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1. January 6: Daniel Murfet: Fusion of defects in Landau–Ginzburg
models I

Thank you very much for the invitation to speak here.
I’ll be talking about fusion of defects in Landau–Ginzburg models. The notes

for all three of my lectures are online, you can download them now at www.

therisingsea.org. I’ll also be demonstrating some software that can also be
downloaded there.

I’ll start with broadly explaining how fusion of defects in LG models might relate
to other things you know about. The firs t thing I’ll mention is knot homology.
So many of you may have heard of Khovanov homology. This is the SL2 version,
and Khovanov–Rozansky can define this in terms of fusion of defects in LG models.
I’m not going to say too much about knot homology in these lectures although I’ll
try to touch on it if I have time. General orbifolding I’ll talk about in probably
the next lecture. Carqueville–Runkel have talked about this. This, I’m interested
in isolated hypersurface singularities, this lets you relate ADE singularities in a
surprising fashion and makes use of the bicategory that comes out of the fusion
construction. There’s also topological Fukaya categories, and there are multiple
groups working on this, the one that is closest related to fusion in LG models is
Dyckerhoff–Kapranov. I’ll say something about this in the second lecture. Finally,
this is related to fusion in conformal field theories, I’ll mention just two groups
of names, Brunner–Roggenkamp and Davydov–Ros Camacho–Runkel. Maybe one
main point is that the fusion of defects in Landau–Ginzburg models can literally
be computed, I’ll show you on the computer a little later.

Today:

(1) I’ll start with 2D-defect TFTs
(2) give you the basics of matrix factorizations, and
(3) and talk about the tensor product of matrix factorizations, corresponding

to fusion.

The second lecture will be about organizing this into the structure of a bicategory,
and the third lecture will be hard stuff, proofs, I’ll only prove very easy things in
the first two. I’ll use homological perturbation and Atiyah classes, I’ll show you
some about how this is done.

1.1. 2D-defect TFTs. So for the definition of 2D-defect TFTs, let me cite three
papers

● Runkel–Suszek 0808.1419
● Davydov–Kong–Runkel 1107.0495
● N. Carquiville–Runkel 1210.6363
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So the data of one of these is sets D2 (phases) and D1 (defect conditions) and two
maps s, t ∶D1 →D2. I’ll draw pictures like this:

X ab

Then this gives a bordism category

Definition 1.1. The bordism category Bord has as objects oriented compact one-
manifolds with points, with points decorated by elements of D1 and + or − and
segments labeled by D2, so that with +, moving forward from a marked point
marked by X the label is s(X) and moving backwards t(X); and the reverse for
markings with −.

The set of circles should be ordered, and we can take as morphisms either per-
mutations of circles or equivalence clasess of surfaces, where I draw my source on
the left and the target on the right, and I draw an oriented 1-manifold with bound-
ary, with similar labels. The 1-manifold gets labels from D1 and the 2-dimensional
pieces get labels from D1. The boundaries have te match the boundary of the entire
manifold.

The labels should be compatible. The compatibility condition also applies on the
surface, looking at the labled lines should give me the right things on the boundary.

Here is an example object, where s(X) = a and t(X) = b and s(Y ) = t(Y ) = a:

b

b

b

(Y,-)

(X,+)

(X,-)

a

a

b
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Rather than spending any longer on that, you can look at the third paper, these
things should be collared for example, or composition doesn’t work.

This is just to justify the introduction of bicategories, I won’t be using this
formalism so much.

Definition 1.2. An (oriented) 2D-defect TFT is a symmetric monoidal functor
Z ∶ Bord→ V ectC.

So Z of a circle, for X in D1, I think of this as a map, sphere with a circle on it,
with a and b on the components and X on the circle, this is a map from the empty
set to itself, so an element of C.

Let me give an, you can get a 2-category out of a 2D defect TFT, it’s harder
to go in the other direction, the set of constraints necessary are still not known.
Conjectureally, examples are D2 being smooth Calabi–Yau varieties over C, and
the elements of D1 are in Db(CohA × B). The claim is that starting with D2,
the bounded complexes of coherent sheaves, you can define a 2D-defect TFT and
what would you need to define? Vector spaces and linear maps, and you use Groth-
iendieck duality and things like that.

The example I will be using, D2 are isolated hypersurface singularities W (x) ∈
C[x] (isolated critical points) and D1 are matrix factorizations, a region between
W and V is a matrix factorization X of V (y)−W (x). Given this data, a conjecture,
you can get a 2D defect TFT, you can see that the data is close, and you need to
see how to get Z out of that data. This is a way of orienting yourself with regard
to the construction I’m going to do for matrix factorizations.

Let me define matrix factorizations and then fusion.

1.2. Matrix factorizations. LetW (x) ∈ C[x] be a potential, with isolated critical
points. This makes sense over any commutative ring. Then the condition, the
constraint is a little more involved. I’ll stay over C and then all I need are isolated
critical points.

Definition 1.3. A matrix factorization X of W is a Z2-graded free C[x] module
X =X0⊕X1 with an odd C[x]-linear operator dX ∶X →X such that d2X =W ⋅ 1X .

So choosing a basis this looks like ( 0 d1X
d0X 0

).

I’ll secretly use idempotent completions, but you could instead do things locally
and have germs with some complete ring [unintelligible].

In order to get to the definition of fusion, I’ll skip some stuff and come back to
it in the next lecture.

Let me give some examples.

Let W = x3. Then dX = [
0 x2

x 0
], this is a rank one matrix factorization

because the odd and even pieces have rank 1 as modules.
Then for W = y5 − x3 you can get this rank 2 factorization, a difference of two

polynomials:

⎛
⎜⎜⎜
⎝

0 0 x2 −y
0 0 y4 −x
−x y 0 0
−y4 x2 0 0

⎞
⎟⎟⎟
⎠

If you square this you get y5 − x3.
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1.3. Fusion. For fusion, I’ll take two potentials,W (x) ∈ C[x], which always means
C[x1, . . . , xn], and we take V (y) ∈ C[y], and then two matrix factorizations Y of
V (y)−W (x), that is, a matrix factorization over C[x, y] and a matrix factorization
X of W (x). Then Y ⊗C[x] X,dY ⊗ 1 + 1 ⊗ dX , this pair is a matrix factorization
of V (Y ). A priori it’sa free C[x, y] module of finite rank (assuming X and Y are
finite rank), and it’s easy to check that the cross-terms cancel, you get d2Y +1⊗d2X +
(dY ⊗ 1)(1 ⊗ dX) + (1 ⊗ dX)(dY ⊗ 1) which is (V −W )1Y ⊗X +W1Y ⊗X = V 1Y ⊗X .
But this dY ⊗X is infinite rank. I can think of this as a matrix factorization over
C[Y ] if I like, Y ⊗ X, I can think of x as just a grading on it, if Y is rank r
and X is rank s then Y ⊗ X is rank rs as a C[x, y]-module, but I can think
it’s C[y]⊗rs ⊕ xC[y]⊗rs ⊕ x2C[y]⊗rs + ⋯ (letting C[x] be literally one variable for
simplicity).

So you could think of the x as a grading, and this just a grading shift, you get
this gigantic matrix oer cC[y], some infinite matrix with 1s from all the x’s and
then matrices in y. This could still be homotopy equivalent to a finite rank matrix
factorization. I didnt define the homotopy category, but let me say

Theorem 1.1. (Brunner–Roggenkamp); (Khovanov–Rozansky); (Dyckerhoff–M.)
There exists a finite rank matrix factorization Y ∗X of V (y) such that

Y ∗X ≅ Y ⊗C[x]X

as matrix factorizations of V (y) over C[y] in the homotopy category of matrix
factorizations.

You can’t do Gaussian elimination, but you can find a contractible piece that’s
infinite and contains all the 1s.

In the ungraded case, well, you can put in a Z-grading if you want, in the graded
case this is true on the nose, in the ungraded case you may need to go to the
completion, may need to take a power series.

We call Y ∗X the fusion of Y and X, you get something infinite, but isomorphic
to something finite. This is the fusion.

The subject of these lectures is the question of how to find Y ∗X, how do we
compute this fusion? The first two pairs of names, just tell you that it exists.
Actually being able to describe it is a different thing, the subject of these lectures.

Obviously there’s theory that goes into answering that question, but if you put
in a matrix factorization of V −W and a matrix factorization of W the code will
compute the fusion. I wrote this with N. Carqueville to compute knot homologies,
do a lot of defect fusions. The code is on github, you’ll find this all on my website
I gave the link to before. You need to install singular, which is good at Groebner
bases. Then you download all the code you need as a zip file.

[examples on the computer]

2. Kwokwai Chan: Scattering diagrams and deformation of complex
structures

I’d like to thank the organizers for inviting me to speak here. What I’m going to
talk about is joint with Conan Leung and Ziming Nikolas Ma. I’m not sure if all of
you have seen scattering diagrams, so let me start with a brief review of scattering
diagrams. There are many ways to do this.

Let me look at A, the automorphism group of C[x±1, y±1][[t]] over C[[t]], and I
want to look at certain elements in this group. For any lattice point (a, b), nonzero,
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in Z2, let f ∈ C[x±1, y±1][[t]] be a function of the form

1 + txaybg(xayb, t)

where g(z, t) ∈ C[z][[t]].
Then we can define a certain element in the groupA, which is denoted Θ(a,b),f ∈ A

by

Θ(a,b),f = {
x↦ x ⋅ f−b
y ↦ y ⋅ fa

Definition 2.1. (Gross–Pandharipande–Siebert) The tropical vertex group H ⊂ A
is (the completion with respect to t of) the subgroup generated by Θ(a,b),f for all

(a, b) in Z2/{0} and f of the above type.

Remark 2.1.

Θ∗ω0 = ωi

where ω0 = dx
x
∧ dy

y
on (C×)2.

What we want is to find factorization formulas for commutators of generators of
H. So let me give you an example. There are very special elements Sℓ1 in the sets of
generators, usually the first ones to consider, Θ(1,0)(1+tx)ℓ1 and Tℓ2 = Θ(0,1)(1+ty)ℓ2 ,
and you want to compute

T −1ℓ2 ○ Sℓ1 ○ Tℓ2 ○ S−1ℓ1
this is like a circle going around the origin.

You want to express this as a product of Θs.

Lemma 2.1. (Kontsevich–Soibelman) This works for any two generators but I’ll
state it for this special case:

T −1ℓ2 ○ Sℓ1 ○ Tℓ2 ○ S−1ℓ1 = ∏⃗Θ(a,b),fa,b

where the (a, b) are all chosen in the first quadrant, this is the product over primitive
vectors (a, b) in the first quadrant.

So you draw some rays, and the rays you pass through between them, that’s
enough, that’s what we call a scattering diagram.

Let me give you some concrete example, for ℓ1 = ℓ2 = 1. Then

T −11 ○ S1 ○ T1 ○ S−11 = Θ(1,1),1+t2xy

For another example, ℓ1 = ℓ2 = 2, you need to add infinitely many rays already,
passing through (k, k + 1) and (k + 1, k) as well.
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For ℓ1 = ℓ2 = 3, you get a region where all rational slopes appear, a dense set of
rays.

For Gross–Pandharipande–Siebert, these scattering diagrams are related to, for
instance,

● Euler characteristics of quiver moduli
● Gromov–Witten invariants of toric surfaces
● cluster algebras,
● wall-crossing formulas for [unintelligible]invariants,

and so on. For me it will be because of the relation to SYZ mirror symmetry.

