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1. Dec 14: Rinat Kashaev: Quantum Teichmüller theory and TQFT I

Thank you very much, it’s a great pleasure to be here. Thank you very uch
for organizing this. This is my first visit, great country, great people. I’m looking
forward to learn myself, new things. My title is about quantum Teichmüller theory
and TQFT and I’d like to outline what will be the plan. I’ll list a few subjects,
some from the abstract.

(1) I’ll start with motivation for the subject.
(2) I’ll describe Teichmüller space, the main object of study.
(3) In particular I’ll describe Penner coordinates
(4) and another set of coordinates, which I’ll call ratio coordinates. These four

subjects will probably be the subject of today’s lecture.
(5) I’ll discuss the groupoid of ideal triangulations, which is an algebraic for-

malization of the Teichmüller theory with an emphasis on the action of the
mapping class group. This action is what makes Teichmüller space inter-
esting; topologically it’s just a Euclidean space

(6) I’ll continue with quantization, a combination of the physical idea of the
canonical quantization and something using the canonical symplectic struc-
ture on Teichmüller space.

(7) The quantum dilogarithm is one of the main things underlying this quantum
theory.

(8) I’ll go on to dihedral angles and symmetry. Up to now it will be a two-
dimensional theory, surfaces, and spaces associated to surfaces. This will
be a bridge to the three-dimensional picture.

(9) At this state we will be able to formulate a Teichmüller TQFT that will
allow us to calculate invariants.

(10) Hopefully I’ll discuss a four-dimensional aspect of the theory, a relatively
new thing in the theory. I’m very optimistic about further development
along these lines, which initially wasn’t visible.

(11) Then finally I will try to convince you that the theory is really very con-
crete and practical in the sense that one can do concrete calculations with
concrete results, calculations, and so on.

(12) Finally there will be a version of the volume conjecture, which will relate
to hyperbolic volume.

So divide it by three, combine it into groups of four items, and this is three lectures.
We’ll see how we manage in practice. Roughly that’s my intention. If you have
questions, please.
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1.1. Motivation. So let me give some motivation. Let G be a reductive Lie group
and M a 3-manifold. This is just supposed to give an idea of the picture that I want
to be talking about. The Chern–Simons action functional CSM(A) = Tr ∫M A ∧
dA + 2

3
A ∧ A ∧ A, where A is a connection form, a 1-form on M with values in

the Lie algebra of G. This is a functional of that 1-form, and then we have gauge
symmetry, which consists of invariance up to some integer ambiguity with respect to
the transformation which replaces A with Ag = g−1Ag+g−1dg, where g is a function
M → G. The most convenient way to think of this is with respect to coordinates
in the Lie group. In mathematical terms, this is left invariant one-forms in the Lie
group. This is again just a Lie algebra valued 1-form. You can see that this integral
is invariant at least when g is in the connected component of the constant map.
This is an infinite dimensional symmetry, and so modding out by it you get a finite
dimensional space. The space of gauge symmetries is G and the space of connection
1-forms A

The main object of interest is the partition function ZG,h̵(M), and the definition
is very formal

ZG,h̵(M) = ∫
A/G

eih̵CSMADA

written in this form this is very formal, but physicists can manipulate it, do as-
ymptotic expansion when h̵ is small. A rigorous definition is not this formula, so to
make this rigorous is the main motivation of my lectures.

Then maybe I should say here, what will be the method of solving the problem?
It will be canonical quantization of the phase space MG(M), and what is this phase
space? We can think of it in different ways. On one hand, we can think of it as the
set of critical points of CSM(A) modulo G. We treat this as a function of A and
then can write that the differential is 0. We can write out criticality conditions for
this action functional, and identify them as the set of flat connections modulo the
gauge action. Flat means that we can write the curvature (I will not do this, it’s
not the main subject of my lecture) and it’s zero.

Finally, the interpretation that will be used later, I’ll write the phase space
RG(M)/G, where RG(M) is the space of group representations given by group
homomorphisms from π1(M) → G, and we consider the quotient, only up to con-
jugation by G, and the last interpretation of the phase space is convenient because
it’s only finite dimensional. We have to be carefuly about what the quotient is.

Now I’ll move on.

1.2. Teichmüller space. From now on G will be PSL(2,R) and M will be S ×R,
where S is of type Sg,n, where S is the complement in a closed compact surface S̄
of genus g of n points V = {p1, . . . , pn}. [Picture]. We call V the set of n punctures.

We’ll assume that we have at least one puncture, and that the Euler characteristic
of S is negative. A general fact is the following, that MG(M) becomes a disjoint
union ⊔∣k∣≤−χ(S)MG,k(M), this is a disjoint union of connected components. Here
k is the Euler number of the representation. This comes from π1(G) = Z. This is
a Goldman result. What is important for me, Teichmüller space is one of these
components, T (S) is MG,±χ(S)(M). We take one of the two components given
by the maximum absolute value. This is called the geometric component and is
characterized by the following properties.
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Remark 1.1. (1) First of all T (S) corresponds to representations (up to con-
jugation) h ∶ π1(S) → PSL(2,R) which are faithful, discrete, and have par-
abolic holonomies around punctures. Here I can make a comment on the

choice of sign. Parabolic holonomy means they are conjugated to ( 1 x
0 1

)

and the sign of x is invariant under conjugation, and the sign of x corre-
sponds to the choice of sign in our component.

This allows us to identify S with H2/Γh where Γh is h(π1(S)) ⊂ PSL(2,R),
the orientation preserving isometries of the hyperbolic plane Isom+(H2).
This lets us consider S as a hyperbolic surface, S carries a complete hyper-
bolic structure, so we can start doing geometric things, geodesics and so
on.

In general you can’t have all three of these properties outside this geo-
metric component.

(2) The fact is that T (S) is topologically trivial, it’s homeomorphic to R6g−6+2n.
This makes the space trivial in a topological sense.

(3) There are two things that make it nontrivial, a symplectic structure which
comes with any action functional if you start the action functional, the
minimal action principle, the symplectic structure comes for granted. This
is known here as the Weil–Petersson symplectic structure and can be defined
independently of the Chern–Simons action functional ωWP ∈ Ω2(T (S)). I
won’t write it out explicitly now.

(4) There is an actionMCG(S) on T (S), the mapping class group of S, which
is orientation-preserving homeomorphisms of S modulo the connected com-
ponent of the identity Homeo+(S)/Homeo0(S). It’s a discrete group, and
the important thing is that the Weil–Petersson form is invariant under this
action.

The quotient is very important, is moduli space; it’s singular. I’ll be
focused on the Teichmüller space.

Now I’ll describe the concrete coordinate system. I’ll stop here and take a break.

2. Penner coordinates

So Penner coordinates start from a compactification of another space, which is
called decorated Teichmüller space and is called T̃ (S), which is {(m,H1, . . . ,Hn)}
where m is in T (S) and Hi is an m-horocycle around the ith puncture. So we
draw circles. Geometrically they should be horocycles, so when we think of S as
a quotient space of the upper half-space. These should be arcs in the upper half
space corresponding to [picture]. This has a forgetful map φ to T (S). The decorated
Teichmüller space is homeomorphic to R6g−6+3n. The Penner coordinates are an
explicit equivalence.

First I’ll need the idea of an ideal arc.

Definition 2.1. An ideal arc on S is a (nontrivial) isotopy class of a simple path
running between punctures.

I should say

Remark 2.1. The set of ideal arcs A(S), for any m ∈ T (S) and any ideal arc a
in A(S) there exists a unique representative of a given by an m-geodesic. This is
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evident by writing S as a quotient of H2. The lift joins two points at the boundary,
so just straighten it to a half-circle.

Definition 2.2. The λ-length is the map λ ∶ T̃ (M) ×A(S) → R>0 which is defined
by [picture]. We measure the geodesic length between the two points of the straight-

ened a on the corresponding horocycles, call this δ. This hyperbolic λ(m̃, a) = e±δ/2,
where we take the plus sign if the horocycles intersect nontrivially.

Remark 2.2. We can define the length in the picture lifted as follows [picture]

Definition 2.3. An ideal triangulation is a maximal subset τ ⊂ A(S) of pairwise
disjoint ideal arcs on S. We treat punctures as removed points. Then set theoreti-
cally, this means that there are disjoint representatives in the isotopy classes. If we
look at the complementary regions they should be triangles.

I think now I can state the theorem of Penner, which will consist of several
theorems of Penner. It has several parts.

Theorem 2.1. (Penner)

(1) φ(m̃) = φ(m̃′) if and only if there is α ∈ rRV>0 (remember V is the set

p1, . . . , pn) such that for any a, λ(m̃′, a) = λ((̃m), a)α(pi)α(pj) where ∂a =
{pi, pj}.

(2) For any ideal triangulation τ the map λτ ∶ T̃ (S) → Rτ>0 defined by λτ(m̃)(a) =
λ(m̃, a) is a homeomorphism.

(3) The pullback of ωWP under φ (I didn’t define it before, but it’s okay) is the
sum over triangles ∑ da∧db

ab
+ db∧dc

bc
+ dc∧da

ca
, where a, b, and c are the signs

of the triangles.
(4) If we have a pair of ideal triangulations that differ only as follows:

τ

e

a b

cd

τ ′

a b

f

cd

Then λτλ
−1
τ ′ is ef = ac + bd, the Ptolemy relation.

All of the difficulty is devoted to this part of the theorem. Everything
else can be restored by this relation. If you go deep into the woods, you just
remember this.

Now I’ll say a few words about the proof of this theorem, just the most important
things, with which you can restore the rest of the proof yourself without much
difficulty.

The first thing I want to say is that the inverse of λτ , what is this inverse map?
What we do is cut out small open disks centered punctures and then get a CW
complex composed of truncated triangles. Then we can orient these, there is a
distinguished direction from the orientation of the surface, where things were cut
out. Then we take a CW structure and consider its 1-skeleton. To give the inverse
of this map, we need parallel transport along the 1-skeleton of the map. It suffices
to give PSL2(R) matrices for each edge of this complex. Then we can realize any
path in the surface, choosing a basepoint, and then any path can be deformed to
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an edge path of this one-skeleton, as long as the product is trivial around each of
these hexagons. This will essentially be, each short curved edge we use the matrix

( 1 a
bc

0 1
) where a is the opposite length and b and c the adjacent ones, these are

the lengths in Rτ>0. To the long edges, associate ( 0 a−1

a 0
). To get the horocycle,

if you take a basepoint at the boundary of the disk, the horocycle, you define, the
one for parabolic elemennts, the horizontal line, at height 1.

The second remark concerns the proof of part 4. This proof is very easy once
you accept the first remark, about the inverse of λτ , for the following reason. You
just look at one of the corners, the a–b corner, say, in both triangulations. You get

( 1 d
ae

0 1
)( 1 c

eb
0 1

)

and this should be equal to

( 1 f
ab

0 1
)

This gives one single relation
d

ae
+ c

eb
= f

ab
and that’s a restatement of the Ptolemy relation.

I have a fourth item in the plan, but I will need more than ten minutes. So
probably we leave it for tomorrow.

3. Stavros Garoufalidis: Asymptotics of quantum invariants I

I do not take lectures during slide talks.

4. Sergei Gukov: Volume conjecture as a simple quantization
problem: its generalization and categorification I

안녕하세요 여기에 초대해서 감사합니다.
I already gave several lecture notes described in the program. There are various

exercises there. Instead I’ll try to use my time wisely and efficiently so that you can
take advantage of my presence.

My unofficial title is “making connections.” We like to join with each other, make
friends on facebook and so on. The only way to improve is not to know every detail
but to join details and see connections. That will be my goal here, to say what we
see in one area of mathematics has a translation somewhere else. By knowing how
to translate, you can get some mileage.

I’ll give you a roadmap and then try to take it easy (on myself too). We’ll talk
about knots and knot polynomials and three-manifold invariants. I’ll connect this
to quantization, really symplectic geometry.

I want to connect both of these to the recent development that goes by the names
“knot homologies” and “categorification” which are two keywords that refer to the
same area. We’ll try to make a connection with them.

Something else that relates to this story that unfortunately will be left behind
is the story of 4-manifolds, which connects to this. If pressed or if time permits I
can say something, but probably I’ll have to sacrifice. I encourage your input about
what direction we go in. Another area I wasn’t really planning to cover is that this
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area recently got connected to real QFT, real physics, and also string theory. That
if you wish is yet another box which is very popular in non-mathematical physics.
It describes real interesting physical phenomena. I could say string theory here or
equally well without losing generality I could say enumerative geometry, because
all the problems involving string theory in this box have to do with enumerative
invariants, like most famously Gromov–Witten invariants.

These two boxes probably don’t get much attention, but if I were going to connect
these to Tobias Eckholm’s then you’d see some connection there.

This enumerative geometry has to do with nice smooth geometries, at least in
the context I have in mind, and the smooth geometries sometimes arise as limit
shapes out of discrete combinatorial gadgets out of knots and three-manifolds.

I’ll start with a very basic historic review of basic types of invariants. I should
probably start around 89 or 90 with quantum invariants of knots and three man-
ifolds. Here there is a very well-known and famous breakthrough of Witten and
others who said by looking at a quantum version of Chern–Simons theory, you
can study geometry and topology of knots, and Chern–Simons theory on M3 is
k
4π ∫M3

Tr(A∧dA+ 2
3
A3). The key player is this 1-form A which is a gauge connec-

tion on a principal G-bundle over the three-manifold M3, and as such it takes values
in the adjoint representation of this group G. Another thing the theory depends on,
beside M3, is the level k, an integer, also called the coupling constant that controls
how much this theory is classical or quantum. The expansion parameter h̵ is roughly
2πi
k

, and the simple or classical limit corresponds to h̵ going to 0 and from the point
of view of Chern–Simons gauge theory, taking k to ∞. As such one can use this
functional, I’ll write it as CS(A), to write the object Z(M3) = ∫ DAe−CS(A), which
will depend on all the data we specify; I make explicit the dependence on M3 but
it also depends on the group G and the integer level k or sometimes in place of k
I’ll use the variable q = eh̵ and the classical limit will correspond to q → 1. You can
put i instead of −1 in the exponent if you want.

Here we already see several key players right away, and it’s important to keep
all of them in mind. There is the dependence on the group G and the parameter k

(or h̵ or q = e 2πi
k ).

This is the definition that Witten proposed and physicists used, but it’s not
useful from the point of view of mathematics because it’s an infinite dimensional
integral. What Atiyah and Segal set out to do is to come up with a concrete alter-
native. They set up a set of axioms that essentially summarized the structure of
this version of field theory called topological quantum field theory. We’ll use this
and its generalization. That was helpful because it avoids the physical difficulties,
physicists use Feynman diagrams and I should advertise this, I’m at Caltech which
is where Feynman was.

