is the
b-deformed potential function.

So now I want to give a precise definition of a Frobenius algebra. In general,
(C,∪, ⟨ , ⟩,1) is a Frobenius algebra if they satisfy

(1) C is a Z/2-graded vector space (over the Novikov field)
(2) ∪ is a graded commutative associative product with 1 as a unit.
(3) ⟨ , ⟩ is a graded nondegenerate bilinear pairing of degree n (mod 2), so

Ck ≅HomΛ(Cn−k,Λ).
(4) Finally, ⟨x ∪ y, z⟩ = ⟨x, y ∪ z⟩ for all x, y, z

There is a nice way to construct a Frobenius algebra using Feynman diagrams.
Let Z(C) ∈ Λ, and {eI} is a basis of C. Then Z(C) is a kind of trace. We have

gIJ = ⟨eI , eJ ⟩, gIJ = (gIJ)−1 defined to be

Z(C) ∶=∑
I

∑
J

gI1J1gI2J2gI30gJ30⟨eI1 ∪ eI2 , eI3⟩⟨eJ1 ∪ eJ2 , eJ3⟩.

Proposition 7.1. The right hand side does not depend on the choice of basis.

Let me define

Crit(POb) ∶= {y⃗ ∈ (Λ∗)n∣yi
∂POb

∂yi
(y⃗) = 0; valP (y⃗) = (valP (y1), . . . valP (yn)) ∈ Int P}

Theorem 7.3. There is a one to one correspondence between Crit(POb) and b-
balanced Lagrangian fibers with HFb(LU,b) ≠ 0.

This forms the “exceptional collection” we denote Ub the triangulated subcat-
egory generated by these b-balanced fibers. The theorem was that these generate
the Fukaya category. This uses a version of Abouzaid’s generation criterion, i.e.,
that qb is injective.

Proposition 7.2. (FOOO)If y⃗ ∈ Crit(POb) and u ∶= valP (y⃗) ∈ Int P then mb,y⃗ =
0. Then that automatically means that HFb(L, by⃗) ≅H∗(L,Λ).

Now I’m ready to introduce the residue pairing. Well, first. We have that

(H∗(L(U),Λ),mb,y⃗
2 , ⟨ , ⟩PDL(U) ,1) forms a Frobenius algebra for each b. Then we

can write Z(b, y⃗) as before. In this case, geometrically ⟨eI1∪eI2 , eI3⟩ =m
b,y⃗
2 (eI1 , eI2), eI3⟩.

Summing first over I3 and J3, this whole expression becomes the following

∑
I1,J1

∑
I2,J2

gI1J1gI2J2⟨mb,y⃗
2 (eI1 , eI2), vol⟩⟨m

b,y⃗
2 (eJ1 , eJ2), vol⟩.
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Then I can switch these sums to have

⟨mb,y⃗
2 (eI2 , vol), eI1⟩⟨m

b,y⃗
2 (eJ2 , vol), eJ1⟩.

[pictures]. This is the “one-loop partition function.” This picture is very important
in the proof of the isomorphisms.

Now I can define the pairing. We are going to define the residue pairing on the
Jacobian ring

⟨ , ⟩ ∶ Jac(POb) × Jac(POb)→ Λ

defined by

⟨1y⃗,1y⃗′⟩ = {
1

Z(b,y⃗) y⃗′ = y⃗
0 otherwise.

Proposition 7.3.

Z(b, y⃗) ≡ detHess POb(y⃗) (mod T )λΛ+
where λ = valP (Z(b, y⃗))

So this is an indication that if you look at some oscillatory integral with a Morse
function in the exponent, there is an asymptotic that tells you [unintelligible]. Here
is a key proposition.

Proposition 7.4. (FOOO) If POb is Morse then actually

⟨Z1, Z1⟩PDX
= ⟨KSb(Z1),KSb(Z2)⟩res

.

Remark 7.1. (1) the left hand side does not depend on b.
(2) POb is Morse for a generic choice.
(3) We can extend the residue pairing to all of b by continuity. Now the residue

pairing is defined as a whole family. We have a Frobenius manifold structure
over Jac(POb) sitting over {b}.

Now I’ll state:

Theorem 7.4. (AFOOO) Say X is a smooth compact toric manifold. Then the
qb is an isomorphism

QHb(X)
∼Ð→HH∗(Fuk(X,ω)).

We constructed a map pb ∶HH∗(Fuk(M,ω))→ QHb(M) using the same mod-
uli space in a different way. The key proposition is that for each h ∈HH∗(Fukb, Fukb)
we have ⟨h,qb(g)⟩HH = ⟨pb(h), g⟩PDX

.