2.1. SYZ mirror symmetry. The SYZ, by the way, stands for Strominger–Yau–
Zaslow (1996).

Roughly speaking, we want to understand mirror symmetry. The conjecture says
that a pair of mirror Calabi–Yau manifolds should be related geomtrically, admit
special Lagrangian fibrations over the same base with dual fibers. The toy example
(the only one we will consider in this talk), you look at an affine manifold, a manifold
B0 with integral affine structure, there are charts with transition functions affine
linear maps. Then you can look at two manifolds associated to this B0. So you can
look at X0 = T ∗B0/Λ∗, the quotient by a lattice (a local system of lattices). There
is a lattice structure from the affine structure. Everyone knows that the cotangent
bundle has a canonical symplectic structure.

On the other hand, you have a complex manifold ∨X0 = TB0/Λ. If you are taking
the tangent bundle of a real manifold you usually don’t get a complex manifold but
here you do because of the affine change of coordinates.

It makes sense to say that these are a mirror pair.
Now, let’s see. Let me briefly talk about a proposal of Fukaya. This is a nice

example of mirror symmetry, but it’s not interesting at all because it’s not what you
get in the general case of compact Calabi–Yau manifolds. This is too restrictive. If
the base is an affine manifold without any singular fibers, then X0 and ∨X0 are just
tori. To look at more interesting cases of compact (or non-compact) Calabi–Yau
manifolds, you need to allow singular fibers.

In general we consider Lagrangian torus fibrations with singular fibers. The
general picture, you look at a Calabi–Yau, and if you’re lucky enough you find
a Lagrangian torus fibration, and you look at B0 inside B, the locus of smooth
fibers, and over the smooth locus you look at T ∗B0/Λ∗, and put that inside X,
and define ∨X0 = TB0/Λ, the semi-flat mirror. You need to fill in the singular
fibers. The problem is that the complex structure J0 on ∨X0 cannot be extended
to any (partial) compactification of ∨X0 because the affine structure around the
discriminant locus cannot be extended.
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The most important idea of SYZ is to deform J0 by so-called instanton correc-
tions from holomorphic disks bounded by fibers of µ.

Now here comes Fukaya’s idea. We say that the correct structure should be
related to holomorphic disks. How do we see that? You look at a Maurer–Cartan
equation, you search for a solution, and then you Fourier expand the solutions and
compare this to holomorphic disk data.

Fukaya’s idea is that both things will be related to Witten–Morse theory of
multi-valued functions on the base B0. Fukaya’s program is to relate these things.

this is related to work by Floer and later generalized by Fukaya and Oh. You
can see that the counting of holomorphic disks is related to the counting of gradient
flow trees on the base. On the other side it’s Fukaya’s conjecture. The paper, I
think is in 2005, he proposed to understand this you should go to Witten–Morse
theory on the base, but he didn’t have any proofs.

How is this related to scattering diagrams? These are exactly tropical images of
holomorphic disks. My work with Conan and Ziming is to look at the relationship
on the complex side, by taking Fourier series and semi-classical limits.

So take the Kodaira–Spencer differential graded Lie algebra

(Ω0,∗(∧∗T 1,0
∨X0
), ∂̄, [, ])

So one question is, what is the corresponding Lie algebra on the A-side? Motivated
by Fukaya’s proposal, we have (LX0 , dW ,{,}), where LX0 = Ω∗(M,TBC

0 ). You take
M = ∐x∈B0π1(µ−1(x)) where µ is the projection of X0 to B0.

Then dW is e−
f
h̵ de

f
h̵ , where f ∶ M̃ → R is, you look at x in the base a relative

homotopy class φ and map it to ∫D2 φ
∗ω, where M̃ = ∐π2(B, ,µ−1(x)) over M . Let

me skip the bracket, which is the natural bracket on TBC
0 twisted by e

f
h̵

The construction for the moment is ad hoc, you just write this down so that the
Fourier series interchanges them.

Proposition 2.1. The Fourier transform F gives an isomorphism of DGLAs
(LX0 , dW ,{,}) ≅ Ω0,∗(∧∗T 1,0

∨X0
), ∂̄, [, ]).

2.2. Solving the Maurer–Cartan equation. We directly solve this equation on
the A-side,

dWΦ + 1

2
{Φ,Φ} = 0.

How do you relate this to scattering diagrams? For simplicity, let me describe this
just for one wall. Then you don’t get scattering, but remember that the vector (a, b)
you looked at, and then Θ(a,b),fa,b

. You can cook up an ansatz giving a solution to

the Maurer–Cartan equation, Φ ∈ Ω1(M,TBC
0 )[[t]].

This solution only depends on fa,b, whenever you write down f you can write
down a solution, and this solution is gauge equivalent to zero, because we’re looking
at the local case, I’m assuming that B0 = R2, no singular fibers. So ∨X0 is (C×)2
and has no nontrivial complex structure. Then this solution is gauge equivalent to
zero. So then there exists φ ∈ Ω0(M,TBC

0 )[[t]] such that eφ ∗ 0 = Φ.
What I want to point out is when you do the semiclassical limit of this gauge,

Proposition 2.2. (C.–Leung–Ma) The semiclassical limit of φ gives you back fa,b.

Now it comes to the interesting part, about the two-wall case. Then the thing
is, you look at two walls, you have an m⃗1 = (a1, b1) and m⃗2 = (a2, b2)
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Now the problem is, when you look at this Φ = Φ1 +Φ2, where Φi is given by the
ansatz, this doesn’t solve the equation. You have to modify it, in fact a solution Φ̃
is given by

Φ̃ = ∑
k≥1

ℓk(Φ, . . . ,Φ)

the sum over trivalent trees, with brackets at the vertices and on internal edges you
put a so-called propagator or homotopy, this is the inverse of d̄, you have to use
the Green’s operator. You look at the sum of all these and get a solution.

I am already over time, but let me state the main theorem.

Theorem 2.1. (C.–Leung–Ma)

(1) The nontrivial solution can be decomposed

Φ̃ = ∑
(a,b)∈Z2

≥0/{0}
Φ(a,b)

(2) Each Φ(a,b) is a Maurer–Cartan solution

(3) there is φ(a,b) with e
φa,b ∗ 0 = Φ(a,b) and φ(a,b) = φ(a,b),0

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
semiclassical limit

+O(h̵ 1
2 )

(4) Each φ(a,b) recovers fa,b, if you look at the ordered product ∏ eφ(a,b),0 you
get the identity, so this is a monodromy-free scattering diagram.

So solving the Maurer–Cartan equation and including the semiclassical limit
gives you scattering diagrams.

3. Kyoji Saito: An introduction to primitive form theory

Thank you very much for the introduction and for inviting me to give some
course here.

The talk is some brief intro to primitive form theory. I did bad preparation, so
I’ll talk from old notes, but the origin is really some hundreds of years old. So using
ten year old notes isn’t actually that old.

I said this goes to the 1937 or 1938, but recent primitive forms were introduced
around the beginning of the 1980s. Let me give some background. I’ll start in the
first part with a classical story. This is elementary and some people can think of it
as sleeping time. I’ll talk about elliptic integrals (revisited) or simple Lie algebra
theory from the viewpoint of the coadjoint orbit space. In the second part, I’ll come
to a more technical explanation of primitive forms. In the third part, I’ll give some
possible applications. For the moment, the whole picture is not yet seen, but I’ll
try to describe some possible applications. One is mirror symmetry, but as we have
seen this morning, this story belongs to Landau–Ginzburg models in the B-model.
This could be dual to several different objects, it could be FJRW theory or the
compact Calabi–Yau case. The first case is done, by Si Li and his collaborators.
The second is only partially done, by Gromov–Witten theory.

A second application is the relation with topological conformal field theory. This
is only partially understood, some examples were done by Dijkgraaf, Verlinde, and
others. A third application is to primitive automorphic forms.

Some of you like Si Li and Changzheng Li understand much more than me about
primitive forms, or professor Losev from the physics side. What I can do is a formal
technical description and some of you can understand it better.
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3.1. Elliptic integrals. You consider integration on a curve, and you want to find
a point of distance a + b, on a curve and this was studied for cubics and quartics.
Euler finally found an equation, and people developed a theory of elliptic integrals.
This goes to the integral theory on Riemann surfaces. These are some origins of
modern Hodge theory. In my impression, modern Hodge theory is a big machine
but within it several fine details are skipped or need to be looked at again.

After Lie, Jacobi, or Abel, people tried to formalize these integrals. There are
three that I’ll talk about.

● Weierstraß, doing FA2(x, y, g2, g3) = y2 − (4x3 − g2x − g3).
● Jacobi (Euler), FB2(x, y, g2, g4) = y2 − (x4 + g2x2 + g4 +

g2
2

8
).

● Hesse, FG2(x, y, g) = x(x + y)(x − y) + g2(3x2 + y2) + g6 − 2g33 .
These correspond to the three rank two root systems. This is a subfamily of some
bigger family, so I want to embed B2 in A3, FA3(x, y, g2, g3, g4) = y2 − (x4 + g2x2 +
g3x + g4 + g22/8). Similarly, I can put G2 inside D4 with FD4(x, y, g) = x(x + y)(x −
y) + g2(3x2 + y2) + g4x + g′4y + g0 − 2g42 − g2(g4 + g′4).

I wanted to describe these loci, but in the Weierstraß case you have two pa-
rameters g2 and g3 and if you look at it carefully, this curve is singular when the
discriminant of the polynomial (4x3 − g2x− g3) is zero, and up to a coefficient, this
is ∆ = g32 − ∗g73 .

(many pictures).
I want to study integrals, I want to study some tautological differential form on

the total space with parameters, nad then I want ot integrate this over these cycles.
That was the original study of Abel and Jacobi. I want to talk now about Abel’s
idea, which was very clever.

So he was studying these, and what happened?
This is simple, consider a polynomial P (x, y, g)dxdy, consider this on the space

of parameters x, y, and g. If the parameter is zero, then you get these singular
fibers. [pictures]

What he did was Res[P (x,y,g)dxdy
F (x,y,g) ], this is some Poincaré residue, and you can

do this by dividing both sides, this is P ()dx
∂F
∂y

∣Eg = −P ()dy
∂F
∂x

∣Eg.

So in the cases of our examples, the rank of the invariant lattice and the [unin-
telligible]are the same.

Euler didn’t say explicitly, but

Lemma 3.1. Let ζ = Res [ dxdy
F (x,y,g)]

For all cases, {∇ ∂
∂igi

(ζ(0)} gives a basis of the cohomology groups of the E0,g.

There’s some standard formula that you can prove, that

∂

∂gi
∫
[unintelligible]

S(0) = ∫
[unintelligible]

∇ ∂
∂gi

ζ(0)

[Too tired to continue.]

4. Liang Kong: Local observable algebras for 2 + 1D topological
phases of matter

[I do not take notes on slide talks]
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5. January 7: Daniel Murfet: Fusion of defects in Landau–Ginzburg
models I

Recall that the first thing I talked about yesterday was 2D defect TFTs. This had
phases and defect conditions. The objects were decorated circles and the morphisms
decorated surfaces. There are labels on the regions and the decorations. There are
compatibility conditions using the source and target maps from the defects to the
phases.

I’m going to start by defining the homotopy category of matrix factorizations.