So they define a d-dimensional TQFT as a functor Z such that to a d-dimensional
closed manifold it assigns a number (typically a complex number) called the parti-
tion function Z(Md). To a (d − 1)-dimensional manifold it assigns a vector space,
possibly graded, H(Md−1). It would be more uniform to call this Z(Md−1). This
could be confusing as Z changes. It’s natural to call this H because it should be the
Hilbert space of states. The point is that it’s a vector space of states. In modern days,
it’s important to continue this list further. It should assign to a (d−2)-dimensional
manifold a category Z(Md−2), to a (d − 3)-dimensional manifold a 2-category, and
so on and so forth. Here it depends, one of my friends and colleagues says every
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person has a number. This number tells you at what level of n-category your brain
stops functioning. I hardly get to usual categories and 2-categories have objects,
morphisms, and 2-morphisms. There are various versions, and you get some inter-
esting categorical stuff on which I’m not really an expert. Of those of you who are
interested in this, if someone gives a high level talk about categories, you can ask
whether you know which TQFT it’s coming from. I won’t go beyond the level of
categories.

There are some compatibility conditions that need to be satisfied. I’ll illustrate;
if you wish this is a crash course on TQFT structure. I’ll choose d = 3 and also
for d = 2 and d = 4. If I’m pretending to give a self-contained overview, it will be
useful, and these are perfect dimensions for low-dimensional topology. In d = 3,
many TQFTs can be related to Chern–Simons theory, namely it means that you
should be able to say, given some algebraic definition, you should be able to say, for
each G and k, the theory is what you’re dealing with. I said that everything should
depend on G and k. In dimension 3, what happens? So Z(M3) is the number, this
complicated infinite dimensional integral, which is useful for properties but not for
computations. It’s not really a number but a function of q or k, so depends on this
additional data, and we’ll come back to this dependence later.

Then if you have a 2-manifold, and in my lectures I’ll call them Σ, a Riemann
surface, possibly punctured, you’re supposed to associate to this H(Σ) which also
depends on G and k. The compatibility conditions are the following. If you have a
Riemann surface Σ, we already agree that we get a Hilbert space, and physicists
should think of this as the space of states. You look at translation invariant things
along the time dimension. Every non-closed three-manifold is bounded by some Σ,
this produces a state or vector Z(M+

3 ) ∈ H(∂(M+
3 )) and if you have an M−

3 then
you get another vector, and the invariant Z(M3) associated to a closed manifold
M3 made by gluing these two along the boundary is ⟨Z(M+

3 )∣Z(M−
3 )⟩. This is a

“cutting and gluing relation” and there are many of these, but this is one of the
most useful. You should take inner product to glue together in this way.

This is one of the Atiyah–Segal axioms, there are quite a few more, especially if
I want codimension 2 boundaries, then there will be more relations, and that will
force you to be categorical. Any questions?

I’ll give you one more example of an Atiyah Segal axiom and then we’ll try it on
something concrete. Let’s take a break.

So here we’re describing 3-dimensional TQFT parameterized by a group G and
an integer k. I can produce a 2-dimensional TQFT, if I have my 3-dimensional
TQFT, I can take Z(S1×), this will be a TQFT one dimension lower. To any
Σ I’ll get a number, and thinking of it as a 2-dimensional TQFT, manifolds one
dimension less are circles, and that’s how we can decompose our Riemann surface,
and I should get a number to a Riemann surface, a Hilbert space H to each circle,
and I can do this by saying H2D(S1) is HCS(S1 × S1), so I have a very simple
machinery, given a higher dimensional TQFT, I can easily produce a theory one
dimension lower by applying it to the circle crossed with whatever. So now I can
ask a question. Do we know what this TQFT is? There is a canonical way to
get a 2-dimensional TQFT. Another example in dimension 2 is a functor, I’ll also
call it Z2d which takes Riemann surfaces to numbers and Z2d associates to S1 a
vector space H(S1). In two dimensional TQFTs, they’re simple and interesting,
they’re associated naturally with Frobenius algebras. Every Riemann surface can
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be decomposed into pairs of pants, if you have two vectors λ and µ, and ν, then you
can view this as a multiplication H⊗H →H, reading left to right it’s a product.

Equivalently, I’m choosing orientation so that the normal dimension goes in on
λ and µ and outward on ν, but I could dualize and say that Z of this surface is in
H(S1) ⊗H(S1) ⊗H(S1)∗; in any case, this structure is a multiplicative structures
since from two boundaries you can get a third one, and this determines the entire
TQFT. If you want the invariant of a closed 2-manifold, to glue you want to sum
or take the inner product with respect to the Hilbert space where you’re gluing.
In concrete examples you can diagonalize the product, which means that Z here is
nontrivial only if you have the same choice of state in H, so if you think of this as
structure constants, you’re saying you have cλµν = cλλλ if λ = µ = ν and 0 otherwise.

If this happens, then because the theory is topological it doesn’t matter how you
decompose, so Z can always be computed on a closed Riemann surface in a simple
way, it’s the sum over λ ∈ H of (Cλλλ)2g−2. This is a quick review or structure of
a 2-dimensional TQFT. Everything is controlled by this product or pair of pants.
Mathematically, very concretely, you get something universal to 2g − 2. For g = 2
you need two pairs of pants, shown in this picture. [picture]

What kind of TQFT is this when we take this from Chern–Simons theory? It
has a name, but I’ll tell you one more Atiyah–Segal axiom which tells us exactly
what happens here. I’ll go to another blackboard and tell you, if you have, in
general, for a d-dimensional TQFT , the functor Md−1 you get H(Md−1). What
about Z(S1 ×Md−1)? You can justify this many ways. In any case, when you try
to evaluate on the interval cross Md−1 and close it up, it’s a trace, and this is
dimH(Md−1). So this is Z(Σ) = dimHCS(Σ,G, k). More generally, and you have
to be a little more careful. If you have Fermions or spinors, what might happen is
counting variables with sign. Bosonic variables have plus signs and Fermionic have
minus signs, and Z(S1 ×Md−1) = χ(H(Md−1)). My goal in the second lecture will
be to calculate this H more concretely with G compact or even with noncompact
group, and in the latter case H will be infinite dimensional. For Atiyah and Segal
calculating the dimension or Euler characteristic by crossing with the circle is one
of the fundamental axioms.

Eric Verlinde made this very concrete by connecting it with other objects. Let’s
take the 2d TQFT which comes from 3d Chern–Simons on a circle crossed with
something. By general properties, the partition function Z2d(Σ) = dimH(Σ) and
in the special case where G = SU(2), the simplest non-Abelian group, and in these
lectures this will be a common example for me, you get

(k + 2

2
)g−1

k+1

∑
λ=1

(sin πλ

k + 2
)2−2g

where this depends on the choice of the group, on k, and on the 3-manifold which is
determined by Σ, and the formula has this structure, it’s some universal ingredient
raised to the power 2g − 2. You can extract cλλλ from this.

Now we can explore in a general example, what is the dimension of this space and
how does it look like? In the case of a 2-dimensional TQFT, it associates numbers
to closed surfaces, but its own Hilbert space to 1-manifolds, and we can calculate
the dimension of this space. I already wrote it, λ is supposed to be a basis of the
space, and dimH2dS

1 is k + 1. The basis vectors in this case take values from 1 to
k + 1, and span a basis there.
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Let me say a word about what quantum means in this context. If k goes to ∞,
then λ can be any natural number, and it sholud be regarded as labelling represen-
tations of the classical group SU(2), in fact the dimension of the representation.
You should think of λ being, well we started with a gauge theory in 3-dimensions,
and trying to cut things, you get some data associated to the gauge group. If you
have something canonical, it’s probably a representation space for this group. That
happens in the classical case.

What about in quantum? It truncates to the finite range where the representa-
tions only go from 1 to k + 1. We discover that in classical Chern–Simons theory,
you get the representation space of G, but in the quantum space, these are repre-
sentations of so-called affine Kacs–Moody of level k, that is, ĝk.

Now there is another thing we see from this formula, namely that dependence on
k appears not through k itself but through k + 2. If you want to write this in terms
of q, you get something like q = e2πik + 2. I tried to simplify things, so I suppressed
this shift by 2. If you’re trying to do G = SU(N) then here you would have k +N
in the denominator.

Now, this is the story in the late 80s or mid-90s. Then in the later 90s came along
this wonderful conjecture of Rinat about the behavior of the Kashaev invariant,
which, this starts with Rinat, that limn→∞ log ⟨K⟩nn is the volume of S3/K. In
the 90s this was a big puzzle and I wanted to understand where this came from.
There were many things that were puzzling about it. In Chern–Simons theory it
was quantum groups, affine Kacs–Moody, but the quantum dilogarithm was not
in major use. But Kashaev with Murakami and Murakami (Jun is my chair here)
showed that this left hand side, the ⟨K⟩n is the same as the nth colored Jones

polynomial at the nth root of unity Jλ=n(q = e
2πi
n ).

There are still many puzzles here. I tried to share this excitement with many
people, including my former advisor Ed Witten. But if you think about it carefully,
trace all the factors of i and little shifts, you’ll notice that the λ defined in Chern–
Simons theory in level k, it ranges from 1 to k + 1, but you’re trying to identify
the order of the root of unity, which is k + 2. But how can λ be k + 2? That’s
completely not allowed in quantum Chern–Simons theory. That was one big puzzle
about this. It tries to put this highest weight where it doesn’t belong in Chern–

Simons theory. Another puzzle, also based on the formula q = e 2πi
k+N , you always end

up with expressions in q which are roots of unity with SU(N). But if you think
about other mathematical definitions, the Jones polynomial doesn’t only evaluate
at roots of unity. So is it a root of unity or not? The community of mathematical
physicists were so set on Chern–Simons theory that it was psychologically hard to
move away from roots of unity. This was trying to push us outside the comfortable
life where Chern–Simons gauge theory lives.

I’ll finish, maybe, with one last statement, with preliminary work for later. We
talked a lot about this functor that assigns numbers, vector spaces, and categories,
and I promised to give a quick illustration of the case d = 4. In the case d = 4 it’s
supposed to map 4-manifolds to numbers, it assigns a number to a 4-manifold, and
such a number, there are several TQFTs, since I’m slowly moving through the 90s,
there are Donaldson–Witten and Seiberg–Witten. What’s interesting, and it’ll be a
little relevant for us, this Z4d will assign vector spaces to 3-manifolds (and possibly
knots), just by the same token that Chern–Simons theory will assign a number
not just to a three-manifold but also to a knot, this will assign a Hilbert space for
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K ⊂ M3. What’s interesting, most often, even though you work with a compact
group, so take G = SU(2), you’ll find infinite dimensional vector spaces, as Stavros
says there’s only two options, finite or infinite, then to take Euler characteristic
you have to regularize, and if you do it one way you get − 1

12
. Then you get vector

spaces for both 3-manifolds and knots.

5. Dec 15: Tobias Eckholm: Knot contact homology – definition and
calculation

I will start talking about contact homology, tie it to Chern–Simons in the second
talk, and then go to the volume conjecture in the last talk. When the volume con-
jecture was formulated, I was around, Murakami was visiting Sweden, I remember
he did this reformulation, I was just out of grad school, and he asked me to do
some calculations, I did some rigorous calculation with torus knots and figure eight
knots, and I asked if we should write this up, and he said no, so I never did it. Now
more progress has been made. It’s nice to have something to say along the lines I’m
going to talk about in these lectures.

Today I’ll say some basic things about knot contact homology. There will be
various levels of rigor and understanding and I’ll try to be clear what has been
done and what hasn’t. Some parts are more physical and not as rigorously proved,
it’s nice to point that out for the opportunity to establish closer ties and get that
kind of work done.

Let’s start with a knot K (or link) inside a 3-manifold. The scheme is that
we would like, knot theory is about classification of such embeddings. What we’re
using is symplectic and contact objects naturally associated to this smooth object.
So T ∗M is the cotangent bundle, and we think of it as a 6-manifold, thought of as
a symplectic manifold with symplectic form ω = dp ∧ dq.

We can think of this as a Weinstein manifold, a noncompact symplectic manifold
with some contact boundary, which is the unit cotangent bundle U∗M , the ideal
contact boundary with contact 1-form α = pdq. If you take a Riemannian metric
on M , take the covectors of length 1, this is a 5-manifold. Really it’s maybe better
to think of the contact symplectic manifold (the disk bundle) and outside take the
unit cotangent bundle cross R.

So an interesting question is what the symplectic manifold T ∗M remembers
about M . That won’t be the subject of these lectures so much in general. For ex-
ample, a remark, it’s a rather strong invariant, in general, T ∗M remembers the
smooth structure topology of M , for example, if Σ and Σ′ are homotopy spheres
of odd dimension, then if Σ and Σ′ are different mod bP then T ∗Σ is not symplec-
tomorphic to T ∗Σ′. These homotopy spheres, there are many smooth structures, if
you quotient by the less weird ones, the ones that bound boundary parallelizable
things, then the cotangent bundle distinguishes them.

This question in general is very interesting in dimension 4. We don’t know any-
thing similar in symplectic geometry in dimension 8, so it’s maybe different or
maybe the same, anyway an interesting question. But that’s not what we’re doing
here.

So what kind of objects do you associate with a submanifold in T ∗M? There’s
the Lagrangian conormal, {(q, p) ∈ T ∗M ∣q ∈ K and p∣TqK = 0} so these are the
covectors on the knot perpendicular to it.

There is the Legendrian conormal ΛK = LK ∩U∗M .
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So LK is Lagrangian, meaning ω restricted to it is zero, and ΛK is Legendrian,
meaning α restricted to it is zero.

There has been a lot of work since the 90s, Floer homology or so on, that says
these are rigid. This ΛK is a torus in a five-manifold. The knot theory there is
basically trivial, any two things are isotopic if they are homotopic. But if you want
things to be isotopic through Legendrians, that’s nontrivial, there are machines to
say when this is or isn’t possible, which is what I’ll talk about today.

If you deform a knot by isotopy, then the Legendrian and Lagrangian will deform
by their appropriate isotopy. If we know if ΛK′ and ΛK are not Legendrian isotopic,
then neither are K ′ and K isotopic.

So we’ll use this geometry to build new invariants of knots, in particular Legen-
drian contact homology.

This was known as symplectic field theory, which was invented in the 90s by
Eliashberg–Givental–Hofer. This Legendrian contact homology is maybe the sim-
plest flavor and is the one where most of the calculation has been done. Many other
parts of this theory can be computed through Legendrian contact homology. We’ll
see a little part of the other theory but it won’t play a central role.

The idea is that we want to do Floer homology of the action functional which
takes curves γ to ∫γ α. In fact, let me somehow say a few words. If you don’t have

any submanifolds, working in U∗M , the critical points of this functional are Reeb
orbits, the Reeb field R has the key property that dα(Rα, ⋅) = 0. This 2-form has
a 1-dimensional kernel which we normalize to be 1, α(Rα) = 1. If you use this
as a functional, Rα orbits will be the critical points. You should think about the
homology as being concentrated on the non-negative action. When you have ΛK ,
you can also have Reeb chords from ΛK to itself, critical points of this functional
on the space of paths from ΛK to ΛK .