Definition 5.1. Given two matrix factorizations X and Y of W , assume they’re
finite rank, look at HomC[x](X,Y ), which is a Z2-graded free C[x] module. Then

δ(α) = dY α − (−1)∣α∣αdX .

This still squares to zero even though dX and dY do not. So this is a complex.

Definition 5.2. There’s a dg category whose objects are matrix factorizations of
W , call it mf(W ), between two objects X and Y I take this complex. Composition
is composition of matrices. This is a Z2-graded category. This category doesn’t
have good properties unless X and Y are assumed to be finite dimensional.

Anyway, the homotopy category is H0(mf(W )). This is the triangulated cat-
egory with objects finite rank matrix factorizations and morphisms closed degree
zero elements in this complex mod exact elements.

I always meant homotopy equivalences by isomorphisms yesterday. This was
introduced by Eisenbd in the 80s.

Okay, that was a piece of last lecture present in today’s lecture. Today’s lecture
is going to be about bicategories. Let me begin by repeating and elaborating the
connection between 2D TFTs and bicategories. If you sit down and look at the
definition, you get that, the rigorous and clear direction, from a 2D defect TFT Z
you can cook up a bicategory where all 1-morphisms have left and right adjoints.
It’ll be pivoted and satisfy some extra conditions. The 2-category satisfies some
conditions, and I don’t know exactly which conditions are necessary to define Z in
the other direction. I’ll define bicategories more carefully later. Just a sketch, a
bicategory has objects and 1-morphisms. The set of objects is D2 the set of phases,
and the 1-morphisms are the defect conditions. Today I’ll talk about a particular
bicategory, the bicategory of Landau Ginzburg models. This is another way to
look at physicists’ LG models. The phases are potentials W (x) in various sets of
variables. The defect conditions X with s(X) =W (x) and t(X) = V (y) is a matrix
factorization of V (y) −W (x). Then the corresponding bicategory had better have
potentials as objects and 1-morphisms matrix factorizations.

The real novelty is that before I learned about this, the defect perspective gives
you this idea of one-morphisms between potentials, and it suggests nontrivial prop-
erties between the arrows.

Before I make the definitions in higher resolution, let me convince you that there
are nontrivial arrows between different singularities, geometrically interesting, you
might say.

The first example is generalized orbifolding (Carqueville–Runkel). So professor
Saito was talking about ADE singularities. So A11 the polynomial is x121 + x22.
There’s also a polynomial WE6 = y31 + y42 , and there’s an interesting map X from
the first to the other, a matrix factorization of rank 2 of y31 + y42 −x121 −x22. You can
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write down the “dual” and then composition is fusion, and you get a loop, writing
down the fusion, at WA11 , call it A.

Proposition 5.1. A is a Frobenius algebra. The modules over A is equivalent to
hmf(C[y],WE6).

This is a consequence of some general yoga they set up and this is quite surprising.
If this seems obvious to you that A11 and E6 are related, please tell me why. So
1-morphisms from WA11 to itself is a monoidal category. In this monoidal category
I can talk about Frobenius algebras. So A is a Frobenius algebra in that category.
There are many more examples in this line that I’ll talk about today.

The second example with nontrivial arrows comes from topological Fukaya cat-
egories (Dyckerhoff–Kapranov). The starting point for this construction is a co-
cyclic object {{Zi}, where you have the n simplices the potential zn+2. These
matrix factorizations were first considered by Brunner–Roggenkamp. These exam-
ples hopefully demonstrate that there are interesting 1-morphisms between different
potentials.

So I only talked about fusion in a special case last time, now let me define general
fusion and then get into bicategories.

Theorem 5.1. Given potentials W (x), V (y), and U(z) and finite rank matrix
factorizations Y ∈ hmf(C[y, z], U(z)−V (y)) and X ∈ hmf(C[x, y], V (y)−W (x)).
So we think of this as W

XÐ→ V
YÐ→ U . Then if I tensor these modules over the

intermediate variable Y , I get (Y ⊗C[Y ] X,dY ⊗ 1 + 1 ⊗ dX) which is an infinite
ranke matrix factorization of U −W . There is a finite rank matrix factorization
Y ∗X of U −W over C[x, z] which is homotopy equivalent to Y ⊗X.

Definition 5.3. Call this object the fusion of Y and X..

I’ll give an example of nontrivial fusions, but first let me draw a picture:

VU W

Y X

≅ U W

Y ∗X

Let me give an example, let V (y) = yd andW (x) = xd. ThenX ∈ hmf(C[x, y], yd−
xd). Let η = e2πi/d. Then yd − xd =∏d−1

i=0 (y − ηix). Choose S ⊂ {0, . . . , d − 1}. Then
let

X = PS = [
0 ∏i∈S(y − ηix)

∏i∉S(y − ηix) 0
]

which is called a permutation defect. You might think that’s simple and can’t be
interesting, but the fusion is nontrivial. I can take PS′ which is in hmf(zd − yd),
and I’ve got two arrows, so to speak,

xd
PSÐ→ yd

PS′ÐÐ→ zd
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and I can ask about the fusion, and this is a finite rank matrix factorization of
zd − xd. This turns out to be some sum of PS things. Let

Pm∶λ = P{m,...,m+λ}

and then
Pm∶λ
´¸¶
PS′

∗ Pn∶µ
´¸¶
PS

= ⊕
v=∣λ−µ∣, step 2

Pm+n− 1
2 (µ+λ−v)∶v

and this is related to ŝu(2)d−2. This was proven by Brunner–Roggenkamp and
reproved later by Davydov–Ros Camacho–Runkel.

Let’s move to bicategories.

Definition 5.4. A bicategory B has

● objects a, b, c, . . .;
● for every pair a category B(a, b), objects are called 1-morphisms X ∶ a→ b.
Morphisms of B(a, b) are called 2-morphisms;
● for every triple a, b, c, a functor

B(b, c) × B(a, b)→ B(a, c)
which is horizontal composition,

(Y,X)↦ Y ○X
● for each a a unit ∆a ∶ a→ a.
● an associator, a natural two-isomorphism Z ○ (Y ○X) ≅ (Z ○ Y ) ○X
● unitors for X ∶ a→ b which say that ∆b ○X ≅X ≅X ○∆a naturally, plus
● coherence conditions, literally the same as for a monoidal category.

A bicategory with one object is literally a monoidal category, so this is a gener-
alization of that. If you change these natural isomorphisms in the associator and
unitor, this is a two-category.

So if you take categories, functors, and natural transformations, this is a 2-
category, where these two things are strict. Many interesting things are not strict.
If I take rings, bimodules, and bimodule maps, for example, that’s a bicategory,
because the tensor product is not associative on the nose. I can take smooth
projective varieties, Fourier–Mukai kernels, and morphisms in the derived category
of coherent sheaves, and this is also a bicategory, more interesting than the others
if you’re a geometer.

Definition 5.5. The bicategory LG (for Landau–Ginzburg) has objects potentials
(C[x],W (x)), and next I should give a category LG(W (x), V (y)), and that’s the
category of matrix factorizations hmf(C[x, y], V −W ), but I should formally split
idempotents, take the idempotent completion. I need to tell you how to compose
1-morphisms, and that’s fusion, which we’ve already defined. If I have two 1-
morphisms Y and X,

W
XÐ→ V

YÐ→ U

then the fusion by definition is a finite rank matrix factorization of U −W , just an
isomorphism class but there are two ways to get around that. For lack of time I
won’t talk about units.

You need to check coherence

Proposition 5.2. (Lazariou–McNamee; Carqueville–Runkel) LG is a bicategory.



STRING FIELD THEORY OF THE B-MODEL 13

We have ourselves a bicategory which we think of as encapsulating the data of a
2D defect TFT. What can we say about the bicategory? I want to get to generalized
orbifolding.

Theorem 5.2. (Carqueville–Runkel; Carqueville–Murfet) Every 1-morphism X ∶
W → V in LG has a left and right adjoint and LG is pivoted.

I won’t define left and right adjoints in a general bicategory. I’ll tell you the
adjoint. Assume ∣x∣ and ∣y∣ are even for ease. X∨ = HomC[x,y](X,C[x, y]) with
d(α) = −(−1)∣α∣αdX , and X∨ is both left and right adjoint to X. If you’re familiar
with Grothiendieck duality this isn’t surprising. There are some suspensions here
that I’m supressing. You can approach this in a number of ways, but the difficulty
is writing this down in a way that you can get explicit units and counits.

This means that you can evaluate string diagrams in the bicategory and actually
compute the answers.

So given a 1-morphism X ∶W (x)→ V (y), evaluating
V

W

I put in a ∆V at the top and bottom, and then this is something in Hom(∆V,∆V ),
which is the Jacobi alegbra of V , JV .

b

b

∆V

∆V

coev

ev

XX

V

W

If you plug into the formulas, this is the right quantum dimension of X, dimr X ∈
JV . The point is that everything in this Landau–Ginzburg setting is computable,
you can sit down and show that

dimrX = (−1)(
m+1
2
)ResC[x,y]/C[y](

str(∂x1dX⋯∂xndX∂y1dX⋯∂ym(dX))dx1⋯dxn
∂x1W⋯∂xnW

)

in JV = C[y]/(∂V ) and if dimrX is a unit then V is a generalized orbifolding ofW ,
this is a strong relation, and this is what is used in showing the relation I talked
about earlier between WA11 and WE6 .
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6. Matt Young:Cohomological Donaldson–Thomas theory with
orientifolds I

The goal of the lectures is to extend Donaldson–Thomas theory to deal with
orientifolds. If Donaldson–Thomas is about counting bundles on a Calabi–Yau
threefold, then this extends this to G-bundles, for G a classical group. Today I’d
like to explain what I mean by cohomological Donaldson–Thomas theory. This is
other peoples’ work, mainly Kontsevich and Soibelman, and in the other lectures
I’ll talk about orientifolds and how to extend this theory to them.

Before defining what this is, I want to start with some motivation from physics
that was also Kontsevich–Soibelman’s motivation. It’s an old idea, old by string
theory standards, that given a string theory or quantum field theory with extended
supersymmetry, more than the minimal nonzero amount of supersymmetry, there
is a distinguished subspace, I’ll call it HBPS inside H, the Hilbert space of states of
your theory graded by some charge lattice Λ with finite dimensional graded pieces.
This subspace is interesting from both a physical and mathematical point of view.
The motivation is all a huge conjecture, probably not right as stated, but that won’t
stop me.

What’s one caricature of what HBPS could be? In type IIA string theory com-
pactified on X, a smooth projective Calabi–Yau three-fold, in this case, the classi-
cal BPS field configurations, these are the fields that obey some partial differential
equation of lower order than the equations of motion, these are complex vector
bundles on X with a Hermitian Yang–Mills connection. This is a first order partial
differential equation you need to solve, this PDE is the BPS condition. You can
argue that these connections are the same as semi-stable vector bundles on X. This
is a purely classical thing, that the moduli of BPS configurations isMst

d (X) with
Chern character d ∈ Λ =H2∗(X,Q). This is an interesting moduli space.

So the naive expectation is that this subspaceHBPS is the singular cohomology of
this moduli space, HBPS,d =H∗(Mst

d (X)), and this is even more problematic than
the original conjecture, equality should be “=” here. We have an extra Z-grading
from Hodge or cohomological degree, so that HBPS is a Λ×Z-graded vector space.

At increasing levels of sophistication, we could want to compute the following
quantities.

(1) the dimensions of the components of HBPS , say the Euler characteristic,
so something in Z[[Λ]] = Z[[xd]] where d ∈ Λ, call this numerical BPS
invariants.

(2) the Serre polynomial, using the extra Z-grading [HBPS] = ∑d,k dim HBPS(d,k)(−q
1
2 )kxd,

the refined BPS invariant which recovers the numerical one when q
1
2 = 1.

(3) Just calculate HBPS itself, call this the cohomological BPS invariant.

Physicists can calculate these, maybe with less detail as we go down the list.
A proposal of Harvey–Moore says that there’s extra structure, namely thatHBPS

is a Λ or Λ ×Z-graded associative algebra. The definition, the definition that they
give is a purely physical definition, so it’s not clear at all how you’d make this
mathematically precise. They have a more precise definition for type IIA but it
turns out to not quite be correct.

This leads to at least two questions that we could try to answer.

(1) The first is whether we can define in some mathematically precise way the
BPS invariants, whether numerical, refined, or cohomological.
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(2) The second is whether we can actually construct this BPS algebra. Can we
come up with a definition so that HBPS has a natural multiplication.

You can extract these two questions from this setup.
I want to explain Kontsevich–Soibelman’s approach to these two problems. They

take as input a 3-dimensional Calabi–Yau category, and they should spit out a
BPS algebra and the invariants that play the role of BPS invariants are Donaldson
Thomas invariants.

(1) the first example, from type IIA, is Db(Coh(X)), the derived category of
coherent sheaves on X a smooth Calabi–Yau three-fold.

(2) [unintelligible]Db(JQ,W ), the Ginzberg dg-algebra for a quiver with poten-
tial.

The proposal of Konstevich–Soibelman is rigorous for the second example. Another
reason to study this case, is that the quiver case is in some sense the formal local
version of the general case.

For the rest of today I want to explain what this approach is in the quiver case.
A quiver is a pair (Q0,Q1) where Q0 are nodes and Q1 are arrows, so you

have a directed multigraph. Attached to Q is the Abelian category RepC(Q) of
representations of Q. Such a representation U has for each node i, Ui along with
maps Ui → Uj for each arrow i → j. We can always write these, choosing a basis,

as Ui = Cdi , so we call (di)i∈Q0 the dimension dim(U) and Λ+Q = Z≥0Q0.

The Euler form of this 1-dimensional category is χ(U,V ) which is dimHom(U,V )−
dimExt1(U,V ) and there’s a Riemann–Roch type thing, wher this is

∑
i∈Q0

diei − ∑
i

αÐ→j

diej

where dim(U) = d and dim(V ) = e.

Definition 6.1. We call a quiver Q symmetric if χ is a symmetric bilinear form.

This means there are the same number of arrows in one direction as in the other,

#{i→ j} =#{j → i}.

Today we’ll always assume that Q is symmetric and from the example, I’ll take
W = 0. Everything can be done without these assumptions but the statements are
much more complicated. There’s a completely linear description of a representation
of a quiver, so we can use this to write down moduli spaces of quiver representations.

For d ∈ Λ+Q, let

Rd = ∏
i

αÐ→j

HomC(Cdi ,Cdj)

and

GLd = ∏
i∈Q0

GLdi(C).

There’s a natural action of GLd on Rd and the orbits are isomorphism classes of
representations so then Md = Rd/GLd is the stack or representations of Q with
dimd.
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Definition 6.2. Let HQ =⊕d∈Λ+
Q
H

∗−λ(d, d)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
dimMd (Md), which I can think of as just the

sum of H∗GLd
(Rd), the sums of the equivariant cohomology. This is a Λ+Q×Z-graded

vector space.

So we can take the Serre series [HQ] ∈ Q(q 1
2 )[[Λ+Q]], this can be computed

explicitly.
We have this Serre polynomial but it’s not what we want, we have no stability

condition. These could have huge isomorphisms and this isn’t clearly related to
the moduli of stable vector bundles. So HQ is in an Abelian monoidal category
of Λ+Q × Z-graded vector spaces. Then [HQ] sits in a subring of the Grothiendieck

group of this category K0(V ectΛ+
Q
×Z). This is a λ-ring, where we have a bunch of

additional operations from taking symmetric powers in this ring.

As an aside, let ΠQ be Q(q 1
2 )[[Λ+Q]]. Its λ-ring structure is determined by a

map σt ∶ ΠQ → 1+ΠQ[[t]]+. Suppose I have a graded vector space [V ] then I map
it to ∑n≥0[Symn V ]tn, which defines the operations necessary to define a λ-ring.

This λ ring is a complete graded λ-ring, so we can define the plythestic exponen-
tial, basically the symmetric power operation, so this maps Π+ (no constant terms)
bijectively on 1 + Π+, taking [V ] → ∑n≥0 Sym

nV . Then there’s no convergence
problems and you can really take this convergent sum.

What is this exponential explicitly in our example? Let’s take the quiver Q
consisting of a point. In this case the space of dimension vectors is just Z≥0. Then

Exp(f(q
1
2 , x)) = exp(∑

n≥1

f(q 1
2 , xn)
n

),

the Adams operations.
This definition is motivated by a bunch of physics calculations.

Definition 6.3. (Kontsevich–Soibelman) The refined Donaldson–Thomas invari-
ant of Q is the element

ΩQ ∈ Q(q
1
2 )[[Λ+Q]]

defined by

Exp(
ΩQ

1 − q
) = [HQ]

in ΠQ.

This is safe because Exp is a bijection.
The first question you might ask is why you’d be interested in an element de-

fined in this way. There’s a useful heuristic for why you might come up with this
definition.

A basic fact is that every representation of Q has a finite filtration, a Jordan–
Hölder filtration, so that the subquotients Ui/Ui−1 are all simple or irreducible
representations (no nontrivial subrepresentations). As an aside, the simple repre-
sentations are exactly the stable representations from geometric invariant theory.

There will be many different filtrations of this form, but the set of subquotients
of this kind is well-determined up to isomorphism.

assume that

(1) the Jordan–Hölder filtration is canonical and
(2) splits canonically
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This is saying that every representation of the quiver is isomorphic to a direct sum
of simple representations, so Vi is stable for vi ≥ 0. This only holds true when Q is
a point but let’s see what we can do.

What does this say at the level of cohomology? LetMst
d be the moduli space of

stable representations of dim = d. Then I want to takeMst = ∐d≥1Mst
d . I’m taking

the trivial stability condition, from the GIT point of view [unintelligible].
At the level of cohomology,

[HQ] = [H∗(M)] = ∑
n≥0
[H∗(SymnMst)]

which is not quite true because we need to take care of automorphisms. We can
remember that the stable representations have automorphisms, a C∗-worth. So if
we mod out by that,

[HQ] = [H∗(M)] = ∑
n≥0
[H∗(SymnMst)/C∗]

then this is actually true.
So how do we compute this? We take the Sn coinvariants of the nth power, this

is

∑
n≥0
[SymnH∗(Mst/C∗)] = Exp([H∗(Mst/cC∗)]) = Exp([H

∗(Mst)]
1 − q

).

I’m almost done. Here we’ve used that H∗(BC∗) = Q[u] where u has degree
(0,2). This suggests that the Donaldson–Thomas invariant ΩQ is something like
[H∗(Mst)].

Motivated by this, there are two natural conjectures you could make, due to
Kontsevich–Soibelman and Joyce–Song

Conjecture 6.1. (1) Integrality: if I fix d, I’m looking at the cohomology of
a single part, and that should be a finite dimensional graded vector space.

That is, ΩQ,d is a function of q
1
2 , and this should sit in Z[q± 1

2 ], polynomials
and not rational functions.

(2) Positivity: If we think of this as an Euler characteristic, then when we

substitute in −q 1
2 , then we should get a polynomial with nonnegative co-

efficients, in Z≥0[q±
1
2 ], motivated by the heuristic belief that there is some

connection to the homology.

The first conjecture was proven by Kontsevich–Soibelman, using some compli-
cated techniques. I’ll describe a conceptual proof of both that is easy, using some
additional conditions.

7. Kyoji Saito: An introduction to primitive form theory II

Thank you very much for the introduction. Yesterday I described the classical
theory, and how to find a differential form, elliptic integral of the first kind, and
I’ll discuss a completely different subject today, a Lie theoretic approach. Later
tomorrow I’ll generalize both properties. Today I’ll explain just the Lie theoretic
story.

Start with g a simple Lie algebra over C. If you don’t know this, a typical
example is sl(C, ℓ + 1). Then you consider the adjoint gorup G, that means in this
case SL(C, ℓ + 1), and the Cartan algebra H, the maximal Abelian subalgabra, in
this case diagonal matrices in sl(C, ℓ + 1), and the Weyl group maybe I’ll skip. So
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you consider this very classical setting. Then G acts on g adjointly. In the matrix
case it’s by conjugation on the trace-free Lie algebra. In general this action has
fixed points. Nevertheless you consider the quotient map g → g//adG, where this
is Spec({s(g∗)}adG). If you follow the Cartan subalgebra H, there is a finite Weyl
group W , the normalizer of H divided by H itself, and this becomes H/W in the
quotient. The Weyl group acts on H as a finite reflection group, and this quotient
is naturally identified with g//adG. There are singular orbits, and to detect them,
well, in H, there are hyperplanes Hα which are fixed by reflections, and then the
image in the quotient is called the discriminant D and is a divisor in H/W . Then
an orbit is singular if its orbit is in D. So π−1(t) is smooth if t ∉ D. If t ∈ D, the
fiber in general decomposes as a finite number of orbits, and the most generic open
orbit, there is a single generic nonsingular orbit and all the others are singular.

In the case that G is the special linear group so that H is diagonal matrices, then
to x in g, the space is det(λI − x). It’s a theorem of Chevalley that I hope many
of you know that says that if you are going to look at this process, then you are
looking at the function ring fixed by W , S(H∗)W ≅ C[p1, . . . , pℓ] where p1, . . . , pℓ
are homogeneous polynomials in the polynomial ring S(g∗) of degree d1, . . . , dℓ,
where di is qi + 1 and qi is called the exponent. Here 1 = q1 < ⋯ < qℓ = h − 1 and
these are somehow symmetric.

You associate the variable (p1, . . . , pℓ) in Cℓ and get the image in H/W . This is
not a linear isomorphism, but this quotient space has a very common structure, a
linear structure, and this later becomes what people call a Frobenius structure. I
want to talk about where the flat structure comes from in this setting.

This projection map π on g has a very specific structure. People may know
that the cohomology ring is isomorphic to the flag variety, but I’ll show that if you
consider the direct image, then from the viewpoint of D-modules, there is a single
generator, which is what I call the primitive form.

Before going further, maybe I should say something about singularities, go back
to g → g//adG. In order to adjust to the picture, let S ∶= g//adG. I’ve already
discussed the fiber. For generic t this is smooth. How about the most singular
point? Then you see that this quotient space is the space of [unintelligible]. So you
should look at all matrices in this space with eigenvalues 0. So g0, the preimage of
0, consists of nilpotent elements. This is the space where there are as many orbits
as possible. There is some resolution of this singularity using the cotangent space of
the Grassman variety, T ∗(G/B). This is often called the Grothiendieck or Springer
resolution.