Maybe it makes sense to say some words about what these things actually are
in the case that we study. Basically I will say more about this but very briefly,
what is Floer homology. I should say at once that it won’t work out exactly as we
hope. This is an attempt to do Morse homology in this setting. If you take a finite
dimensional manifold and a Morse function f [picture] then you can compute the
homology of the Manifold in this funny way invented by Witten to connect it to
supersymmetric quantum mechanics. You generate a chain complex on the critical
points and define a differential which counts rigid flow lines of −∇f [pictures].

If you take the homology here you see you have a cycle of degree 2 and in degree
0 there is one cycle. It’s easy to see that this always computes the homology. There
are nonrigid ones, but you can look at the one-dimensional moduli space of flow
lines that go down two levels, and that shows you that the differential squares to
zero.

We have in our case a chain complex represented by Reeb orbits and then we
count gradient flows.

So what are these Reeb orbits and Reeb chords in M? It’s not hard to see that
the Reeb vector field is the lift of the geodesic flow. I won’t do it, just look at
this, it’s pdq, and then [unintelligible]. So Reeb orbits are closed geodesics. What
about Reeb chords on ΛK? They are geodesics that meet K at right angles. These
are well-known objects from Riemannian geometry. Then once again, the questions
about countability, for geodesics, it’s exactly the same here.
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Now consider the symplectization R ×U∗M,d(etα), which is a symplectic man-
ifold, symplectomorphic to T ∗M minus the zero section. So we need an almost
complex structure. We pick such a structure J on R×U∗M such that J takes the
kernel of dα, it’s a complex structure on kerα, it fixes this kernel and is compatible
with dα and J∂t = Rα. Compatibility means dα is positive on J -complex lines.

We also pair these two. What does this give us? A complex structure that is
translation invariant. If I translate in the R-direction I get the same complex struc-
ture.

Let me take a little bit of time to explain why we need to consider fairly compli-
cated holomorphic curves. What would be the first attempt to define the “Legen-
drian Floer homology?” We’d try to take a chain complex generated by the critical
points of this action functional, by Reeb chords, and then try to define a differen-
tial by counting holomorphic strips interpolating between the two. I should draw
another picture [pictures].

Let me go to the first attempt to define this. Let me assume for now that there
are no Reeb orbits, only Reeb chords (for example the ambient manifold is R3).
Let’s first note that by my choice of complex structure, if I take a Reeb chord c and
multiply it by R, this is a J -holomorphic strip with boundary on R×ΛK . This says
that Reeb is tangent in the chord direction and t is the other tangent direction, so
this has a complex tangent plane.

The differential, we’d like to define ∂c by counting J -holomorphic strips which,
at positive ∞, the strip is asymptotic to R× c and at −∞ asymptotic to R× b. We’d
like these to be rigid so the only ambiguity is the shift in the R direction.

So the main theorem you need to do something like this is the theorem that guar-
antees, the sort of compactness theorem, due to Bourgeois, Eliashberg, [unintelli-
gible], and it says that any sequence of finite energy holomorphic curves converges
to a several-level building (holomorphic curve). Let me not make this precise. If we
know this, it seems that maybe we have ∂2 = 0 because if we look at the boundary,
[pictures].

How to fix this? One sees that maybe this is the only problem, and you can’t
insist that your chain complex is just an ordinary linear complex. As you see you
need things like products of Reeb chords, if you borrow from physics, you need
more particle states.

Before taking a break, I should give a definition for this.

Definition 5.1. The Legendrian differential graded algebra isA(ΛK) = C⟨Reeb chords⟩,
a unital non-commutative algebra in general, generated by monomials, a typical
thing looks like sums of products of Reeb chords where the order matters.

Then we want to define the differential, and now I should be a little bit more
precise in terms of compactness and so on. The differential ∂ ∶ A → A is defined as
follows. Basically, on products it satisfies the Leibniz rule, and then we just need
to define it on generators.

∂a = ∑∣M(a, b1 . . . bm)∣b1 . . . bm

where we’re summing over moduli spaces of dimension 1 with one positive boundary
at a and negative boundary at b1, . . . , bm. I count the number of copies of R in this
moduli space.
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I should say what M(a, b1 . . . bm) is, it’s the space of maps u from the (n + 1)-
punctured disk to R × U∗M such that du + J dui = 0, with one puncture positive
and the others negative. The boundary components map to R ×ΛK .

Now ∂2 = 0 works by the compactness theorem. If we look at the boundary of
this moduli space, then it is equal to splittings into dimension 1 [pictures].

We’ll now take a break but let me say a couple of words. There are some re-
finements. We can count with more refined coefficients, taking into account the
homotopy or homology class of the disk itself. What I said so far is a slight lie, you
have to throw in orbits. It’ll be important for the future of the subject. Once things
are all defined I’ll try to explain how to compute this thing, get more concrete.

This still has some problems. I’d like to repair this lie. The key to this theory,
in the presence of orbits other things can happen. If there are orbits, we could
have something else happen, like [picture]. What this tells you is that you have to
consider this algebra as a module over the corresponding orbit algebra. Let me be
brief about this because it won’t enter very much into what we are doing. There is
a contact homology differential graded algebra associated to U∗M , which I’ll write
Q(U∗M) generated by Reeb orbits with a differential which counts similar curves
but the asymptotics are orbits. You see that there is a difference between the disk
and the sphere. In the sphere there is no good way of ordering these outputs. You
get a signed commutative algebra, and again for the same reason you get ∂2 = 0.

Let me add again some pieces of information. The Reeb orbits, these algebras
are actually graded. Just like in the Morse theory, the expected dimension of the
space of flow lines between two critical points is the difference between their indices.
Likewise there is the Conley–Zehnder index (plus n− 3 or something like that) and
something similar for chords. In our case (n = 3) the grading is the Morse grading
on geodesics. In other words, the chords and orbits are critical points of the length
functional, it has infinitely many points in one direction but only finitely many in
the other.

These Legendrians from the geometric setup are extra nice. We automatically
have everything bounded from below. This makes life much easier. If you want to
calculate homology in degree zero, you just need to look at [unintelligible].

The degree 0 orbit algebra is simple for rational homology spheres. In fact, for
rational homology spheres, Q0(U∗M) is the algebra generated by conjugacy classes
of π1, homotopy classes of loops. For S3 this is just C. For RP3 there is an extra
class. We’ll eventually discuss relations to other manifolds. When you crush the
zero section you expect a source for deformation for [unintelligible].

Let’s take M for the time being to be R3 or S3. If you look at this thing, our first
attempt, we’re somehow counting these curves as is. If we have two of these, we
sum them. In fact, we can make a more refined curve count. These almost represent
classes in H2(U∗M,ΛK). The boundary of the curve lies in ΛK and the interior of
the curve lies in U∗M (except for the Reeb chords). In order to really get this, well,
you need to add the Reeb chords somehow. I’ll choose for each Reeb chord some
kind of capping disk, a formal thing that I keep fixed for all time. Then indeed I get
really somehow an element in this relative homotopy group. The choice of capping
disk will just be a change of variables in the algebra.

So we should upgrade the algebra not to have coefficients in complex numbers
but in some kind of group ring, C[H2(U∗M,ΛK)]. For signs I’ll be vague but you
should use an index bundle over the space of maps. You can put there an index
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bundle and if you can orient that then you can count with signs. This uses a spin
structure on ΛK . I won’t go into detail about how this can be done, at least not
today.

For a knot in S3 we use the following variables. Around the knot we have a tubu-
lar neighborhood which we can think of as ΛK , and here we have some meridian,
which we call p and a longitude we call x. So we use variables ex and ep and there
is one more variable Q = et corresponding to the class of the fiber.

Once we’ve found these generators, we have the knot contact homology differen-
tial graded algebra, which is the following.

A(ΛK) = C[e±x, e±p,Q±1⟨Reeb chords⟩
Let’s try to compute something. I’ll start by computing the knot contact homol-

ogy of the unknot. This is a kind of key calculation. Once you know the unknot,
you can figure out other knots in terms of the unknot.

So take the unknot in R3. Note first that U∗R3 can be represented as the 1-jet
space of S2, T ∗S2×R. I take (x, y) to y, x−(x⋅y)y, (x⋅y)) and pdq is intertwined with
dz −pdq. I’ll draw the Legendrian in T ∗S2. For comparison, let’s look at something
in J 0R, [pictures].

Let me now try to explain how this leads to a calculation for any knot. What we
do is take the unknot and represent any other knot as a braid around the unknot.
What then happens with this ΛK is that ΛK lies near ΛU . The conormal lies in
a small neighborhood of the conormal of ΛU . Then Reeb chords are as follows.
There will be some short Reeb chords which I will call aij and bij . You can think
of drawing the braid on an ever-increasing cone. You won’t get minimizing lines
except in two places. You can draw the braid so there are connections between the
strings in certain places and otherwise like this [pictures]. Then you have cij and
eij from the unknot.

Then the holomorphic curves behave in a controlled manner. [pictures]
Let me do one example. [pictures]

6. Sergei Gukov: Volume conjecture as a simple quantization
problem: its generalization and categorification II

Let me give a brief review. To a d-manifold Md we associate Z(Md) (a number)
and to a (d − 1)-manifold H(Md−1) a vector space.

If someone can’t tell you Z or H then they don’t fully understand the theory.
That doesn’t mean the theory is bad, it means we have more work.

There are many different theories, and sometimes in the same dimension there
are many different TQFTs.

In dimension 2, well, 2-manifolds are Riemann surfaces, and the number you’ll
associate is ∑λ(cλλλ)2g−2, where cλλλ is what we associate with the pair of pants.

Whoever has a TQFT should give me Z for every Riemann surface and also
what H is. It often is some sort of cohomology. Often H is cohomology of something.
There are many different versions even in two dimensions. I can pick any space here,
H∗(CPn), ⟨x⟩/xn+1 = 0. This is because cohomology rings are Frobenius algebras.
So CPn is too simple so maybe you want to consider more complicated things, like
the Grassmannian, which gives Chern–Simons theory. You can pick any space or
any cohomology. They all define two dimensional TQFTs. It’s a good idea to ask if
the Hilbert space is the cohomology ring of something. In higher dimensions, you
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may have to consider exotic versions of cohomology. In two dimensions, all simple
things are always based on something like that. If the space of states is infinite
dimensional, invent a space with two dimensional cohomology.

In dimension 3, we talked about Chern–Simons theory, a very special TQFT,
which associates to M3 numbers that depend on G and k (or equivalently instead
of k, use q or h̵), and so this is at the level of what we associate to a closed 3-
manifold.

You shouldn’t forget the whole tower. There’s a Hilbert space for a Riemann
surface, a category for a circle, and a 2-category for a point. If someone gives you
a TQFT, you’re legally allowed to ask all of these questions.

Yesterday I told you something about this Hilbert space in the case that G =
SU(2). More generally, you can say that the dimension of HCS(Σ) is Z2d(Σ) where
I implement this construction, where I can go from a high dimensional to low
dimensional one by crossing with S1. Yesterday I gave you an explicit example
where λ ran from 1 to k + 1 that gives the dimension of the Hilbert space in the
theory one dimension higher.

This phenomenon is a relation between TQFTs across various dimensions. If you
have a d-dimensional TQFT I described how to make a (d − 1)-dimensional theory
which has precisely this property, so that Zd−1(Md−1) = χ(Hd). This process of
going down is easy. If you have something bigger, you can just go down. This is
analogous to differentiate. It’s easy to differentiate. It’s like a certificate. This is
called decategorification. The reason is that you are lowering the categorical level.
You can reach 2-categories in a 3-dimensional TQFT. But in 2-dimensional theories
you can only get to ordinary categories.

The interesting operation is the inverse one, categorification, like integration, it’s
an art. It’s hard to construct such a thing. This is called categorification. In practice,
if you have some number, now you want to realize this as an Euler characteristic.

Yesterday we saw an example of this, a relation between the Chern–Simons
theory and the 2d-theory like this. This uses the product structure of the Grass-
mannian.

In three dimensions, there is a Chern–Simons theory. We’ll talk a lot today about
Z, my job is to describe at some point how to give a vector space given a choice of
gauge group and Riemann surface. I gave as a disclaimer that I haven’t explained
it. If someone claims to have a TQFT, you have a full right to ask about the vector
space one dimension lower.

This is homework for Sergei, and I’ll do it, either later today or Thursday, to
describe this vector space for G = SU(N), how it depends on the level k, and also
the answer for G = SL(2,C).

Again you can ask how this structure changes if you change these knobs. In
the two cases it will be finite or infinite dimensional, in fact it’s already computed
for the 2d version. If you ask this for the group OSp(2∣1), the simplest super-
group. What is the dimension of this Hilbert space and what is the analogue of
the Grassmannian? This is a place where people focus on the three-manifolds but
don’t answer the simpler question, about the vector space which is computed by
this simpler TQFT. So the question is, what is this for OSp. This is homework,
maybe not overnight, but probably over the weekend. I’ll offer a bottle of wine or a
big jar of 김치 to whoever solves it. I want the multiplication rule. I want to know
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the product in the theory. If I replace SU(n), what do I replace the Grassmannian
with? I’ll also ask, what about SL(2,R).

Moving on to 4d-TQFTs and emphasizing that they exist, these are more rare and
complicated. Going down is easy. Going up is hard. This is why you want to reduce
to 2-dimensions first. Anyway, going to dimension 4, there are two main examples
of TQFT. One goes back to the 80s, and it’s the theory of Donaldson and Witten
which associates to M4 the number Z(M4), the Donaldson polynomial, which is
#{F +

A = 0}, modulo gauge. The space associated to M3 is Floer homology, invented
by Andreas Floer, who unfortunately committed suicide. Sometimes there are tricks
to do, apart from giving a Fields medal to Simon Donaldson, these are rather hard
to compute and really work with. I won’t say anything else about them. However,
there is another version, (I should say, there are variants of the Donaldson story)
one of which is the variant of Seiberg–Witten, and that’s what we’ll talk about. It
associates to a closed 4-manifold a number and more importantly it associates to
a 3-manifold (maybe with a decoration, a knot) some vector space which is HM ,
the monopole homology.

If I decategorify, there should be a theory that computes χ(H(M3 ⊃ K)), that
turns out to be the Alexander polynomial ∆ which can be defined for knots and
three-manifolds, and can be related to other invariants.

These two theories are supposed to be equivalent and package the same informa-
tion, both at the level of Z and H. One is two copies of the other (for SU(2)) This
can be checked in every example but proving it is very difficult. To answer your
question, I’ll use the mysterious property DW = SW . Then it will be something
like two copies of ∆. Proving this mathematically is a great outstanding problem.
If you make progress, let’s not talk about a jar of 김치, you’re going to collect the
Fields medal yourself. So this is a theorem of Taubes.