In some sense, in order to describe this resolution, all other fibers, once you
take the finite cover of the base space, somehow you can be convinced that this
gives a generic fiber for t ∈ S/D, this gives gt. From this description, your fiber
becomes a symplectic manifold, identified as it is with the cotangent space, and
the cohomology ring of the fiber, which is the same as the cohomology ring of the
cotangent bundle, which is the same as the cohomology ring of the base, and this
is a Lie group modulo its maximal torus. This is generated by its lowest degree,
degree two elements, this is a famous theorem of Borel. In the degree 2 part, there
are still some classes. Then the homology group is identified with the root lattice
of a certain Lie algebra. Today I’ll show further that every cohomology class is
obtained by [unintelligible]two-forms. Let us see how this thing works.
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Maybe I’ll just make the following remark, made by Brieskom, and clarified by
[unintelligible]. This part also I won’t use today, but, well, this is another remark,
here we see that the fiber over g0 is the nilpotent variety N , so consists of several
singular orbits, but generically you have somethnig smooth. The codimension two
part is called subregular. Then if you look at a singular point, and consider, since
I don’t use it today, consider some subvariety transversal to the subregular orbit.
Then if you restrict the quotient map π to this transversal slice, you obtain a family
of varieties whose fiber over 0 is the intersection of the slice and the nilpotent orbit,
so a 2-dimensional singularity which is actually an ADE singularity (or BCF),
depending on g.

The fiber over zero is the simplest singularity and all of X → S is the universal
deformation of X0. Then H

2(Xt,C) for t ∈ S/D naturally embeds into H2(g), and
this is an isomorphism, so the generic fiber was the flag variety, but the second
cohomology is identified with [unintelligible].

So my goal is to look at this part of the origin here.
In order to describe the cohomology ring H2(Xt,C) over t ∈ S, you need to get

some vector bundle or coherent sheaf in the phase space. Then we should look at
the de Rham cohomology group. So I’ll switch now to that story.

Then for some people who are not used to it, I’ll define notation. If there exists
a map g → S, then there’s a notion of relative de Rham Kähler form. So let Ωp

g/S
is the sheaf of holomorphic relative p-forms on g/S. You’re going to look at Ωp

g/
(the holomorphic p-forms on g divided by Ωp−1

g ∧ π∗Ω1
S). This can also be defined

where π is singular.
Then you are going to consider the hypercohomology group R2π∗(Ω⋅g/S), a co-

herent sheaf on S of finite rank. Then this is an OS-free module of rank ℓ. This is
the object we want to study now. This has a kind of D-module structure. In such
setting, there is a concept if you have a family of varieties and look at the direct
image of a D-module, then you get one on the base space. That is the so-called
Gauss–Manin connection. One should be a little bit careful in the following sense.
First let us denote by DerS the sheaf of holomorphic vector fields on S, which some
people denote by TS .

Then what I was saying, if you have a D-module, then on the quotient space you
again have a D-module structuer, and you can get

DerS ×R2π∗(Ω∗g/S)→ R2π∗(Ω∗g/S)

which works outside the discriminant, v × ζ ↦ ∇vζ, the Gauss–Manin connection.
Let ∆ be defined in S/D by ∆2 = 0. Introduce OS( 1

∆
) and then this is correct.

Let me concentrate on the rank two part, although there are aspects of this I
did not explain clearly.

The adjoint map has a very particular property, that the fibers of the type
πg → S are symplectic manifolds, and the symplectic form, called the Kostant-
Kirillov form, since I have a bad memory I might say this badly, but let me describe
it the following way. Let X be in an orbit of gt. What is the tangent space TgtX?
This is ker adX. Then the symplectic form we will define TgX

× TgX
→ C, this is

A,B ↦ tr(ad(X)ad[A,B]), and this ω gives as symplectic structure. This is only
for the singular fiber, but you can do this together for all fibers simultaneously.
Then ω naturally extends to a global form Ω2

g/S , a closed form. This is more of a

standard well-known story. Let’s call this the Kostant–Kirillov form.
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Now coming back to the Gauss–Manin connection, now for some technical reason
it looks, actually, the base space is just given by the coordinate system P1, . . . , Pn,
so this is just ∑OS

∂
∂Pi

, since [unintelligible], the space is somehwo graded, and

with respect to this grading, the partial derivative ∂
∂Pℓ

is degree −dℓ. Up to the

unique lowest degree element.
So let us call for the moment, D and sometimes δ this operator, and call this

the primitive vector field. Then what I wanted to say was the following.
Usually with the Gauss–Manin connection you consider [unintelligible],

DerS ∶ RπA(Ω⋅g/S)⊗O[D,D
−1],

(the primitive vector field) and there is something I should explain. The first
theorem I want to state is the following.

Theorem 7.1. Let DerS ⊗C C[D−1]→ R2π∗Ω
∗
g/S[D

−1], then for v in the domain,

let it act naturally, ∇vω, this is an isomorphism. Today I couldn’t find my old
notes, maybe there is some degree shift necessary, I forgot, so to be safe, say up to
a shift in degree.

In this way, my first program is satisfied by this theorem. The second theorem
is more important for the next program, the flat metric and Frobenius manifold.
Let me say that we can understand the right hand side above as DerS ⊕DerSD

−1⊕
DerSD

−2 + ⋯, and how does the connection look in these terms? This is a highly
nontrivial phenomenon. For convenience, Dkω I’ll denote ω(k).

Theorem 7.2. There exists a commutative associative product ∗ ∶ DerS ×DerS →
DerS S. where D = 1 and an integrable connection (torsion free) ∇ ∶ DerS ×DerS →
DerS, along with an Euler vector field E and an OS endomorphism N from DerS
to itself such that

(1)

∇U∇V ω
(−2) = ∇U∗V ω

(−1) +∇∇UV ω
(−2)

and all higher terms vanish.
(2)

∇ ∂
∂D
∇Uω

(−1) = ∇E∗Uω
(−1) −∇NUω

(−2).

So we get the Gauss–Manin connection but with more delicate structure. Here
∇ is a Levi–Civita connection of a metric J ∶ DerS ×DerS → OS ; let me define
J∗ ∶ Ω1

S × Ω1
S → OS , well J

∗(dPi, dPj), well, let I be the Killing form of the Lie
algebra, usually defined on the space H × H → C, a bilinear form, let X1, . . . ,Xn

be the coordinates of H, a basis of the dual space. Then the Killing form defines
I∗(Xi,Xj)→ C. Then I define

J∗(dPi, dPj) = I∗(dPi, dPj) =∑
∂Pi

∂Xk

∂Pj

∂Xℓ
I∗(Xk,Xℓ)

and this would be invariant but you introduce the primitive vector field and then
it’s not degenerate:

J∗(dPi, dPj) = D
´¸¶

∂
∂Pℓ

I∗(dPi, dPj) =D∑
k,ℓ

∂Pi

∂Xk

∂Pj

∂Xℓ
I∗(Xk,Xℓ)
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so then S(H∗)W = C[P1, . . . , Pℓ] so there exist Q1 through Qℓ so that J∗(dQi, dQj)
is constant, more exactly, its an antidiagonal matrix

⎛
⎜
⎝

0 1
⋰

1 0

⎞
⎟
⎠

so (∇,∗) is a flat structure.
So then twenty years after I introduced this, Dubrovin came to the same structure

in fluid dynamics and he called it a Frobenius manifold structure. I’m sorry, I’ll
stop here.

8. Young-Hoon Kiem: Categorification of Donaldson–Thomas
invariants I

I’d like to thank the organizers for the invitation. Honestly, before yesterday, I
had no idea what the title of the conference means. I still don’t have a clear idea,
but I learned a lot yesterday and today. I learned a lot so far. I’m going to talk
about categorification of Donaldson–Thomas invariants. I learned today that I’m
actually doing cohomological BPS invariants. I’ll give three lectures. Today I’ll
talk about some structure, which I’ll call critical virtual manifolds, then sheaves on
Calabi–Yau three-folds, and then applications. Everything I’ll talk about is joint
with Jun Li.

So I’m going to talk about critical virtual manifolds and perverse sheaves.
I’ll mostly talk about the former and a little bit about the latter. To motivate

the notion of critical virtual manifolds, let me start very basic with a complex man-
ifold. A complex manifold, we all know, is a 2nd countable paracompact Hausdorff
topological space equipped with an open covering X = ∪αXα and homeomorphisms
φα ∶Xα → φα(Xα) ⊂ Cn, a homeomorphism with open image so that the transition
functions φαβ = φβ ○ φ−1α is holomorphic.

What about a Kähler manifold? It’s a complex manifold with a Hermitian metric
h on TX, where ω = imh and dω = 0.

Suppose X is a compact Kähler manifold, H∗(X,C) comes with Poincaré du-
ality, the Lefschetz hyperplane theorem, the hard Lefschetz theorem, the Hodge
decomposition and the Hodge index theorem. These I’ll collectively call the Kähler
package and the comprise important tools in complex algebraic geometry.

But if X is singular, none of these properties survive. What can we do? The
way, in order to get these nice properties even when X is singular, it turns out we
shouldn’t use the ordinary cohomology but instead a different cohomology theory.
I’ll talk about this today for a special type of singular space.

So I’ll talk about this in the category of analytic spaces.
or me an analytic space is a locally ringed space (X,OX) that comes with an

open covering ∪αXα where Xα ⊂ Vα ⊂ Cn, where Xα is defined as the zeros of
a finite number of functions fα,i and OXα = OVα/(fα,i). I believe these analytic
spaces form a nice category.

So what’s known is that we still have the Kähler package if we use the hyper-
cohomology H∗(X,P ) for P a perverse sheaf on X which underlies a polarizable
Hodge module. This is a result of M. Saito. For Poincaré duality this was first
studied by Goresky–MacPherson with intersection homology. I should also men-
tion Kashiwara, Beilinson–Bernstein–Deligne, and so on. It’s this amazing theorem



22 GABRIEL C. DRUMMOND-COLE

that for the hypercohomology in this setting, we have all these nice properties and
we only had the hard Lefschetz theorem for the absolute version, but now we get a
relative version, so it’s even better in that case.

Maybe it’s wise not to explaine what a polarizable Hodge module or a perverse
sheaf is (in one sentence a complex of sheaves, cohomology of global sections of an
injective resolution is the hypercohomology).

Let’s do examples.

(1) So Let P be the intersection cohomology. You only allow chains that inter-
sect nicely with the singular locus. It’s a theorem of Saito that these underly
a polarizable Hodge module. So if I take IH∗(X) that’s H∗(X,IC∗).

(2) The second example, more relevant for us, is the perverse sheaf of vanishing
cycles. We have a complex manifold V and a holomorphic function f ∶ V →
C. Then you have f−1(0) inside V . So what do you do? Let me remind you
of the definition. V ∗ denotes V − f−1(0) and f gives a morphism V ∗ → C∗,
and then the fiber product with the universal cover C̃∗ is Ṽ ∗. Then we can
inject V ∗ by i in V and then pick f−1(0) out by j, and ψfQ is j∗i∗π∗QṼ ∗ .

Let me talk about the Milnor fiber, for x in f−1(0), well MFx = f−1(δ)∩
Bϵ(x) for 0 < δ ≪ ϵ
1. So you look at the Milnor fiber at x, mapping to S1, and the cover is the
real line, and when you pull back, you get something very much like MFx,
and it has the same cohomology. So ψfQ keeps track of nearby cycles.