In all of these cases, there is an Euler characteristic, so you have to understand
this function first and then go back. You’re doing something first in lower dimension
and then upgrading it.

Let me first define the Alexander polynomial for knots. For knots in S3, this
is fairly easy. You take, you can define it using a skein relation [Alexander skein
relation]
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Then computing ∆ of the trefoil is straightforward, it’s q+q−1 −1 or something like
that.

[missed some]

∑
i,j

dimHi,j(M3 ⊃K)(−1)iqj = ∆(M3 ⊃K,q)

Let’s take a short break and then continue the three dimensional case.
I’m done with the world of 2d and 4d TQFT. The 2d is basically always coho-

mology of something. From 4d I want to borrow just categorification and decate-
gorification.
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In Chern–Simons if you have M3 and a knot in there, to this we associate a num-
ber Z(M3 ⊃ K,q,G,λ) where λ is a color, a decoration, a choice of representation
of G, the way you compute the infinite dimensional thing, you take the trace of
the holonomy of the gauge connection along K, and here it’s the question, which
trace? It’s in the representation λ.

If you write this without thinking then λ can be any representation of G, but one
thing we learned last time is that classically, λ is a representation of G but in a full
quantum theory, forG = SU(2), the representation λ is truncated, it’s much smaller,

it depends on k or q, where q = e 2πi
k+N , and then λ should be a representation of ĝk,

the affine Kacs–Moody, so for instance λ is in the range 1, . . . , k + 1 for G = SU(2).
This is interesting, and if k becomes large you get any representation, the classical
answer.

Then we ask the following question (bless you), you have Z the number which
depends on all these things, you can ask how Z(M3 ⊃K,q,G,λ) depends on various
things. It depends on the knot K, for instance. This leads you to consider classes
of knots for which this gives you the same answer. It helps to organize knots into
special classes but not so easy. You can ask how it depends on G = SU(N) for
varying N . This, and then for most of the time we’ll stick to knots or links in S3.
Unlike the previous one which is hard to answer, this has a simple answer. You do
computations for various knots and try to compare your results for different values
of N . You do many computations and realize the answer depends in a nice regular
way, you can write a nice function of 2 variables a = qN and q, and the dependence
gives you an answer for different ranks. Let me illustrate how this goes.

In fact for knots in S3, the colored (with the simplest possible color, λ the
fundamental representation), invariant Z behaves in a very simple way

qNZ

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

??__

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

− q−NZ

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

??__

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= (q − q−1)Z

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

XX FF

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

and then replacing qN ith a we get the HOMFLY-PT polynomial at a = qN . I think
in this case people write P instead of Z.

You can do this, package all the ranks together, that’s what’s going on.
Computations then are really easy, and the answer for the trefoil knot is as

follows, P of the trefoil knot is aq−1 + aq − a2.
For homework, compute P (a, q) for your favorite knot and see what happens,

and you see already very quickly a lot of things that were computed by hard work
for Chern–Simons theory. SOmething interesting happens setting a = q and a = q−1.
First of all, do it for many different knots, and then try to explain. Maybe just
think about it.

Okay, how does this depend on color or the choice of λ? This is a cool thing. It’s
precisely the volume conjecture. This is a little more interesting. If you’re doing
practical computations for the trefoil, you quickly spot the dependence on N , then
you can take SU(2) and try to play with representations. Here you’re not going to
notice anything simple right away. You’ll see for different λ that nothing simple hap-
pens right away. This will be more subtle than regularity. Even though the number
of terms grows, there is a way to tame the zoo. As an example from combinatorics,
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suppose you want to study a problem that involves counting three dimensional par-
titions. Take a positive octant in Euclidean space, then start putting boxes in the
corner of the room. [puts box in corner]. This is a 3-dimensional partition, π, you
can make π. If you’re familiar with young tableaux, this is two dimensional boxes
fitting in a positive quadrant. So start counting these guys, you can easily introduce
a generating function, ∑π q∣π∣, it’s always a good example to put the first few terms,
it’s

1 + q + 3q2 + 6q3 +⋯

and this is ∏k(1− qk)−k, related to the trilog, and you can wonder whether there’s
some sort of thing controlling this. In combinatorics you have a so-called “limit
shape” by letting the norm of π go to ∞. If you scale things appropriately, you get
a nice beautiful algebraic curve which is 1+ex+ep = 0. If your size of representation
gets bigger and bigger, what’s the limit shape for our invariant?

So now what we’re trying to do, I need my box, it has all the chalk in it. Back
to real life. If you ask, first of all, how Pλ depends on λ, then for starters, you
can ask about partitions that are a single row or column of boxes, and this is, how
about the size of Pλ(K;a, q) as the number of boxes n goes to ∞? Well, this goes
to ∞. Motivated by limit shape, you rescale, so q = eh̵, set this to 1, and this is
very much like the classical limit h̵ → 0, and it would be the classical limit except
you are letting the representation get bigger. The representation gets bigger as the
q goes to 1. The only thing you have to know is how to correlate the growth of the
partition and the shrinking of the boxes to get something sensible.

If you try to compute holonomy of the gauge field A around a strand decorated
by λ, this holonomy has eigenvalues that are roughly qλ (in this case qn). Therefore
you should take qλ fixed. LEt me say that you want x = qn fixed. Once you have
this input from gauge theory, you can say, aha, I want to take the classical limit,
where the representation becomes bigger and bigger, but take the logarithm and
divide by n,

log ∣Pn(K;a, q)∣
n

and take the limit as n → ∞. So the tricky part is to engineer what kind of limit
you want to take. The variable a should be fixed, but there are tricky things, we
want q to go to 1 and n → ∞ but fix qn. So h̵λ should also remain fixed, it’s logx
in this case. Then what should be the right hand side of this?

It should be a function V (K;a, x) depending on the variables we kept fixed.
We can let x be a complex variable. The Kashaev invariant is a = q2, the colored
Jones polynomial, and the fixed value is 1. That’s the original form of the Kashaev
conjecture. Now you can play with details of this limit and keep the variable a
which started life in the HOMFLY-PT polynomial.

What’s more interesting, I’ll finish with more homework, sorry, there’s lots of
homework but let me give a little more, I have some too, I should tell you about
the vector space that I promised.

The function V is a close analogue of the volume function, V (K;a, x), it’s com-
puted from a nice algebraic curve, I’ll call it a “spectral curve” or “limit shape”
using motivation from combinatorics, the zero set of a polynomial A(x, y;a) in
C∗
x ×C∗

y.
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The idea is on this zero locus you have to integrate a differential 1-form from a
fixed base point to the point of interest. This, integrated against dθ, will give you
the volume form. I’ll talk about that next time.

Let me give another homework assignment and finish there.
Study similar asymptotics (compute analogous volume function) for the gadget

Pn(T ), T the trefoil, where n is the number of boxes in a single row, which is

n−1

∑
k=0

an−1t2kqn(k−1)+1 (qn−1, q−1)k(−atq−1q)k
(q, q)k

and you’ll get a volume function V (x;a, t), and if you wish, it will be a volume
function which depends on three coordinates. The coordinate x has an interpreta-
tion. Computing the function is fairly easy, but I really offer perhaps many bottle
or a whole case of champagne or fine wine for anyone who finds a definition of this
volume. For t = −1 this is exactly the augmentation polynomial that Tobias will talk
about it. There are other specializations. This is a nice classical object, comes from
an algebraic curve, something nice, I believe it has a nice mathematical definition.
Therefore I offer the whole case of champagne or fine wine. I’ll tell you t next time,
I’ll talk more about the meaning of this polynomial and what it is. This depends
on many variables, q, a, and t. What I’m trying to hint at is that this is a very
powerful invariant of the trefoil, and this invariant is really cool and exciting and
you can see how it relates to colored Jones, Alexander, and many other things. I’ll
tell you next time.

7. Rinat Kashaev: Quantum Teichmüller theory and TQFT II

Let me recall what I was talking about yesterday. I was talking about something
where Sergei talked a lot, I had π1(S) → PSL(2,R), and if I call this M(S) when
I mod out by conjugation by PSL(2,R). So we have M(S) = ⊔∣k∣≤−χ(S)Mk(S)
and we defined the Teichmüller space T (S) = M±χ(S)(S) and then decorated Te-

ichmüller space T̃ (S), which came with a a projection φ to Teichmüller space,
and we had the set of ideal triangulations ∆(S). Recall S is of type Sg,n which
is S̄g/V , and V = {p1, . . . , pn}, and my restrictions are that V is nonempty and
2 − 2g − n = χ(S) < 0. Then, with this restriction on S we have the ideal triangu-
lations and the identification, the Penner parameterization, we choose τ ∈ ∆(S),
an ideal triangulation is a subset of ideal arcs A(S), a maximal set of pairwise

disjoint such arcs. Then λτ sends T̃ (S) → Rτ>0 so we parameterized this decorated
Teichmüller space by assigning positive real numbers on all edges of the triangula-
tion.

We had properties that if we have a flip in τ to τ ′ related by changing one edge

τ

e

a b

cd

τ ′

a b

f

cd

then λτ(m̃) and λτ ′(m̃) are related by the Ptolemy relation ef = ac+bd. This is the
most important relation in the whole theory, everything is encoded in this single
relation.
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A part of this, we also noticed in these coordinates, φ∗ωWP , the pullback of the
Weil–Petersson symplectic form, is ∑ da∧db

ab
+ db∧dc

bc
+ dc∧da

ca
, and to be strictly correct

this should be pulled back further by λ−1
τ , but this is a homeomorphism so we can

omit that.
This is briefly what I was talking about yesterday. Now the goal is to quantize

things. To do that, I’ll use another set of coordinates, called ratio coordinates, and
what we do is the following.

7.1. Ratio coordinates.

Definition 7.1. A dotted ideal triangulation is an ideal triangulation where each
triangle has a distinguished corner.

Before we had just a triangle, and now we put a dot in one corner.
Now we define a map rτ̇ ∶ Rτ>0 → R2τ̇2

>0 , and if I write a dot it’s a dotted ideal
triangulation and if I don’t write a dot then I take the ideal triangulation that is
the image under forgetting the dots. Here τ2 is the set of triangles.

We just put two ratios inside. We have the dot in a triangle, and inside we put
b
c

and then a
c
. We take them in a certain order, first the right side and then left

side, to call them the first and second component. That’s the definition of rτ̇ . This
is a new space, this map is neither surjective nor injective. We can always think in
terms of vector spaces by taking logarithms, we can deal with R to some power, so
we can think in terms of group homomorphisms. This map becomes, even without
that, any power of R>0 is a group, and this is an Abelian group homomorphism.

Now what I want to say is the following. Well, let me define a second map, sτ̇ ,

this goes from R2τ̇2
>0 →H1(S1,R>0), and we define this, f ∈ R2ṫ should, to the class

of a closed loop, assign a number, sτ̇(f)(γ) ∈ R>0, we define by putting γ in generic

position with respect to triangulation and then calculate∏Li=1 s(γi) where γ is given
by γ1⋯γL, and then γ intersects a sequence of triangles. These arcs of intersection
are denoted by γi. [picture].

We say how we calculate s(γi), these are positive numbers, where s(γi) depends
on how the dot is places with respect to γi. There are six possibilities taking into
account orientation, but orientation just makes inverse so I won’t write this case.

It’s xi/yi or y or x for fi of a triangle being (xi, yi), depending on which corner
is clipped relative to the dotted corner. [pictures]. The product around the triangle
is one.

The following is an exact sequence:

1→ R>0
constÐÐÐ→ Rτ>0

rτ̇Ð→ R2τ̇2 sτ̇Ð→H1(S1,R>0) → 1

This is an easy theorem. Let me remark.

Remark 7.1. (1) R2τ̇2
>0 ≅ P T̃ (S) ×H1(S,R) is not canonical.

(2) R2τ̇
>0 is the “Teichmüller” component of MG(S) with G = GL(2,R)/{±1},

this is PSL(2,R)×R. This space is like a moduli space of distinguished com-
ponents for that group. If we start with that group, we’ll just be describing
by assigning a pair inside each triangle. In principle we’re not obliged to
mod out by ±1 but we have to choose a sign of the determinant, we have
two signs and we have to decide on them.
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For us, it is not important what is the global thing about this space. What we’ll
be doing next is specifying a symplectic structure. Now R2τ̇2

>0 is even dimensional
and each triangle has a paired set of coordinates.

Let me erase here and put the second part of the easy theorem, which is that, let
ωτ̇ = ∑triangles

dydx
yx

, like before but now each triangle contributes one single term

from the coordinates. Then r∗τ̇ωτ̇ = (λ−1
τ )∗φ∗ωWP .

The second part is very nice because now we can forget about decorated Te-
ichmüller space, which wasn’t symplectic because we were pulling back a symplectic
form to a fibration, it was degenerate on the fibers.

So what happens if, for any τ̇ and τ̇ ′ in ∆̇(S), what do we have? We have maps

Rτ>0

rτ̇ // R2τ̇2
>0

Rτ
′

>0

rτ̇ ′ // R2τ̇ ′2
>0

and I should say that we can combine any two triangulations by recursive Ptolemy
relations, so I can complete this, the theorem says that we can complete this to a
commutative diagram

Rτ>0

rτ̇ // R2τ̇2
>0

T̃ (S)

λτ

<<

λτ̇ !!
Rτ

′
>0

rτ̇ ′ //

λτ○λ
−1
τ ′

OO

R2τ̇ ′2
>0

βτ̇,τ̇ ′

OO
.

Let’s take a break.
Let me just sayabout this β, it’s unique for the following reason, let me calculate

in two particular cases. The first case is when we change coordinates. We have τ
and τ ′ where we change corners in just one triangle. Then [pictures] we have the
same λ coordinates, but the map rτ̇ differs, it’s either ( b

c
, a
c
) or ( c

a
, b
a
). So what is

βτ̇ ,τ̇ ′? So (x, y) goes to ( y
x
, 1
x
), that’s how β is determined. It’s calculated uniquely.

Now I’m producing the map more or less.
The other case is the Ptolemy relation [pictures]
Now what I want to discuss is the combinatorics of all ideal triangulations and

so on.

7.2. Groupoid of ideal triangulations. Let me just do a general construction,
I’d like to start there because it’s more easy to understand. Given a group G, but
not the group G, the gauge group, just any group, freely acting on a set X. A
free action means that X is a total space of a principal G-bundle. Then we can
associate to this a groupoid. Define the groupoid GG,X , this is a category with all
morphisms invertible. The objects of this groupoid are G-orbits in X, the base set
of the principal bundle. This is a set of objects. What are the morphisms? I won’t
describe the morphisms between two objects, let me give the full set of morphisms
of all objects. This is G-orbits of the diagonal action in X ×X. Set theoretically it’s
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just this. Then we should say what is the algebraic structure of this. What is the
product of two composable morphisms?

So [x, y] is the orbit of (x, y). This is an orbit, that means that this is the same as
[gx, gy] for any g ∈ G. Then we say that [x, y] and [u, v] are composable if the orbit
of y is the orbit of [u]. Then [x, y] ⋅ [u, v] = [x, gv] where g is the unique element
that sends u to y. So u and y are in the same orbit, there’s an element, but since
the action is free, the element is unique. That’s the product. Then [x, y]−1 = [y, x]
and the identity of [x] is [x,x].

Any G-principal bundle has an underlying groupoid in this sense.

Remark 7.2. (1) GG,X is connected, between any two elements the morphism
set is nonempty.

(2) MorGG,X ([x], [x]) ≅ G.

You see that connected groupoids are classified easily, it’s like vector spaces, so
basically it’s the same as numbers, but that’s not a reason to not study vector
spaces.

So here it’s the object set and the group at one object. It’s a general fact for any
connected groupoid. There is no canonical way of representing it. That’s why it’s
similar to vector spaces.

In our case we choose G = MCG(S). Now what is X? It’s almost dotted ideal
triangulations, but not quite, it’s pairs (τ̇ , u) where τ̇ is a dotted ideal triangulation
and u is an ordering on τ̇2, an integer inside each triangle to keep them in order.

Due to this, the action, just a fact that G acts on X freely. If we take just an
ideal triangulation without anything, it might not be free, there might be nontrivial
mapping classes that don’t change the triangulation. So if we put one arrow then
it becomes free. Let me call this τ̃ , for this we have much more than one additional
arrow on one edge. What is important is that now the action is free. Consequently,
we have GG,X the groupoid of decorated ideal triangulations. That’s an algebraic
object. The mapping class group is encoded in the groupoid, and we have the
orbits, and each orbit is represented by the combinatorial type of the triangulation.
So there are finitely many objects. This is a pretty simple object in a sense, a group
plus a finite set.

What is interesting, since any group has a presentation, likewise we can ask for a
presentation for a groupoid. We have to say what are the generators. By composing
them we need any morphism in the groupoid, and then we need relations.

Here is a difficult theorem

Theorem 7.1. (Teschner,Hyun Kyu Kim) Let G =MCG(S) and X = ∆̃(S). Then
GG,X has the following presentation, with generators

● symmetric group elements along with
● ρi which rotates the dot of the ith triangle counterclockwise, and
● ωij which interchanges a Ptolemy relation for adjacent i and j.

For relations, write [x1, . . . xn] for [x1, x2][x2, x3] . . . [xn−1, xn]. Then we have

● permutation group relations,
● ρ3

i = 1,
● ωijωikωjk = ωjkωij
● ωijρiωji = (ρiρj)(ij), and
● the trivial relations, where elements commute with permutations.

That’s the presentation
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So this is a difficult theorem. Just to finish I need a few more minutes.
What is the conclusion out of this theorem? There is an important consequence.

It tells us to construct a representation of GMCG(S),∆̃(S) it suffices to find a triple

(V,T,A) where V is an object of a symmetric monoidal category, A is an auto-
morphism of V , and T is an automorphism of V ⊗ V such that A3 = idV , that
T12T13T23 = T23T12 in Aut(V ⊗ V ⊗ V ), and T12A1T21 = A1A2P12 in Aut(V ⊗ V ).
We can rewrite this last one TA1P(12)T = A⊗A.

The corollary states that as soon as you have this equation, you have a repre-
sentation of the groupoid. You don’t need surfaces or anything. It’s exactly like
the Turaev theorem for braid groups, if you have Yang–Baxter. That’s what these
three relations that replace Yang–Baxter do.

The calculation we did for β in two places. In our case, β will be [unintelligible].
Then A will be the change of coordinates, and T will be the flip of coordinates. To
quantize Teichmüller theory, all we have to do is quantize this algebra, no surfaces
are needed.

8. Dec 16: Stavros Garoufalidis: Asymptotics of quantum invariants
II

So I want to, last time I showed computations, and now I want to tell you what
we were calculating. The first part today will be boring, with definitions, theorems,
even proofs, the most boring.

The Jones polynomial of a link JL(q) is a Laurent polynomial in q±
1
2 defined by

the following system of linear equations:

qJ ??__ (q) − q−1J ??__ (q) = (q
1
2 − q−

1
2 )J OO OO (q)

and J◯(q) = [2] = q 1
2 + q− 1

2 .
In general,

[n] = q
n
2 − q−n2

q
1
2−q

− 1
2

= q
n−1
2 + q

n−3
2 +⋯ + q

−n+3
2 + q

−n+1
2

In fact, the Jones polynomial is a polynomial in q±1, which matters when I apply
it to nth roots of unity.

The colored Jones polynomial JK,N(q) is

N−1
2

∑
j=0

(N − 1 − j
j

)JK(j)

where K(j) is the jth parallel of K with 0 framing. So JK(1) = 1, JK,2 = JK(q), the
normal Jones polynomial. JK,3 = JKK − 1. Then JK,4 = JKKK(Q) − 2JK , and the
last one I’ll write is JK,5 = JKKKK −3JKK−2. This is the colored Jones polynomial
but I want to renormalize it to

J ′K,N =
JK,N

[N]

for all N = 1,2, . . . Then the Kashaev invariant for K in S3 is ⟨K⟩N = J ′K,N(e 2πi
N .

[unintelligible]was proved by Murakami and Murakami.
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Are you happy about this? I will not spoil your state of happiness but continue
to the volume conjecture, that (at least for N odd and K hyperbolic) you have

lim
N→∞

log ∣⟨K⟩N ∣
N

= vol(K)
2π

This is the volume conjecture of Kashaev. There are versions of this to all orders
formulated by Gukov, also [unintelligible]and myself.

Is he here? No? I can say anything I want then! I have license and certificate too.

So I’ll say ⟨K⟩N ∼ N 3
2 eCNϕK,1( 2πi

N
) where ϕK,1(h̵) = τKϕ+K,1(h̵) and τ2

K ∈ FK
and ϕ+K,1(h̵) ∈ 1+FK[[h̵]] and C is the complex volume i vol(K)+CS

2πi
∈ C/4π2Z. Here

FK is the trace field.
Don Zagier and I proved this to all orders for 41.
I’m not happy, let me tell you why. I gave you a rigorous but entirely useless defi-

nition of the colored Jones polynomial. If you want to compute the Jones polynomial
with the algorithm I just erased, you need something like, if K has c crossings, you

need something like 2c operations. Then JK,N(q requires 2cN
2

operations. We’re
interested in N = 2500 so this is like, not possible even with computers. This is also
an algorithm, not a formula. I hope you know the difference.

So this is useless. On the other hand, Kashaev gave a finite state sum. For the
trefoil,

⟨31⟩N =
∞

∑
n=0

(q)n∣q = e
2πi
n

where (q)n = (1 − q)(1 − q2)⋯(1 − qn).
The corollary of the formula is that ⟨31⟩N can be computed in O(N) steps,

linear time. I’ll give you a theorem we observed with Zagier: this is true for all
knots. But it does not follow from a state formula. The truth is that the complexity
of computing the Kashaev invariant is linear for a very big O.

Now I’ll give you the figure eight which is far more interesting.

⟨41⟩N =
∞

∑
n=0

(q)n(q−1
n ∣

q=e
2πi
n

and I’ll give you

⟨52⟩N = ∑
0≤k≤m≤N−1

q−(m+1)k (q)2
m

(q−1)k
∣q = e

2πi
n

so this looks like it’s quadratic but you can set up a recursion in two steps—we did
this to experiment and try to guess these elements of the trace field.

Then here’s the question. Let’s say for 41, compute the first three terms of ϕ+41,1,
or even the constant term.

How do you do this, even working numerically? I want a way to compute these
coefficients from the formula. If I tell you the Fibonacci sequence, you can ask
about the asymptotics. You don’t have a recursion relating the Nth and (N − 1)st
Kashaev invariants. This is related to quantum modular forms, but I won’t talk
about that yet. But I’ll give you a conjectural answer to the question.

8.1. Back to hyperbolic geometry. My input will be an ideal triangulation of
S3/K, so my building blocks will be ideal tetrahedra, the convex hull of 4 poitns in
∂H3. My points will be 0, 1, ∞, and some point z. The opposite edges will get the
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same variables, z between 0 and ∞, z′ = 1
1−z

, z′′ = (z′)′ = 1 − 1
z
, and as homework,

check that z′′′ = z, that zz′z′′ = −1, and z′′ + z−1 = 1.
If you truncate this tetrahedron, you get a little triangle in a Euclidean plane.

At some point yesterday Rinat used dots, we have a similar choice here, the choice
of z versus z′ versus z′′.

Given an ideal triangulation with N tetrahedra (don’t hate me for reusing N ,
this is a different N), there are N ideal edges, so for example, for 41, N = 2 and
they are z1 and z2 and I get relations, for edge 1 in will be z2

1z
′′
1 z

2
2z

′′
2 = 1, for

the second edge, z′21 z
′′
1 z

′2
2 z

′′
2 = 1 and a meridian relation z′−1

1 z2 = 1. The two edge
relations are related by some version of the z and z′ and z′′ equation, so one of
those is redundant. The solution to such a system of equations can describe the
unique hyperbolic structure of the knot complement.

I’ll choose one edge, replace that edge’s equation with the meridian equation,
and eliminate exactly one of the three zi, z

′
i, and z′′i from each tetrahedron using

zz′z′′ = −1.
For the figure eight, if you remove the second edge equation and eliminate z′1

and z′2, you get the equations

{ z2
1z

2
2z

′′
1 z

′′
2 = 1

z1z2z
′′
2 = −1

Then for A = ( 2 2
1 1

) and B = ( 1 1
1 0

), and v = ( 2
1

) then this can be written

symbolically zAz′′B = (−1)v so this is ∏j z
Aij
j z

′′Bij
j = (−1)vj for all i.

Definition 8.1. τ2
τ is the determinant of Adiag(z′′) + B diag( 1

z
))zf

′′
z′′−f where

Af +Bf ′′ = v.

This depends on γ = (A,B, v, z), which is NZ datum.

Theorem 8.1. τ2
τ is invariant of choices and independent of 2 and 3 moves. There-

fore it’s a topological invariant. Then τ2
41

is
√
−3 and F41 = Q(

√
−3).

Conjecture 8.1. τK is the nonAbelian SL(2,C) torsion of K using the discrete
faithful representation and because this is not acyclic, and there’s a choice of merid-
ian, this is something defined by Porti and studied by Dubois but more importantly
computed by Dunfield using a presentation of π1(S3 −K).

We checked this exactly for about 800 knots and numerically for about 2000.
That’s a first conjecture. The second conjecture is

Conjecture 8.2. τK is the constant term in the asymptotics of the Kashaev in-
variant.

That’s checked only for the eight knots we’ve checked.
Now we have an interpretation as a torsion, a one-loop invariant, torsion with

respect to the hyperbolic representation. But what about the other terms in the
expansion, the other terms in ϕ+K,1. This used a bunch of time to get to the one-
loop term, which is anomalous. One-loops are always anomalous. The higher loop
invariants, that is, ϕ+K,1(h) = 1 + s2h̵ + s3h̵

2 + ⋯, and if you’re unhappy that s2 is
the term of h̵, blame the physicists, this is the 2-loop invariant.
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I’ll give you a formula for this entire series. This has a building block, which is
some version of some kind of quantum dilogarithm.

ψh̵(x, z) = exp( ∑
n,k,n+k−2>0

h̵n+
k
2 −1 (−x)nBn

n!k!
Li2−n−k(z−1))

where Bn is the nth Bernoulli number and Lim(x) = ∑∞k=1
xk

km
, the mth polylog. I

can write this as

(qzeh̵
1
2 x; q)∞

for q = eh̵. Assume the determinant is nonzero in the NZ datum which is true most

of the time, and let H = −B−1A+diag(z′). For 41 we have, well B−1A is ( 1 1
1 1

).

So there is a quadratic term here

fτ,h̵(x, z) = exp(
−h̵ 1

2xTB−1v

2
+ h

8
fTB−1Af)

N

∏
i=1

ψh̵(xi, zi).

Then

⟨fh(x)⟩ = ∫
dxe−

1
2x
THxfh(x)

∫ dxe−
1
2x
THx

∈ Q[[h̵]]

Definition 8.2.

ϕ+τ (h̵) = ⟨fτ,h̵(x, z)⟩ = exp(s2h + s3h
2 +⋯)

Conjecture 8.3. This ϕ+τ (h̵) is independent of τ .

Conjecture 8.4. It is the power series that appears in the asypmtotic expansion
of ⟨K⟩N to all orders at q = 1.

This is a Feynman diagram definition, this isn’t a convergent integral, but you
use some formal integration process that terminates, and you can compute 2-loops,
3-loops, whatever.

So to compute S2 you use the following Feynman diagrams [pictures]
So s2 is the coefficient of some expression in h̵. Here’s what I do. I put an i or j

on every vertex. I put a matrix πij = (H−1)ij on each edge. So I put [formula based
on pictures]

So this is a finite expression, a rational function of N “z” variables. If I do 2− 3
moves, then 2 and 3 shapes go back and forth. The gluing equations are equations
among rational functions. You can compute this explicitly maybe for s2, this is a
nice problem.

There is nothing infinite, no kind of strangeness. I have to say, however, that,
what will happen for s3? Well, s3 is a bunch more graphs. How many more? As
many as the Feynman diagram method tells us. If you list the graphs for s3, we did
that, there are exactly 40 which contribute.

Can you trust the result? One of these coefficients we had wrong and it was
a nightmare to debug it. How do I know that I made a mistake? This expression
is supposed to be invariant under moving around the dots, or removing one edge
instead of the other. If I make a mistake, even for the figure eight, I have nine
different expressions. What I’m trying to say is that these formulas are way overde-
termined so by consistency you can make sure that what you have is independent
of the choices.
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I asked some students of mine, one of them unfortunately expired, meaning he
chose a different advisor. For n loops how many graphs do you need?
n loops 2 3 4 5 6

# graphs 6 40 331 3700 53758
So we did calculations up to 8 crossings,

I’ll show you some answers later. This answer is at least effective. It requires no
guessing. Construct a tetrahedral decomposition or have Snappea do it, and then
[unintelligible].

Let me ask a question. What is a geometric interpretation of the 2-loop invari-
ant s2. Some questions you can learn to ask even if you don’t know about ideal
triangulations or anything. “What is the geometric interpretation of what you just
defined.”