So you have a natural morphism Q → ψfQ, and then the mapping cone
ϕfQ takes a map from ψfQ. So this is the reduced cohomology of the
Milnor fiber. The perverse sheaf of vanishing cycles is ϕfQ[dimV − 1].
This has the following property, that χ(Pf ∣x), I get the Euler number of

the Milnor fiber with degree shifted, (−1)dimV −1(χ(MFx) − 1).
This is an object in the derived category of constructible sheaves on the

critical locus of f .
This is something, in this case, in the case where we have a holomor-

phic function on a complex manifold, this is the Behrend function for the
critical locus of f . This is a theorem proved in Behren’s paper. There’s a
constructible function on any scheme. The Behrend function should coin-
cide with this, with the Euler number of pervese sheaves [unintelligible].

So for our purpose, the perverse sheaf of vanishing cycles is more relevant,
for Donaldson–Thomas theory. Tomorrow I’ll show you that the moduli of
stable sheaves on a Calabi–Yau three-fold, because locally it’s always the
critical locus of a holomorphic function on a complex manifold.

I will not give you the definition of pervese sheaf, it’s not a sheaf, it’s a complex
of sheaves. It comes from a sheaf of D-modules, and they behave like sheaves. It’s a
well-known fact that perverse sheaves glue! What do I mean? Suppose you have an
open covering of an analytic space and perverse sheaves on each Xα, and suppose
you have an isomorphism λαβ ∶ Pα∣Xαβ → Pβ ∣Xαβ

satisfying the cocycle condition
λαβγ = λγαλβγλαβ = 1, then there is a perverse sheaf P on X such that P ∣Xα ≅ Pα

in the category of bounded constructible complexes of Q-sheaves, where perverse
sheaves form an Abelian subcategory.

Okay, so now I’m ready to introduce the notion of critical virtual manifold. I
should talk about the local model first.

I had to cook up a name, I hope you like it,
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Definition 8.1. (1) An LG pair is a pair of complex manifold V and a holo-
morphic function f on V which has only one critical value, namely 0. I
don’t assume that it is nondegenerate or anything like that. The critical
locus is not necessarily isolated.

(2) Two LG pairs (V1, f1) and (V2, f2) are equivalent if there is a biholomorphic
map φ ∶ V1 → V2 such that f2 ○ φ = f1.

(3) Crit(f) is the zero locus of df ∶ V → ΩV .
(4) Xf is the reduced part of Crit(f)

A very simple lemma says that if you have equivalent LG pairs then you can
think about perverse sheaves of vanishing cycles for f1 and f2, and then you have
a map φ̄ from Xf1 to Xf2 , and then Pf1 ≅ φ̄∗Pf2 . So the perverse sheaves are
essentially the same, this comes from the definition.

Now I’m ready to define critical virtual manifolds.

Definition 8.2. A critical virtual manifold is an analytic space X = ∪αXα where

Xα ≅ Crit fα inside Vα
fαÐ→ C where (Vα, fα) is an LG pair.

On Xαβ =Xα ∩Xβ you have an open neighborhood Vαβ of Xαβ inside Vα and a
biholomorphic map between Vαβ and Vβα that makes the diagram commute:

Vαβ

��

� � // Vα
fα

��?
??

??
??

?

Xαβ

. �

closed
<<zzzzzzzz

� p

closed ""D
DD

DD
DD

D
C

Vβα
� � // Vβ

fβ

??��������

The only thing I assume is that φαα = id and φβα = φ−1αβ .

Remark 8.1. The notion of critical virtual manifolds is equivalent to Joyce’s notion
of d-critical locus.

The first thing I should mention about these critical virtual manifolds is the no-
tion of orientation. Think about TVα restricted to Xα, and the determinant of this,

call thisK∨α, and this is in Pic(Xα). We have ξαβ ∶K∨α∣Xαβ = detTVαβ ∣Xαβ

det(dφαβ)ÐÐÐÐÐÐ→
detTVβα

∣Xαβ
=K∨β ∣Xαβ

.

Then (ξαβγ) = (ξγαξβγξαβ) ∈H2(X,Z2)
We call a critical virtual manifold orientable if ξ is 0 in H2(X,Z2), that is, if

{K∨α} glue to a line bundle on X.
So just a few examples. First of all, all complex manifolds are orientable critical

virtual manifolds. I can take Vα to be Xα and fα to be 0. Then K∨X is detTX .
Tomorrow I’ll show that all moduli of simple sheaves on a Calabi–Yau three-fold
are critical virtual manifolds, orientable if there is a universial family.

There are many nice structures on critical virtual manifolds. I don’t know if I
have enough time to talk about them.

● it comes with a virtual fundamental class [X] of degree 0. There’s a the-
ory of Chang–Li called semi-perfect obstruction theory. So Xα is in Vα as
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the critical locus of fα, so this is the zero locus of dfα. There’s a canon-

ical obstruction theory [TVα ∣Xα

d(dfα)ÐÐÐ→ ΩVα ∣Xα]. You might not be able
to glue the constituent parts, but obstruction sheaves and obstruction as-
signments glue. Locally you have a perfect obstruction theory, and so if
these two things happen, then you get a global virtual fundamental class.
The obstruction sheaves obviously glue to ΩX , and it’s easy to check that
assignments glue. So the degree of the virtual fundamental class is the
Donaldson–Thomas type invariant, in Z.
● Moreover, there is a theory of Behrend which applies microlocal analysis,
saying that if you have a symmetric obstruction theory, then DT (X) =
χv(X) = ∑n∈Z nχv

−1(n). I explained what v is when locally it’s a critical
locus of a function, and this holds for all critical virtual manifold.

I think the categorification problem was raised for Donaldson–Thomas invariants for
a Calabi–Yau three-fold, but naturally generalizes to critical virtual manifolds. So
find a cohomology theory H∗(X) for critical virtual manifolds so that χ(H∗(X)) is
DT (X) = χv(X). For instance if X is smooth, I could take H∗(X) =H∗+dimX(X).

The main theorem for critical virtual manifolds that I’ll talk about is that the
answer is yes.

Theorem 8.1. (K.–Jun Li) Let X be an orientable critical virtual manifold. So

X = ∪Xα and Xα = Crit(fα) ⊂ Vα
fαÐ→ C and there is a perverse sheaf P on X such

that P ∣Xα ≅ ϕfαQ[dimVα − 1]. Then χ(H∗(X,P )) = χv(X) = DT (X) because this
is the Euler characteristic of the perverse sheaf of vanishing cycles.

We obtain P by gluing perverse sheaves of vanishing cycles. The two-cocycle
obstruction for gluing is the same as the 2-cocycle obstruction for gluingK∨α. That’s
the main part.

Tomorrow I’ll prove that moduli spaces of simple sheaves on Calabi–Yau three-
folds have the structure of a critical virtual manifold, and then on Saturday appli-
cations.

9. January 8: Daniel Murfet: Fusion of defects in Landau–Ginzburg
models III

While I’m fiddling with this, let me remind you what happened last time. I
defined the bicategory LG. The objects are potentials, the 1-morphisms are matrix
factorizations of differences of potentials, and the composition of 1-morphisms is
fusion, within the tensor product is a finite model and that’s the composition.
I talked about some applications of units and counits. I defined the quantum
dimension and you can compute it in the Jacobi ring of the potential V . There are
also some special defects PS for S a subset of {0, . . . , d − 1} that come back in this
lecture.

Take two potentials where the number of variables are even W (x) and V (y).

Theorem 9.1. (Carqueville–Runkel) Let X ∶ W (X) → V (Y ) have this property
that I mentioned, that the quantum dimension is invertible. Then I can draw the
diagram in the bicategory

W V
X

X∨
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Composing X∨ with X to get a loop atW ¡ then A is a separable symmetric Frobenius
algebra in LG(W,W ).

Moreover there is an equivalence

modLG(W,W )(A) ≅ hmf(V )
and one says that V is a generalized orbifold of W .

That’s a theorem. The second theorem is that there are interesting examples.
And anything you can say about V can be said in terms of W and the algebra A.

Theorem 9.2. (Carqueville– Ros Camacho–Runkel) Let d be even. ThenWAd−1

GOÐÐ→
WD d

2
+1

where the potentials are xd1 + x22 and, respectively, x
d
2

1 + x1x22.

The same is true for A11
GOÐÐ→ E6, for A17

GOÐÐ→ E7, and for A29
GOÐÐ→ E8.

I’ve only defined the right quantum dimension, but the left quantum dimension
(which is the right quantum dimension of the dual) is also invertible, then V ∼W ,
then they are orbifold equivalent. So this theorem is saying that if two singularities
have the same Coxeter number then they are orbifold equivalent.

So the Frobenius algebra of A11, if you compute the fusion, it’s isomorphic to
∆⊕P−3,...,3 (for d = 12). All the alegbras for the ADE cases are of this form, direct
sums of PS type defects.

Some open questions, there’s some groups working on this.

Question 9.1. What is the geometric or quiver or Lie theory explanation of these
statements? Many of you know this theorem of Kajiura–Saito–Takahashi that says
that hmf for ADE singularities are the same as derived categories of quivers, so
there must be a version that doesn’t mention matrix factorizations.

The next simplest class of singularities is unimodular singularities. It’s natural
to extend this to a question about those.

Conjecture 9.1. Unimodular singularities with the same central charge are orb-
ifold equivalent

The central charge is ∑i(1− ∣xi∣) if I choose a rational grading for the variables,
with ∣W ∣ = 2. This could be false, there’s one example known, which is that Q10 ∼
K14. This is just one example.

The technology levels are low. The way to do this is to find a matrix that does
the job.

Why do you need the same Coxeter number? The quantum dimension needs to
be invertible. There’s a shift of cW , and it will land in a graded piece above degree
0 unless cV = cW . ‘’ Let me add one more open question. I mentioned the cocyclic
object of Dyckerhoff–Kapranov. I mentioned it in connection with the topological
Fukaya category. It’s interesting to try to orbifold it using these ideas. If you
want something of D or E type, you can do it in A type and make it equivariant
appropriately, so you might try something like that here.

Okay, so the rest of the lecture will be about how the code works that I’ve been
mentioning. So the singular code for computing these fusions is central to this
story. You end up doing a lot of computations with this code. For the rest of the
lecture, let me try to explain how the code computes fusions.

Okay, so let me restate the problem. LG(V,U)×LG(W,V )→ LG(W,U), compo-
sition in the bicategory, is defined as a finite rank representative Y ∗X over C[x, z]



26 GABRIEL C. DRUMMOND-COLE

in the tensor product Y ⊗X. The code uses an intermediate object, of possibly
independent interest, Y ∣X, the cut of Y and X, a finite rank matrix factorization
of U −W together with an action of a Clifford algebra. It’s a Morita trivial Clifford
algebra, since we’re over C, so this is a spinor representation, and you can split an
idempotent and the other stuff is Y ∗X.

That states it as an algorithm to compute the fusion. The cut can be promoted
to a composition rule for another kind of bicategory. Then there’s an equivalence
of that new bicategory with LG.

So let me define the cut. I have to define Y ∣X and the action of a Clifford
algebra. Let me be clearer about the setup, W (x), V (y), and U(z) are potentials.
Let m = ∣y∣. Let Y be a matrix factorization of U − V and X a factorization of
V −W . The Jacobi algebra JV is C[y]/∂V , finite dimensional.

Definition 9.1. The cut Y ∣X is Y ⊗C[y] J ⊗C[y] X, since C[y, z] ⊗C Jv ⊗C C[x]
which has rank the dimension of Jv.

Now I need a Clifford action, I need closed odd C[x, z]-linear actions γi and γ†
i on

Y ∣X satisfying Clifford relations up to homotopy. What are the Clifford relations?

They are that γiγj+γjγi ≅ 0, that γ†
i γ

†
j +γ

†
jγ

†
i ≅ 0, and that γiγ

†
j +γ

†
jγi ≅ δij , and the

ingredient here is the Atiyah class, which is related to curvature of superconnections
(let me acknowledge a debt to Calin).

Definition 9.2. Let ti = ∂yiV

there is a C-linear flat connection— If you give me a power series in y variables,
I can always find a connection that differentiates in the t direction ∇ ∶ C[[y]] →
C[[y]] ⊗C[t] Ω

1
C[t]/C. Think about taking a power series and writing it sort of, I’ll

resist the temptation to give an example because I’ll just run out oftime.

Lemma 9.1. The operator [dY ⊗X , ∂ti] on Y ⊗X is C[t]-linear.

I should complete Y ⊗ X to power series in y, and anyway so this operator
passes to an operator on the quotient (Y ⊗X) ⊗C[t] C[t]/t. I’ve killed the partial
derivatives, and that’s Y ∣X.

So let me prove it’s C[t]-linear. Well, [[dY ⊗X , ∂ti]tj] by Jacobi is

−[[∂ti , tj], dY ⊗X] − [[tj , dY ⊗X], ∂ti]
The second term vanishes and because ti are flat, the first one is just δij , so this is

[δij , dY ⊗X]
which is zero.

Definition 9.3. The Atiyah class Ati is [dY ⊗X , ∂ti] acting on Y ∣X.

The Clifford operators are γi = Ati and γ†
i = 1⊗ ∂yi(dx) − 1

2 ∑q ∂yiyq(V )Atq.
This term might look weird but it comes out of homological perturbation so it’s

kind of a miracle it’s even this simple.
I claim they satisfy the Clifford relations, you can do it by hand. You sit down

and compute the commutators, you play around, it’s not difficult. You can see that
those things satisfy the Clifford relations up to homotopy.

Definition 9.4. The cut is this matrix factorization (Y ∣X) together with this

Clifford action {γi, γ†
i }.

Now I can state the theorem.
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Theorem 9.3. (Dyckerhoff–M., M.) The idempotent e = γ1⋯γmγ†
m⋯γ

†
1 acting on

Y ∣X splits to give me Y ⊗X. To be more precise, there’s a diagram in HMF (U −
W ), the category of infinite rank matrix factorizations

Y ∣X Y ⊗Xf g

with fg ∼ 1 and gf ∼ e.
So the code computes e as a matrix. It strictifies ee ∼ e to EE = E. In the

graded case it definitely terminates, in practice this works in the ungraded case too
although its not guaranteed.

Then you compute im(E), this is a Gröbner basis calculation. That’s a matrix
calculation, this is a finite rank splitting of the same idempotent that gives the
tensor product, so it must be homotopy equivalent to the tensor product. So Y ∗X
is im(E).

I’m out of time so let me state the souped up version of the theorem which
explains, these formulas are maybe mysterious looking.

Let Sm = ∧(kO1⊕⋯⊕kOn) with ∣Oi∣ = 1. Let Cm = Endk(Sm), this is a Clifford

algebra, with γi = O∗i ⌟ and γ†
i = Oi∧.

Theorem 9.4. There is an isomorphism of Cm-representations between Y ∣X and
Sm ⊗C (Y ⊗X).

This is by homotopy perturbation. The exterior algebra is really a Koszul com-
plex on these partial derivatives (∂yiV )i. The connection that differentiates in these
directions, this is the standard way to get a contracting homotopy on the Koszul
complex. You have this initial strong deformation retract. Then use the perturba-
tion lemma to put in the differential on both sides. There’s an extra differential
you absorb in some way and then this is what you get.

Let me summarize and then stop. I explained that 2D defect TFTs are like
certain bicategories. I gave the example of LG and described generalized orbifolding,
and then advertised that it was computable.

10. Matt Young:Cohomological Donaldson–Thomas theory with
orientifolds II

Today the subject will be cohomological Hall algebras and representations. That’s
the subject of today’s talk. Let’s remind ourselves where we were at the end
of the last lecture. We were given a quiver Q which we assumed symmetric to
make things easier. We formed the graded vector space HQ, and the components

were H ⋅−dimMd(Md) where Md = Rd/GLd, this is a Λ+Q × Z-graded vector space,
and then we gave a definition of the refined Donaldson–Thomas invariant, this is

ΩQ ∈ Q(q
1
2 )[[Λ+Q]] defined by Exp(ΩQ

1−q ) = [HQ]. We want to give some structure

on this vector space that gives more evidence that this is the right definition. What
I’ll explain today gives a much clearer explanation (to me) of this formula.

The idea is Kontsevich–Soibelman, following ideas of others, is to consider HQ

as an algebra, using a Hall algebra type construction.
The category RepCQ is an Abelian category, so in particular we know what it

means to have short exact sequences in this category, and we can form the following
diagram, with Md,d′ , the stack of flags U ⊂ V with dim(U) = d and dim(V ) = d+d′.
We can think of this flag as being a short exact sequence 0 → U → V → V /U → 0.
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So we can do

Md,d′

π1

yysss
sss

sss π2

$$H
HHH

HHH
HH

Md ×Md′ Md+d′

where the two projections take the short exact sequence to (U,X/U) and V , re-
spectively.

The map π2 is a smooth proper morphism of stacks. What are the fibers? They
are Grassmannians of representations. We can take this diagram and then look at
the structure it induces on the cohomology of stacks.

Theorem 10.1. (Kontsevich–Soibelman) The maps HQ,d⊗HQ,d′
(π2)!○π∗1ÐÐÐÐÐ→HQ(d+

d′) given HQ the structure of an associative Λ+Q ×Z-graded algebra, the cohomolog-
ical Hall algebra.

So from yesterday, recall that HQ is the model for the BPS algebra. Somehow,
this is the definition, we want to think of this algebra structure, you think of this
representation, smash them together and get a bigger representation. Consider a
short exact sequence 0 → U → V → W → 0. Then in this sequence V is never
stable. These are the simple representations. We can say that anything that lies
in the image of the product will not be stable. We should compute some minimal
generators for the algebra.

Let’s give an example. These cohomology groups can be computed explicitly
using localization and equivariant cohomology. Let Q bt then m-loop quiver, which
has one vertex and m loops. So what is the Hall algebra HLm , the dimension
vectors are nonnegative integers, and so

HLm =⊕
d≥0

H∗(gl⊕md /GLd)

this is equivariant cohomology of m-tuples of matrices, which is contractible, so
this is ⊕H∗GLd

(pt) so this is ⊕Q[x1, . . . , xd]Sd , so independent of m. The product
is where we see m. Take f1(x1, . . . xd′)f2(x1, . . . , xd′′), and so we take

∑
π∈Sd′,d′′

π(f1(x′1, . . . x′d′)f2(x′′1 , . . . , x′′d′′) ×
d′′

∏
i=1

d′

∏
j=1
(x′′i − x′j)m−1)

For ease, if m = 0, I think xi ⋅ xj = xi1x
j
2(x2 − x1)−1 + xi2x

j
1(x1 − x2)−1, which is the

Schur polynomial
xi
1x

j
2−x

j
1x

i
2

x2−x1
. You can use this to prove that powers of x generate

the Hall algebra freely in this example.
The first thing to notice is that if i = j then this is 0, this is a Clifford algebra,

so this turns out to be HL0 = ∧∗[x0, x1, . . .].
We can generalize this example. In the case where Q is symmetric, so the m-loop

quiver is symmetric, then the Hall algebra is actually a supercommutative algebra
with Z2-grading induced by the Z-grading. In the case of the 0-loop quiver, there’s
a shift I omitted.

Theorem 10.2. (Efimov) There exists a graded subspace V prim
Q ⊗ Q[u], where u

has degree (0,2), such that the map Sym(V primQ ⊗Q[u])→HQ is an isomorphism

of algebras and the dimension of V prim
Q,d is non-infinite for all d ∈ Λ+Q.
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What is the corollary? If we take the Serre polynomials of the isomorphism, we
see that [HQ] = [Sym(V prim

Q ⊗Q[u])], but this is exactly the plethystic exponential,

Exp( [V
prim
Q

]
1−q ), so V

prim
Q is the cohomological Donaldson–Thomas invariant.

Secondly, the integrality conjecture holds, and finally we get positivity, since this
is the Serre polynomial of a single vector space.

Explicitly, what is V prim
Q ⊗Q[u]? This is a quotient of HQ by the maximal ideal

of HQ times itself. So splitting that and thinking of it as a subspace, that’s what
you’d do.

So let me give a geometric interpretation due to Chen. Let Q be the double of
a quiver. This is a simplifying assumption. For example L2m is the double of a
quiver but L2m+1 is not.

Theorem 10.3. (Chen) HQ,d =H∗(Md), and inside here you have V prim
Q,d ⊗Q[u],

and this maps to H∗(Mst
d ⊗Q[u]), and the image here takes the u factor to the u

factor, and has as image PH∗(Mst
d )⊗Q[u], so we can identify V prim

Q,d as PH∗(Mst
d ),

the pure homology.

I now want to move on and talk about representations of HQ. To motivate this,
I want to return to the string theory picture we talked about yesterday. If we add
additional structure to our string theory we should get additional structure on our
BPS states and that will let us get a representation.

So my physics caricature, in type IIA string theory, we have maps of Riemann
surfaces (allowing boundaries) into X a Calabi–Yau three-fold. Whatever this
theory is, you can extract some parts of this theory. You can ask about the boundary
conditions that make such maps of Riemann surfaces well-defined. So at some level,
this should be the bounded derived category of coherent sheaves on X. So the BPS
number should count stable objects of this category in some sense.

What is an orientifold? You start with a string theory, apply the construction,
and get a new string theory. You apply it to an oriented theory and get an un-
oriented theory. You have a closed Riemann surface with an orientation reversing
involution. You map into X which has an isometric involution σ, and now you want
Z2-equivariant maps. So what happens to the boundary conditions in the original
theory? You get orientifold data on the category Db(Coh(X)).

So what is orientifold data? It’s a contravariant involution of the D-brane cate-
gory. This is a contravariant triangulated functor S ∶Db(Coh(X))→Db(Coh(X)).
This should be an involution, so we should give θ ∶ 1D → S2, with coherence condi-
tions.

in this particular example, if you have, well, the functor Db(X), the functor S
is the derived pullback composed with the derived dual, S = σ∗ ○ ( )∨, and here
we can take θ to be ± the canonical thing.

In orientifold string theory. We’ve been trying to capture stable objects, and
now we want stable self-dual objects. A self-dual object is a D-brane that descends
to the orientifold theory. This is N along with an isomorphism ψN ∶ N → S(N)
which is symmetric, S(ψN) ○ θN = ψN .