[some discussion]
I’m posing this question, is there a geometric invariant. If you find an invariant

that’s computable, I’ll compute it 20,000 times.
Okay, so. If you can categorify the volume, V (a, x, t), then of course you would

do s2(a, x, t). But what does it mean is a different question.
Now I’m changing gears to quantum modularity conjecture of Zagier. This is

about quantum modular forms, whatever they are, and this contains the Kashaev
invariant of any hyperbolic knot.

So first, let’s extend the Kashaev invariant to all roots of unity. So α = a
b
, a

rational number. I take the Jones polynomial Jk,b(e2πi ab ). Now FK is defined on all
complex roots of unity.

Do you see a problem with this definition? Since I didn’t say a and b are coprime,
there is a problem. This uses a theorem of Habiro, not a simple theorem, that

J7(e2πi 37 ) = J14(e2πi 6
14 ). It says that this is well-defined.

I’m not going to worry too much about it.
So let’s see. Let’s say that we want to look at the asymptotics of F ( N

7N+1
), let’s

write it J7N+1(e2πi N
7N+1 ), which is the same as ⟨K⟩7N+1∣q=qN . So what’s the answer

to that? Let’s first try the simpler question, what is limN→∞
N

7N+1
? That’s well

known, it’s 1
7
. So we’re looking for asymptotics of the Kashaev invariant spread out

at all roots of unity around some particular root of unity.
Maybe it was easy to define this but we have to pay some price. I guess if we’re

working with e2πiN , then SU(2) at this root of unity is a unitary field theory. But
now we’re outside the unitary world. The point is that the roots of unity are here
on the unit circle.

I’m asking [picture]
So quantum modularity predicts that ϕJ (h̵) = ϕJ(0)ϕ+J(H) where ϕJk(0) =

τ
√
kεb, with ε, b ∈ F (JK), with ϕ+J(h̵) = 1 + h̵F (Jk)[[h̵]].
and the theorem with Zagier is that the quantum modularity conjecture is true

for 41.
[couldn’t understand]

9. Dec 17: Sergei Gukov: Volume conjecture as a simple quantization
problem: its generalization and categorification III

So I’ll follow Rinat’s numbering system. This will be section 7, I’ll talk more
about
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9.1. Categorification. 7 is just a random number. Categorification is an exciting
process, upgrading a lower dimensional TQFT to a higher dimensional TQFT. This
should take us to a new millenium, a new life. Let’s try to make this very concrete.
I want to combine general ideas with very concrete calculations. I’ll highlight a
couple of aspects and try to fit it in a more general philosophy and give the idea of
how to do computations as well.

However, first I should continue a little bit with the history, I’m approaching
the most recent and exciting phase, around 2000–2003, where some exciting things
happened in low dimensional topology or representation theory in the last 10 or 15
years.

So what is categorification? Let me make a table.
knot polynomials knot homology
Alexander polynomial Ozsváth–Szabo–Rasmussen’s
∆K(q) HFK (Heegaard–Floer knot homology)

Jones polynomial Khovanov
J(q) Kh∗,∗(K)

These two were

categorified in precisely this time. Each of these got upgraded to a vector space.
What is the relationship of categorification? Well I said it last time but it’s

∆K(q) = ∑
i,j

(−1)iqj dimHFKij(K)

The Jones polynomial has the same relationship with Khovanov homology.
Both of these happened at the same time, there was the question why these

had integer coefficients, the answer was because they were the dimensions of some
spaces. The real excitement came with, it’s exciting to work with polynomials, but
a vector space with possible more information, you can do a lot more. There was
an explosion of activity based on the mere existence and definition of these two
theories. You can study maps, which you can’t do with polynomials. We’ll see some
of this very concretely.

There is an intermediate stage when it’s useful to work with Poincaré poly-
nomials, this could be a third column in my table. It’s convenient to introduce
a Poincaré polynomial by replacing (−1) with another variable, and I’ll use the
homology letters to indicate the Poincaré polynomial as well, so

Alexander HFK(K,q, t) = ∑i,j tiqj dimHFKij(K)
Khovanov Kh(q, t) = ∑i,j tiqj dimKhij(K) and then we recover the

Alexander and Jones polynomials by specializing to t = −1. Both of these are poly-
nomials with nonnegative coefficients.

These are easier to deal with than doubly graded vector spaces. They lose infor-
mation about torsion, but remember the dimensions of these spaces. Even dimen-
sions contain more information than the Euler characteristic. It would be surprising
to find a class of manifolds where all information is contained in the Euler charac-
teristic.

From the viewpoint of knot invariants, these can distinguish way more knots.
This is part of the excitement of low dimensional topology. Representation theo-
rists, you can do a lot more with vector spaces. You can connect to many aspects
of representation theory. This is even cooler (in my opinion) than giving a more
powerful invariant.
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There were a lot more developments that I’m going to skip for you, but let me
give you an idea of these two theories.

So HFK is some version of Seiberg–Witten theory adapted for knots. Just like
monopole Floer homology categorifies the Alexander polynomial in a very broad
setting, this is optimized for knots and links in the 3-sphere. But this is much more
computable than in the gauge theory. They extracted a finite dimensional (and
more computable) residue. You count some holomorphic disks (essentially the same
as what Tobias is discussing). The gauge theory is hard, involved analysis, they
produced something much more computable, and a lot of good results based on
this theory.

Khovanov was surely motivated by TQFT, but he said, I want to do something
that everyone can use. It’s like Steve Jobs. I want it to be user friendly, I want to
be able to explain it to graduate students. He didn’t use symplectic geometry, he
used combinatorics. He upgraded the skein relation from numbers to vector spaces.

It remains the iPhone of knot homology, once you start playing you cannot stop
swiping up and down, clicking, it’s really beautiful. This is about flavor, how they
feel.

Both theories had become quite computable. Gauge theory doesn’t work well
enough to compute things for 52. People calculated these for many knots. That’s
why it’s very attractive to a younger generation, it’s very simple and concrete.

For many knots K, you suddenly have the relation that Kh(K) = HFK(K).
That became kind of strange. This was true for all knots of up to nine crossings,
all alternating knots, other classes of knots. Even techniques for showing relations
like this were impossible because the definitions were not directly related, combi-
natorics and symplectic geometry. I should say that the dimension of Kh(K) is the
dimension of HFK(K). This came as a puzzle.

Over the years, people tried to come up with a combinatorial version ofHFK and
a holomorphic definition of Kh. So this was an interesting puzzle at the time. It had
no right to be, but it was astonishingly accurate, in many cases, then you can quickly
try to wonder, as we discussed the other day, ∆(q) is a specialization of HOMFLY-
PT a = 1 and the Jones polynomial is also a specialization at a = q2. So one
possibility could simply be to come up with a theory that packages different ranks,
we talked about sl(n) theory, and that’s how we came up with the HOMFLY-PT,
if I were going to label these by specializations by a = qN , I label these (Alexander
and Jones) by N = 0 and N = 2. So you can ask if there are versions for other
examples for different values of N .

So this was an obvious question back in 2003. Khovanov and Rozansky worked
very hard. Khovanov also did the N = 3 version, the sl(3) or G = SU(3) version,
and he said, “I don’t believe in a triply graded version that categorifies all N ,
but there should be a version for each N .” You can open his sl(3) paper and this
phrase was there. These theories are hard to construct, it’s hard to believe that you
could package all the sl(n)s together. I totally sympathize how he didn’t expect
this theory to exist.

Instead of constructing sl(4), sl(5), and so on, they constructed something that
covers all values of N . I should add this to the diagram. [picture] There are special
points we already covered
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HFK

0 1

Kh

2 43

Khovanov–Rozansky

Physicists (including me) said that there should be a theory like this, we were
nervous, saying things that people didn’t believe. I was a little bit worried about it,
but you can even extend to −N . Once people started developing this for different
values of N , people noticed that you can also call −N Khovanov–Rozansky, and
this was also kind of a puzzle, it felt like you have two phases. You start with large
N and decrease, here you see Khovanov, and if you go to N = 1, then you get a
very simple trivial theory, by trivial I mean one dimensional. There is a homology
categorifying sl(1) but it’s very boring. This mirrors the statement, I asked you to
look at HOMFLY-PT for a = q or a = q−1. These are the values for N = ±1. The
(not such a big) surprise, this specialization, this gives you a single monomial, the
dimension of this guy is 1. Pick any knot, you always get this. The explanation from
the quantum group point of view is that sl(1) invariants, this should be a simple
boring theory. What’s nontrivial is N = −1. It’s not terribly surprising that you get
something trivial at N = ±1, or rather, one dimensional.

So complexity goes down with positive N , so sl(2) theory is smaller than sl(3)
and so on, but HFK is highly nontrivial, and then it drops again, and then goes
up, so something weird happens here.

The answer can be given in the bigger framework of HOMFLY-PT homology,
but some things still need to be explored.

The answer for many of them is something that categorifies HOMFLY-PT ho-
mology and even there it’s nontrivial.

So we want get quantum slN knot invariant by specializing HOMFLY-PT to
a = qN . These special invariants come from Euler characteristic for doubly graded
homologies, and you want to complete this.

P (a, q) Hijk
K

quantum slN invariant doubly graded homology

a

χa,q

dN

χq

and it’s triply graded, it’s Hijk
K , so the way it works out, you have this differential,

and you get the doubly graded homology theory going from the triply graded to
the doubly graded theory, this is the most interesting part of this diagram. This
says that slN homology as a doubly graded theory, you take your HOMFLY-PT
homology, and take cohomology with respect to dN , which we’ll discuss a bit later
after the break.

So the degree of dN is (−k, kN,−1) for N > 0, and usually k is chosen to be 1.
Sometimes k = 2 in the literature. For the other guys, it,s (−1,N,−3), this is a little
harder to work out, to see, but again it follows from this interesting symmetry.
I’m giving you the statement, not a derivation. This is quite a useful powerful
framework. Now what we can do is to play with this. First of all, this diagram is
encoding a lot of structural properties of the theory, it should be consistennt with
all of its specializations. If you take d3 or d4 you should get 3 or 4 Khovanov–
Rosansky. If you take homology with respect to d1 or d−1 you get something trivial,
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and with respect to d0 you should get HFK. This invariant would package all the
knot invariants in one package. This is like the European Union for knot invariants.

I’d like to do two things before the break. Do you like games? Tricks with cards?
I’ll do it after the break. I’d like to do two quick things. One thing is to explain
the gap of complexity, with a bump for N = 0. The reason, I’m going to give the
answer, all of what I’ve done here, everything is for a color that is a single box,
a Young tableau with one box. You can study this for different λ. If you put λt

in the square grid, like this, what you’ll see is the following, that the right answer
involves supergroups, where you continue to sl(n∣m) so N = n−m. Maybe I should
make a bigger plot, this is an exercise where you do the following, you put your
Young tableau or its transpose in the plane and draw the line bounding your Young
tableau and then you start working down. [picture] When n = 4 and m = 0 I get
N = 4 as well

and then you see interesting things happening at corners. So with one single
box you get some low complexity at N = 1 and N = −1 and then something more
interesting at N = 0.

This reflects some advice from Sir Michael Atiyah. He’s great, I met him when
I was very young, we stay in touch, he’s great not just as a mathematician but
also as a mentor and a wise man, he said “if you want to understand something,
generalize it.” If you do this for a single color you’ll be puzzled by this small gap, if
you think outside this single box, this gap widens and behaves in a particular way
and it’ll give you some information about what’s going on.

How many of you know Khovanov homology? How about HFK? Well, after the
break I’ll show you how to calculate both on the back of an envelope.

I want to show you this magic trick. I’ve never tried this before. I honestly don’t
know what will happen. I’m warning you because I’m part of the audience as well,
don’t be too hard on me. I’ll ask for volunteers in just a second. Give me a number
between one and 10. How about a knot with 7 crossings. Oh, 74? Okay, and what’s
its Jones polynomial? −q8+q7−2q6+3q5−2q4+3q3−2q2+q. I can’t guess Khovanov
homology just looking at this. I need to give you Kh(q, t), so that when you set
t = −1 you get this Jones polynomial. My job is to restore t-dependence. I could
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guess that terms with − will be odd grading and with + will be even grading. The
specialization will not be enough, I’ll use the more general theory, and one thing I
need from you, we’ll start with N -dependence. You can ask any software to give you
the slN invariant. Can you give me HOMFLY-PT of 74? With some normalization
it’s

−a−4 − 2a−3 − 2a−2 − 2a−1 + a−3q−1 + 2a−2q−1 + a−1q−1 + a−3q1 + 2a−2q1 + a−1q1

and this should be specialized to a = q2 and then q → q−1 to give the other.
We’ll use structural properties to deduce the answer. I need more helpers. I want

one of you, I saw some of you, I want one of you to look up the Khovanov homology,
I want someone to confirm yes or know. One of you guys can do it on the internet
or otherwise. I want someone else to do this for HFK. I want one volunteer for
Khovanov and one for HFK.

So I want to put these in graphical form. I can put in the q and a degree, and
the polynomial, I’ll graph it

q

a

−1

−2

−3

−4 −1 0 1

⋅

⋅⋅

⋅

⋅⋅

⋅⋅

⋅⋅

⋅

⋅

⋅⋅

⋅

First I’ll get HOMFLY-PT, so to construct the
big object I need t-degrees of each term. The obvious ones are very special differ-
entials d1 and d−1 which have degrees (−1,1,−1) and (−1,−1,−3). So the gradings
are slope −1 and slope +1 (both downwards), so d1, the one dimensional homology

should be in q = 1 and a = −1.
q

a

−1

−2

−3

−4 −1 0 1

⋅

⋅⋅

⋅

⋅⋅

⋅⋅

⋅⋅

⋅

⋅

⋅⋅

⋅

Then I know that
the difference in t-degree at different ends of the arrow should be −1. On the other
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hand I can do the same thing for d−1 and get
q

a

−1

−2

−3

−4 −1 0 1

⋅

⋅⋅

⋅

⋅⋅

⋅⋅

⋅⋅

⋅

⋅

⋅⋅

⋅

and
now they differ by −3. So you need at least one number to constrain this guy, but
you don’t need to provide homological degree for every generator. Since no one
volunteered, I’ll guess that, and this is a complicated knot, I’ll guess that we did
the correct jump.

How do we compare this to the correct answer for actual Khovanov homology?
Let’s see if this can really happen, we have a proposal, which is this diagram, and

the total dimension will be 4+ 6+ 4+ 1 if I keep all the dots, this is 15-dimensional.
Here we have 15 as well. The good news is that nothing cancels. For Kh we will
have (−1,2,−1) and I’ll just guess this is trivial; then HFK should be downward
and I’ll guess that is trivial as well.

My prediction is that Floer homology will be in degrees −1, 0, and 1. It will
be like 0,−2,−2,−4, and then in q degree 0, you’ll have 7 generators, and then 4
generators.

So this is a highly overconstrained system. I used the boring case, that HOMFLY-
PT is boring when N = ±1, so this is barely anything. If I use more then I really
have a strong check. Let’s try to write down the answer and see what I get.

This is my HOMFLY-PT polynomial, I got a−4 gets t−5, so I’ll get a −1 sign.
Overall I get

a−4t−5+2a−3t−3+2a−2t−1+2a−1t1+a−3q−1t−4+2a−2q−1t−2+a−1q−1+a−3q1t−2+2a−2q1+a−1q1t2

so we decorated the previous answer with t, even powers of t appear in positive
things, and odd powers of t with the − sign. We specialize to a = q2 and invert as
before and see the Khovanov homology. The Poincaré polynomial, from a = q2

q−8t−5 + 2q−6t−3 = 2q−4t−1 + 2q−2t + q−7t−4 + 2q−5t−2 + q−3 + q−5t−2 + 2q−3 + q−1t2

Oh boy, I guess if I translate to this notation, I get t degrees −5,−4,−3,−2,−1,0,1,2.
I claim that that’s Khovanov.

So this is one little corner that I tried not to touch because it goes too much
into physics, but given a knot K or more generally a link, it should be colored,
you produce a special Lagrangian submanifold LK that can see it as a Lagrangian
submanifold in T ∗S3, this is Tobias’ setup. This Lagrangian is a conormal bundle,
now an interesting thing is that if you ask someone in differential geometry what’s
so special about this manifold, that someone will tell you it’s Calabi–Yau, it has
a complex structure and the canonical class is trivial. You can describe this as
x2 + y2 + z2 + w2 = 1 in C4. That makes it easy to check that it has the right
topology, and play with the Kähler form, but this makes it clear it’s a complex
variety, in fact a simple computation tells you c1 = 0 so it’s Calabi–Yau. Then you
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can ask, whatever, whoever you ask, can you tell me anything else? They’ll say
it’s connected to another geometry among Ricci flat Calabi–Yau metrics. You can
collapse the three-cycle and blow up a 2-sphere (in two different ways) and both
spaces look like an O(−1)⊕O(−1)-bundle over CP1. These are connected in turn by
a so-called “flop” transition, which collapses one CP1 and grows another. You can
take the Lagrangian and try to pull it through in the other phases and it survives,
and the little dots represent in the colored HOMFLY-PT, counting holomorphic
curves in this phase. On the other side, you can relate it to slN knot homology
with N fixed. On the other side of the collapse it’s triply graded and gives you the
HOMFLY-PT homology.

Every generator represented by this little dot is actually an embedded curve,
a pseudoholomorphic curve, with a boundary condition. This Lagrangian is non-
compact, he’ll look at the contact structure at ∞ which will remain fixed. At the
interior you have the knot. This lives in an O(−1) ⊕ O(−1)-bundle over CP1 and
we’re counting embedded pseudoholomorphic curves with boundary conditions like
this [picture]. They end on the Lagrangian. Any red dot over on this side is an
embedded curve. There’s a whole theory about what you decorate things with, but
after you set up your enumerative problem, it’s a curve. For the trefoil, you have
only two nontrivial differentials, you get only three interesting curves ending on
the trefoil knot here. For this knot there are 15. You observe things at 3-manifold
topology, you can ask what it means to have N → −N? That corresponds to the
flop transition because N is the volume of CP1. This is where communication and
translation is helpful, because something nonobvious in one description is obvious
in another.

Another fact is that, for example, one thing is that knot Floer homology de-
tects genus of the knot. The q = 1 and −1 is the Seifert genus. If you ask what q
corresponds to in this enumerative geometry, it has to do with genus of the curve
Σ we’re counting. Therefore, there will be maximum genus one curves ending on
this Lagrangian. So genus for 3-manifold invariants is the same as genus for this
enumerative problem. There are so many parallels. My time is up so I’ll stop here.

10. Rinat Kashaev: Quantum Teichmüller theory and TQFT III

Thank you, so let us come back to the very first lecture and recall our main goal,
right? So we want to give a precise mathematical definition of the Chern–Simons

partition function ZG,h̵(M) = ∫ e
i
h̵GSG(M)DA. We’ve chosen G = PSL(2,R). But

everything I’m doing here does not work for compact groups. Don’t try to apply
this to compact gauge groups. The method does not work.

Let me recall what I said at the very end of the last lecture, which was that to
construct a representation of the groupoid of ideal triangulations, which corresponds
to MCG(S) acting on ∆̃(S), and the remark was that to construct a representation
of that groupoid GMCG(S),∆̃(S), you just specify (V,T,A) where V is an object of

a monoidal category (with symmetry P , A is an automorphism of V , and T is an
automorphism of V ⊗ V , such that

(1) A3 = idV ,
(2) T12T13T23 = T23T12

(3) TA1P(12)T = A1A2

Then using the presentation of the groupoid, we get a representation. So if we solve
this algebraic problem we get a representation without using the surface.
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Let me give an example from Teichmüller space. What is C? It’s sets with Carte-
sian product and permutations. What is V ? It’s a set of pairs of positive numbers.
What is A? It’s from the β map, A−1(x, y) = ( y

x
, 1
x
), and T −1(v1, v2) = (v1 ⋅v2, v1∗v2)

where v1 ⋅v2 = (x1x2, x1y2+y1) and v1∗v2 = ( x2y1
x1y2+y1

, y2
x1y2+y1

). Effectively the whole

Teichmüller theory is encodded in these two operations. What is the next step? Of
course, I will not be able to do the whole plan.

10.1. Quantization. What is quantization? It has as input a pair, a symplectic
space and a Lagrangian in it, and has as its output a vector space H(X) and a
vector ψL ∈ H(X). It will be clear how this black box operates. If Lagrangian
means, you have a half-dimension subspace to which the symplectic form restricts
trivially, if the dimension of X is 2n, then L is determined by fi = 0 for i = 1, . . . , n,
where fi ∈ RX . Most importantly, the Poisson brackets {fi, fj} are trivial. Then the
quantization consists in deforming RX to an algebra Ah̵(X), and Ah̵(X) module

H(X) so that f ∈ RX goes to f̂ and ψL is determined by a system of equations

f̂iψL = 0 for all i in {1, . . . , n}. That’s a rough idea of what the black box is.
In the case, in particular, if f ∶ X → X is a symplectomorphism, so invertible,

then one can associate a Lagrangian Γ(f) in (X ×X,pr∗1ω − pr∗2ω), the graph is
Lagrangian. We can do something algebraically, so f∗ maps RX to itself. We can
also take the inverse of this. This respects composition of symplectomorphisms,
then quantization, according to the first remark, goes to an algebra map AH(X) →
AH(X) and (f−1)∗ goes to an algebra homomorphism af (if you deal with some
issues I’m hiding), in fact an algebra isomorphism. You can turn our Lagrangian

equations, well, ψL is equivalent to f̂ in Ah̵(X) such that af(ĝ) = f̂ ĝf̂−1.
This is all possible maps g but of course they should be smooth or whatever but

that’s the general idea. It will happen that f̂ is a unitary operator if H̃, if there is
Hilbert space H̃(X) ⊂H(X).

Let me discuss an example. Let us discuss an operator A, the A map was
A−1(x, y) = ( y

x
, 1
x
). Let X = (R2

>0,
dy∧dx
yx

)
Then Ah̵(X) is generated by x̂ and ŷ satisfying x̂ŷ = qŷx̂ with q = eih̵. In practice

this is case by case dependent.
Let me say how we construct, ϕ = A and then we see that Aϕ acts on x̂, so aϕ

acting on x̂ should give this, ŷx̂−1q
1
2

(these are positive operators, so when you conjugate them you see that ŷx̂−1q−
1
2

is self-conjugate). This is part of fine-tuning the quantization.
With this you can check, Aϕ acting on ŷ is x̂−1. Then you just look for ϕ̂x̂ =

ŷx̂−1q
1
2 ϕ̂ and the second equation is ϕ̂ = x̂−1ϕ̂. Then ϕ̂ = e−πi3 e3πiq̂2eπi(p̂+q̂)

2

with
x̂ = e2πbq̂ and ŷ = e2πbp̂, you have q̂p̂ − p̂q̂ = 1

2π
√
−1

and h̵ = 2πb2.

Let me state the result, that H(X) is the space of tempered distributions on

R, the dual space to Schwartz functions S′(R) with Q̂f(x) = xf(x) and p̂f(x) =
1

2πi
f ′(x). In particular, S′(X) contains inside it the square integrable functions

on the real line L2(R), and the restriction of ϕ̂ to L2(R) is unitary. So this is

H̃(X) ⊂H(X). This is a realization of the claims I made on the general level.
This is a simple part of the story. The complicated part is the map T which

acts on twice the bigger space, and if the transformation A is linear after taking
logarithms. But here we have a genuinely nonlinear system.
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Unfortunately I don’t have enough time to talk in detail how to quantize this
part.

Let me say a few words about how we deal with the quantized algebra. The
symplectic form is given by ω = dy1∧dx1

y1x1
+ dy2∧x2

y2x2
. Then aϕ acts, we have four cases,

before doing that, sorry, let me say first Ah̵(x) is Ah̵(R2
>0)⊗2. Now we can think of

x̂1 = x̂⊗ 1, for ŷ1 = ŷ ⊗ 1, for x̂2 = 1⊗ x̂, and for ŷ2 = 1⊗ ŷ.
So now we take ϕ = T , and we have to say what is aϕ, and we have to say what

is x̂⊗ 1, and let me write it here, we have to see this is x̂⊗ x̂, so what is the image
of (ŷ,1), so we have x̂⊗ ŷ + ŷ ⊗ 1. Let me write them because we’ll need them, and
aϕ(1⊗ x̂) = ŷ⊗ x̂ ⋅ (x̂⊗ ŷ+ ŷ⊗1)−1 and aϕ(1⊗ ŷ) = 1⊗ ŷ ⋅ (x̂⊗ ŷ+ ŷ⊗1)−1. There’s no
normalization to the term for 1⊗ x̂ and 1⊗ ŷ because you have that the two terms
commute with one another. So we can copy the formula from the classical case.

Then we look for the equations ϕ̂(●) = aϕ(●)ϕ̂. Then ● can be calculated from
its actions.

If we look at the equations for x̂⊗1 and ŷ⊗1, if we redenote aϕ(x̂⊗1) = ∆(x̂) and
aϕ(ŷ⊗1) = ∆(ŷ). We have an algebra homomorphism ∆ ∶ Ah̵(R2

>0) → (Ah̵(R>0)2)⊗2
and this is a Borel subalgebra of Uq(SP2). This is conceptually important, we
started from a geometrical setting, and then had some Penner coordinates, and
then we ended up with a transformation T that came naturally, and the remark
is that a certain part can be understood as a morphism from an algebra to its
tensor square. So we have complete information about a quantum group. But this
is the Ptolemy relation. So if Ptolemy know what is [unintelligible], he would have
invented quantum groups.

So I can’t explain in detail how we calculate ϕ̂ so let me just comment a little
on its structure. The result of the calculation, this has no guesswork, you solve a
linear system. This should be T̂ in this example. In the first example it was Â. Now
this is

T̂ = e2πip̂1q̂2ψ(q̂1 − q̂2 + p̂2)
where

ψ(x) = 1

Φb(x)
and

Φb(x) = exp(
1

4
∫
R+iε

e−2ixz

sinh(bz)sinh(b−1z)
dz

z
)

and then T̂ restricted to L2(R2) is unitary which means that, it says something
about ψ defined here.

10.2. Quantum dilogarithm. So Φb(x) is meromorphic on C with poles at ib( 1
2
+

Z≥0)+ ib−1( 1
2
+Z≥2) ⊂ C. The zeros are negatives of the poles. We have the property

that

Φb(z) =
1

Φb(z̄)
for positive b which implies by a spectral argument that Φb is unitary. We also have
an inversion relation

Φb(z)Φb(−z) = Φb(0)2eπiz
2

and most importantly the pentagon relation

Φb(p̂)Φb(q̂) = Φb(q̂)Φb(p̂ + q̂)Φb(p̂).
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Now
Φb(x − ib/2)
Φb(x + ib/2)

= 1 + e2πbx

and also the same for replacing b by b−1. This ends the subsection, and I think we
finally reach the TQFT.

10.3. Teichmüller TQFT. The main idea is to replace T̂ by T̂ (a, c) where a and

c are real numbers with a + c < 1
2
. Then T̂ (a, c) is structurally the same formula,

T̂ (a, c) = e2πip̂1q̂2ψa,c(q̂1 − q̂2 + p̂2)

where

ψa,c(x) = ψ(x − 2cb(a + c)e−4πicbax

with cb = i
2
(b + b−1) and the integral kernel of T̂ (a, c) is (switching to physical

notation),

⟨x1, x1∣T̂ (a, c)∣x2, x3⟩
and what is the meaning? It’s that

(T̂ (a, c)f)(x0, x1) = ∫ ⟨x1, x1∣T̂ (a, c)∣x2, x3⟩f(x2, x3)dx2dx3

This is a distributional function in four variables, it’s in S′(R4), and explicitly it
has

⟨x1, x1∣T̂ (a, c)∣x2, x3⟩ = ∫ D(x0, x1, x2, x3, x4)ψ̃′a,c(x4)dx4

where

ψ̃a,c(x) = ∫ e−2πixyψa,c(y)dy

the Fourier transform (and then the integral is easy because there are delta functions
and)

ψ̃′a,c(x) = p̃sia,c(x)e−πix
2

so we get

D(x0, . . . , x4) = e2πix0x4δ(x0 − x1 + x2)δ(x2 − x3 + x4).
Okay, now X is a shaped (each tetrahedron carries dihedral angles of an ideal
hyperbolic tetrahedron) triangulation (a ∆ trinangulation in the sense of Hatcher,
a CW-complex with all cells standard simplices, all vertices ordered and gluings
respecting that order and orientation) of an oriented pseudo-3-manifold.

We’ll associate to this a partitition function. Let me give an example [picture]

1

3 2

a b

a

b

with face identifications in pairs.
This has one vertex, two edges, and one tetrahedron.
There are two types of states of X, a “face state” for x ∈ RX2 and “tetrahedral

states” for t ∈ RX3 , and two types of tetrahedra [pictures] depending on the cyclic
order.
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Then

K(X, t) = ∫
x∈RX2

K(K,x, t)
∏T ∈X3

D(T,x, t)
dx

where

D(T,x, t) = ∫ D(x0, . . . x3, t)

if ε(T ) = 1 and the complex conjugate if ε(T ) = −1 and xi is the value on the ∂i(T ),
and that finishes the definition of the kinematical kernel K(X, t).

Now the partition function is

Zh̵(X) = ∫
RX3

K(X, t)Ψ(x, t)dt

where

Ψ(T, t) = ψa,b(t(T ))
if ε(T ) = 1 and the complex conjugate if ε(T ) = −1 this Ψ(x, t) is the dynamical ker-
nel. Let me remark that the kinematical kernel K(T, t) is an element of S1(RX3),
and the dynamical kernel Ψ(T, t) is an element of S(RX3), the space of test func-
tions. Then Zh̵(X) = ⟨K(X),Ψ(X)⟩, just the evaluation because one is in the dual
space of the other.

Let me formulate the theorem and you’ll see why I’m cheating.

Theorem 10.1. Let X be such that H2(X/X0,R) is trivial. Then

(1) Zh̵(X) is a finite complex number, and
(2) ∣Zh̵(X)∣ is invariant under the 2−3 or 3−2 shaped partner moves and gauge

transformations induced by total dihedral angles around edges of X induced
by Neumann–Zagier’s Poisson structure.

(shaped means you have to incorporate the presence of angles; if you remove an
edge, the edge should be balanced so the total dihedral angle around it is 2π)

In words, you can write the most evident Poisson bracket, which is the NZ
bracket, and if you sum up the dihedral angles from tetrahedra, [unintelligible]Poisson
commutes with [unintelligible], then you induce by Poisson commuting, [unintelli-
gible]. This doesn’t depend on the gauge transformation. The first part says it’s
topologically invariant as soon as you balance an edge. In our example, there are
two geometric edges e0 and e1 and the total dihedral angle which sends ω ∶ B2 → R>0,
we have ω(e0) = γ and ω(e1) = 2π − γ, so there’s one real number, and γ commutes
with itself, this is a gauge invariant quantity, and this will depond only on γ and
not on α and β which can be varied. My time is over so I’ll stop here.

11. Tobias Eckholm: Chern-Simons theory, open topological strings,
and augmentations

[started with a bunch of stuff already on the board, couldn’t keep up, calculation
of the trefoil] The main subject today is augmentations. Let’s think about the
variables e±x, e±p and Q±1 as complex numbers. Then ε is a map A → C, thought of
as a chain complex in degree 0. For our purposes it’s not so bad, it’s a graded map,
it can take nonzero values on the aij only, and the chain map equation says that
ε∂ −∂ε = 0. But ∂ε = 0 automatically. Then I want something so that ε∂ = 0. We see
we have the image of the differential, which gives me a polynomial in the aij . So
now, I’m looking at these augmentations, I can pretend that the aij commute, it
doesn’t matter because C is a commutative algebra. I have a number of polynomial
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equations, and I’d like them to have a common root. I can ask what is the locus of
the coefficients where I find such a common root. This is the augmentation variety.
If you’re awake, you see that I’ve committed a crime of decategorification.

You’d like to take the Zariski closure of this thing.
In effect, it’s stated some place, this is in fact an algebraic variety which typically

has codimension 1. I think I can prove the conjecture that this is the codimension.
For any example you can compute this, it’s some variety, and you can talk about
the augmentation polynomial, which generates the corresponding ideal.

That is, AugK(ex, ep,Q) = 0 is this variety.
Now we have two examples, the trefoil and the unknot.
The unknot is simple. The algebra of the unknot is generated by c and e with e in

degree 2 and ∂c = 1−ex−ep+Qexep. So you want to take 1 to 1. The augmentation
polynomial is 1 − ex − ep +Qexep. Why decategorify? Over this variety there lives
naturally a kind of sheaf. If you know that, if you have an augmentation, then
you can change variables in the algebra. If ε is an augmentation, change variables
aij → aij − ε(aij) you kill the constant term. That’s the point of an augmentation.
Then this is zero. So then the constant term goes, and I’m left with some differential
that starts out with a linear, then quadratic, then cubic, so this is like the first page
of a spectral sequence, this linearized Legendrian contact homology. In the case of
the unknot it’s a simple thing. If you assume your differential satisfies this equation,
then the linearized homology has two generators, one in degree 2 and one in degree
1.

How do we do this for the trefoil? This is not such a hard exercise, for the trefoil
it’s pretty simple. The first equation lets us express a12 and a21, and then you get
a polynomial expression. What is the result? I won’t do it but I’ll write it down.

Aug31
= −e2xe3p+exe4p+e2xe4p−2exe2pQ−exe3pQ+exQ2−exepQ2+2exe2pQ2−epQ3+Q4

and this is a mildly complicated expression, if I got it right it’s the sum of ten
monomials but not so hard to calculate from the formulas.

[discussion of computability]
I’ll start with the special case Q = 1. You’ll see at Q = 1,

Augu = (1 − ex)(1 − ep)

and these sit in the augmentation polynomial of any knot. Then in T ∗S3, this is
filled by LK , this is topologically S1 × R2. The torus, the meridian is killed, my
variables, I fill in the S2, that kills Q, and p = 0, I’m claiming that defining a map
εAQ=1 → C[ex] can be done by counting holomorphic disks, much like I counted
them in the differential. If I take a Reeb chord c, a general one, then I count

ε(c) = ∑ [picture]

counting terms with one positive puncture at c and the boundary on LK . I read
off the homology class of the boundary. This is a finite sum, a fixed sum because
of finite length. I’m counting 0-dimensional moduli spaces. I claim that ε is a chain
map, ε ○∂ = 0. Why is that? Look at the boundary of 1-dimensional moduli spaces.
The key observation is that this Lagrangian is what they call exact. The Lagrangian
condition on LK , we had dp ∧ dq and this comes from pdq. We know that pdq is
closed so we can ask if it’s exact and in this case it is exact.

So the proof of this claim, it means that if you’re trying to form a holomorphic
curve on LK , you can try to compute its area, takyng ∫D dp∧dq, and that’s ∫∂D pdq
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and then this is 0. So there’s no holomorphic disks on this Lagrangian. Then the
only thing that can happen is the splitting where you split off an R-invariant disk
near ∞ and some number of rigid disks below. Then [unintelligible]I get zero.

So I can put p = 0, keeping x, so I get an augmentation. So (1 − ep) is in the
augmentation variety for every knot.

We use the other exact filling for (1 − ex), MK , which is the complement of the
knot. You can take the conormal and then join them by some Lagrange surgery, and
then the topology of what you get is the topology of the knot complement, or you
can take a function and [unintelligible]let the [unintelligible]go to ∞. In any case
there is such a filling and if you just look at the homology, this puts the longitude to
zero, so this factor is there for every knot. The augmentation variety for the unknot
is the canonical one, and then these are in all knots’ augmentation varieties, and
this is the only knot with this particular polynomial.

Lenny first proved that the A-polynomial divides this polynomial. You can show
that the degree zero contact homology at Q = 1 is isomorphic to a certain subring in
the group ring of the fundamental group, and looking at, augmentations are maps of
that. Then you can say they arise from certain representations of the fundamental
group of the complement, it detects the unknot and torus knots and other things.

The main subject of the talk today is a geometric interpretation of the rest
of the augmentation variety. The background is that the augmentation polyno-
mial was found in physics before we understood why as a certain limit of the
colored HOMFLY-PT polynomial. So somehow they calculated some polynomial
that they initially suspected was the A-polynomial, and it turned out that it was a
Q-deformation of the augmentation polynomial. You suspect that they’re the same
after you see it for the trefoil.

What I want to do is try to tell you the story that came from physics rather
briefly, and it will in a while relate to what Sergei talked about. I want to go through
it without details mainly because many details are not there in math.

The starting point of the physics story is again the Chern–Simons partition
function. Remember this was

ZCS = ∫ DAe
ik
4πCS(A)

and we use here U(N), recall

CS(A) = ∫
M
Tr(A ∧ dA + 2

3
A ∧A ∧A)

and this A is a U(N)-connection.
We sum this up ZCS depends on N and k. We integrate over gauge as Rinat

explained.
This is the Chern–Simons partition function and one can now insert, when you

want to go to knots, you insert, you take the trace of holonomy along K and insert
this into the integral for the partition function, and then you normalize the path
integral, you should get the HOMFLY-PT polynomial. But Witten’s observation
was that you can take this seriously, do this in perturbation theory and get some
Feynman diagrams that are sums over fatgraphs. Here you decorate everything by
gauge indices, which means you can fatten the surfaces and then you somehow have,
if you haven’t seen this before it’s hard to follow, but something like this can give
you Aik ∧Akj ∧Aik. If you look at these partition functions, what it’s doing, you get
the same graph as a power or something like that, and that’s a small motivation for
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why you have the following result of Witten. Let’s look at open topological strings
(open Gromov–Witten theory) of holomorphic curves in T ∗S3 with boundary on
S3. What are we supposed to do? We invent a Gromov–Witten potential, also a
function of N and of gs, a string coupling constant, given a curve it has boundary
components, and this potential is

ZGW (N,gs) = ∑Cχ,hg
−χ
s Nh

counting holomorphic curves that have boundary on S3 and the curve has an Euler
characteristic that you raise gs to, and you have some factor Nh as well. You have
such a partition function. Witten’s result is that these two functions are actually
equal in a certain limit, this and ZCS . Witten showed (in physics style) that these
things are equal. He says that the partition function of Chern–Simons is equal

to the partition function of Gromov–Witten, with gs = e 2πi
k+N . How do you show

this? This hasn’t been mathematically proved. We understand (from Yong-geun
and company) what one has to prove.

But how did Witten show such a thing? He invented string field theory and used
this theory to show that all the contributions to the Gromov–Witten come from
constant maps and then when you do the perturbation you get Chern–Simons.

If you try to find a holomorphic disk or curve at all on S3, there are only
constants, no curves. Dimension formulas are all rigid. Things should live in a
0-dimensional moduli space. They come in a 3-dimensional family. So when you
perturb it should still be rigid and you can still count it.

There is one more step to this story which is to explain how we can see insertions
in the path integral in Chern–Simons. In fact, what you need to do is perhaps not
so unexpected. You can put one brane on the conormal. We’re doing a very similar
curve count, here’s S3, and then you have a conormal and [picture].

So again we can run the Witten argument and the things we want are concen-
trated in the knot and we can integrate this out and if we do this count, integrating
out à la Witten corresponds to inserting det(1−e−xHolK)−1, and when you expand
that you get these symmetric things

∑ trSk HolK .

And this is colored HOMFLY-PT, right? When you take,

ψK(X) = ZGW (LK)
ZGW

= ∑HK(x)e−kx.

So the prediction is we get something well-known counting holomorphic curves,
but they’re all constant. But [unintelligible]–Vafa offered a solution, and this is a
physics argument, one we’re further from in math. Let’s take a short break.

Let me tell you about the conifold. Witten is counting curves in T ∗S3. If you
look at this space at ∞, then it looks like, this is the unit cotangent bundle here,
and then I pinch the S2, drawing it like [picture]. As Sergei explained, you can
crush the S3 and go to a cone or resolve the other way so that the S2 lives and
the S3 is crushed. If you do it in complex analysis, this is O(−1)⊕2 over CP1. So
these people suggest that for, the area of CP1 = t = Ngs, if we keep the ratio fixed,
then counting open curves in one should correspond to counting closed curves in
the other. In fact, they prove this so somehow this, maybe I don’t have to write it
down, there are various proofs, but [unintelligible]and on the level of path integrals
you can see it’s a reasonable statement.
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For S3 it was verified by doing Chern–Simons. In principle there’s only one
holomorphic curve, but then you have to count the covers. It agrees there, and it’s
a great thing, and for other manifolds there may be other things that appear.

Now let’s think a little bit about what happens when we include a Lagrangian. I
want to first make sure that the Lagrangian stays through the conifold transition.
There’s a nice way to do this for every knot. You cannot do it with an exact
Lagrangian, but you can do it with a different one. The intersection is the knot
itself. You can in a neighborhood get this thing that looks like the differential of a
function. You shift which takes you off the zero section but it’s not actually exact.
Then you do the conifold transition, and the conifold transition is localized near
the zero section. Now let’s look at what Vafa and Iguri told us, that boundary
components on S3 shrink to nothing, so if you have another boundary component
[picture] then one should stay and the other should shrink to nothing. So you get
[pictures].

Then the idea is that the normalized Gromov–Witten count

ZGW (LK)
ZGW (X)

= ΨK(X)

Now after some shifting and some things, we actually have the wave function.
So now, I’ll skip the motivation, and

ΨK(K) = exp( 1

gs
∫ pdx +⋯)

if you want to integrate out short strings, those that connect LK to itself, that’s
GL(1) Chern–Simons on the solid torus. If you write this down, it’s high school
(I don’t know when you learned this) mechanics on the line. When you quantize
it, you get operators [unintelligible]. If you do the usual stuff you get this kind of
expansion. This is from the Chern–Simons perspective.

From the Gromov–Witten perspective, Ψk(X) is exp( 1
gs
WK(X) +⋯).

From this formula we see that p = ∂WK

∂x
, and if you think about this recursion

relation, you see that this gives an algebraic curve A(ex, ep,Q) = 0. So if you know
now something about the colored HOMFLY-PT. It’s not easy, but in these examples
it gave exactly the augmentation polynomial. I don’t have time but let my try to
start this explanation.

The only thing, I’ll start and then we’ll finish next time, tomorrow. The idea
here is to try to use LK in X to define an augmentation as before.

Remember what we tried to do. Basically we want to define ε(c) as ∑ [picture],
we’re trying to carry out our proof. We look at 1-dimensional moduli spaces, try to
look at the boundary, and if we find as before that we just have this several level
splitting, we just have a chain map. We have also a new phenomenon, that we can
split off holomorphic curves with boundary on [unintelligible]. The local model is
[picture]. So we don’t have a chain map and in some sense that’s bad, but similar
problems were actually solved by Yong-geun, Fukaya and company in ordinary Floer
theory. There you can sometimes overcome by finding so-called bounding cochains.
I’ll tell this fast now and tomorrow again. We take all these disks, the boundary is
on LK . This wraps some number of times around the generator of the homology of
LK . Now at ∞ in ΛK we wrap around some standard curve ξ. [pictures].

If we fix such a surface for the splitting disk, then we can stop this badness,
when we start to bubble off, we initially don’t know where to go, but now the
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bounding cochain goes off to ∞ and we can continue the moduli space by including
objects which intersect the bounding cochains that we fixed. Now the thing is just
continuous and we know what to do. There are now only such splittings. Now we
count disks with insertions of the bounding cochains. These can fly off to ∞. We
should decide what happens counting these as they go off to ∞.

Now we have the differential curve at ∞ and we have to count how many in-
sertions we have. Formally there is, we attach to it some holomorphic curves down
here. This is very easy because each time, for each p that I wrap around here, I
intersect the red curve as many times as I wrap around. If I set ep, if I set p = ∂W

∂x
,

remember W counts disks (C) and multiplies by ekx, so ∂W
∂x

= ∑Ckekx, so if I sub-

stitute p by ∂W
∂x

then this is a chain map. But the chain map is just [unintelligible]an
augmentation. So this [unintelligible]augmentation variety.

I’ll stop now, sorry for going over time, I’ll continue tomorrow.

12. Dec 18

I did not attend the final two talks.