Suppose σ is the identity. Then this S is just derived dual. Then any orthogonal
or symplectic vector bundle gives an example, because an orthogonal or symplectic
bundle is a vector bundle with an isomorphism with its dual with appropriate
compatibility with its symmetry. So this passes from vector bundles to G-bundles
and this is an explanation for why mathematicians might be interested.
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So what are some examples on quiver categories? We need to fix some data, an
analogue of the involution. The first part is a contravariant involution σ ∶ Q→ Q of

the quiver. So then i
αÐ→ j and under the involution σ(j)

σ(α)
ÐÐ→ σ(i) and we also fix

combinatorial data s ∶ Q0 → ±1 and τ ∶ Q1 → ±1. There’s a compatibility, si = sσ(i)
and τaτσ(α) = sisj if i

αÐ→ j.
Now we can define S ∶ RepC(Q)→ RepC(Q) where (U,u)↦ (S(U), S(u)) where

S(U)i = U∨σ(i) and S(u)α = ταu
∨
σ(α). Then θu =⊕ sievui .

Let’s look at examples, let’s take the quiver with a single loop and single node.
This is the adjoint quotient map, Rd/GLd = gld/GLd. There’s only one involution
on this quiver, fixing both the node and the edge. We have four choices, s = ±1 and
τ = ±1. So if s = +1 and τ = −1 then Rσ/[unintelligible] and this is soe/Oe, for
τ = +1 this is Sym2Ce/Oe. If we take σ = −1 we get the symplectic group.

In the last few minutes, what can we do with this? We should emulate the
ending point and forget the starting point. It’s hard to compute numerically in the
G-case, and this is a technique to do so.

So consider the vector space which takes the role of the Hall algebra. Take

MQ = ⊕
e∈Λσ,+

Q

H ⋅−dimMσ
e (Mσ

e ).

This is a Λσ,+
Q ∧Z-graded vector space. But there’s no interesting Abelian structure

for self-dual objects. The Hall object construction was entirely based on having
interesting extensions.

Instead we use a slightly different construction. Suppose U is a self-dual repre-
sentation, U ↪ (N,ψN) is isotropic, that is, so that U ↪ N → S(N) → S(U) is
zero. Then N//U = U⊥/U has a canonical self-dual structure. So we can think of
this as saying we don’t have short exact sequences, but we have mixed short exact
sequences

0 // U // N // P // 0

where N and P are self dual objects.
From this we can correct our naive guess that we want an algebra and get a

module. We modify Mσ
d,e, we get stacks of flags of isotropic representations, U ⊂ N

isotropic, with fixed dimension vectors dim(U) = d and dim(N) = d + σ(d), and we
again get a diagram

Mσ
d,e

π1

zzuu
uu
uu
uu
u

π2

$$JJ
JJJ

JJJ
JJ

Md ×Mσ
e Mσ

d+σ(d)+e

and this givesMQ the structure of a Λ−1Q ×Z-graded HQ module, and the proposal
is that MQ is the “BPS module” for orientifold string theory. So I’ll give some
evidence for this tomorrow.

11. Kyoji Saito: An introduction to primitive form theory III

Okay, thank you very much. This is the third part of my lecture. In the first
part, I explained somehow, revisited elliptic integrals, found elliptic integrals of the
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first kind. In the second lecture, we explained some Lie theory, where the Kostant–
Kirillov form played some primitive role, and now we’ll further generalize these and
call what we get a primitive form.

There are many options but I’ll stick to isolated critical points for [unintelligible].
There are some notes by A. Takahashi and myself, an introduction on this and its
connection to Frobenius manifold structure.

If some of you who know this are in the audience, I apologize, but I think that
many of you don’t know. I’ll skip the applications because of time, but what are
some applications? One is to use the integrals of the periods of the integral form
to construct certain vertex operator algebras. Then you can get an integrable
hierarchy for all kinds of singularities. This is going on these days, let me mention
Milanov.

There are a lot of dualities related to primitive forms. One is Landau–Ginzburg-
Landau–Ginzburg mirror symmetry, related to FJRW, done by Si Li and his col-
laborators. I’ll explain partition functions today, and this will be related to some
FJRW partition function.

There’s also Landau–Ginzburg Calabi–Yau duality, and then the other side is
Gromov–Witten theory. The third duality is to topological conformal field theory,
that’s Dijkgraaf and Verlinde in the early 1990s. The Russians are trying to clarify
this for much further cases.

Another application is that integration of primitive forms satisfies some Picard–
Fuchs equation, and this gives some period map. Inverting [unintelligible]should
lead us to automorphic forms but this is not well-studied except in the versions I
discussed in the first talk. I don’t think I can talk about any of this today, and I’ll
focus on what are primitive forms.

Today is rather, in some sense boring, monotonic, I’ll just explain, monotonically,
the story.

The starting point is the following object. You’ll look at f ∶ Cn+1,0 → C,0,
holomorphic, and assume that 0 is an isolated critical point of f . This means that
if you solve the equation ∂f

∂x0
= ⋯ = ∂f

∂xn
= 0 the solution locus has 0 as an isolated

point.
This uses some standard technique in complex geometry, by using Hilbert nul-

lenstatz, then dimOCn+1,0/( ∂f
∂x0

, . . . ∂f
∂xn
) <∞.

I don’t have time to discuss details, but the topology, this is also complex geom-
etry notation, we only care about a neighborhood of the origin but don’t care which
one. If we choose representatives X in Cn+1 and S in C, then f ∶ X − f−1(0) →
S/{0} is a locally trivial fibration so that only the middle homology group exists,
Hn(f−1(t) =Xt,Z) = Zµ where µ = dimC Jf .

Let’s go to some conceptual universal unfolding due to Thom. He was studying
some singularities in the 60s, and he saw that you can understand more carefully
if you unfold things, so study F (x, t) ∶ Cn+1 ×Cm → C so that F (x,0) = f(x). This
is called an unfolding. He called an unfolding universal if the following holds. It’s
a little bit technical, but for later use, let me, I called these X and S. Let me call
this total space X and S the space Cm,0 . I also introduce CF to be the relative
critical set, the common critical locus of ∂F

∂x0
= ⋯ = ∂F

∂xn
= 0. The dimension of CF

is, this is an m-dimensional space. Then Cm
F → Cm, this is a finite cover.

Consider OC , the ring of holomorphic functions on CF . Then π∗OC is well-
defined as a sheaf, a coherent sheaf on S.
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Now I want to introduce a map DerS → π∗OC . Since we have X a product space,
you can easily lift vector fields by having the other part be arbitrary. So v ↦ v̂∣C ,
and Thom’s definition, from this point of view, if this is an OS isomorphism, then
this is universal.

You can identify universal ones, they’re all isomorphic. I’ll introduce much
simpler ones that most people use. Consider F (x, t) = f(x) +∑ tiϕi(x) where ϕi
represents a C-basis of the Jacobi ring Jf . It’s not hard to see that this is a universal
unfolding in this sense.

From now on I’ll fix just one universal unfolding. Then you see clearly that your
tangent space, the module of sections of the tangent bundle is identified with the
ring of functions on the critical set. The tangent space then has a ring structure.
In that way, the universal unfolding has this structure, the tangent space has a ring
structure, the so-called Frobenius structure.

That’s the first step. Before going further, by this identification, there is a
particular element in π∗OC , this contains 1, this should go to something in DerS .
Let me (unfortunately) call this δW , the primitive vector field. This is not so nice.
In yesterday’s talk, this was denoted by D. Another element in this ring is F ∣C .
This should correspond to something in the derivations, we’ll call this E, the Euler
vector field ; this showed up yesterday. Why is the primitive field called primitive?
It will later be identified with primitive forms. Maybe this is too complicated.

Next let us introduce, since the lack of time, I may not have time to discuss
the topology. I at least mentioned the Milnor fibration. If I look at the family of
unfoldings, the setting for t = 0, let us consider X ∣t=0, the function at some isolated
critical point, moving t to something nonzero, you get Xt may have a decomposed
critical point, and some critical values may split. Anyhow, what you want to say
is, at t = 0 you have the Milnor fiber with vanishing cycles, they survive away from
t = 0 and you want to study these by the de Rham cohomology group.

I don’t want to go in historical order. So let us consider ΩXS
, relative differential

forms, so Ωp
XS
= Ωp

X/∑dti ∧Ω
p−1
X , now I don’t want to justify it but yesterday we

saw that we’re tensoring with a variable D and this appears again in this story
now. We have two differential operators. One is the regular de Rham differential.
The other one is the wedge product with dF . Then you’ll consider

Ω⋅X/S[[δ
−1
W ]][δW ], δ−1w dX/S + dF.

I should have said [unintelligible]from the beginning.
But let me introduce the module

Hf = Rn+1π∗(Ω⋅X/S[[δ
−1
W ]][δW ], δ−1W dX/S + dF )

You want to prove that it contains H(k) = Rn+1π∗(Ω⋅X/S[[δ
−1
W ]]δkW , δ−1W dX/S + dF ),

so you get 0 ⊂ ⋯ ⊂H(0)F ⊂H(1)F ⊂ ⋯ ⊂HF .

If you write down the module explicitly, it’s not hard to check that 0→H(−1) →
H(0)F → ΩF → 0 is the same as ΩF , well Ω

n+1
X , the ring of holomorphic functions on

C with volume 1, so ΩF = π∗Ωn+1
X/S . This module has strong structure, a residue

pairing ; namely we have the following thing, J ∶ ΩF ×ΩF → OS where if you have
ωi = φi()dx0⋯dxn, then you take the residue of

(
φ1φ2dx0 ∧⋯ ∧ dx

∂F
∂x0
⋯ ∂F

∂xn

)
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and this is in OS . This is OS-bilinear, symmetric, and nondegenerate. This is
another important ingredient used to produce the structure. We’ll also consider the
Gauß–Manin connection. There’s some process to get, you’ll consider holomorphic
vector fields acting on the base space. Let v ∈ DerS . Define ∇v ∶ HF → HF where
if you have ζ = ϕdx0 ∧⋯ ∧ dxn = [(Fϕ + δW v(F )ϕ)dx0 ∧⋯ ∧ dxn]. So

∇ d
dδW

ζ = [(Fϕ + ∂ϕ

∂δW
)dx0 ∧⋯ ∧ dxn].

So ∇v, Griffiths transversality, goes H−kF → H−k+1F while ∇ d
dδW

preserves the filtra-

tion.
Another important ingredient is the higher residue pairing, which gives a kind

of polarization. Let me just write down the result.

Theorem 11.1. There exists a unique OS-bilinear map KF ∶HF×HF → OS[[δ−1W ]][δW ]
satisfying the following five axioms:

(1) Symmetry. For all ω1 and ω2,

KF (ω1, ω2) =KF (ω2, ω1)∗

where ∗ is the involution which takes δW to −δW .
(2) for any P ∈ OS[[δ−1W ]][δW ],

PKF (ω1, ω2) =KF (ω1, Pω2)

(3) Consider KF ∶H0
F ⊗H

(0)
F → δ−n−1W OS[[δ−1W ]], we have commutativity of

H(0)F ×H(0)F

��

KF // δ−n−1W OS[[δ−1W ]]

ΩF ×ΩF
JF

// OS ,

that is, we recover the classical pairing.
(4) Compatibility with Gauß–Manin 1.

d

dδW
KF (ω1, ω2) =KF (∆ d

dδW

ω1, ω2) +KF (ω1,∆ d
dδW

ω2)

(5) Compatibility with Gauß–Manin 2. For v in DerS, we have vKF (ω1, ω2) =
KF (∇vω1, ω2) +KF (ω1,∆vω2)

Definition 11.1. ζ(0) in Γ(S,H(0)F ) is called a primitive form if (let δkW ζ(0) be ζ(k)

for k ∈ Z.)
(1) (primitivity) ζ(0) induces an OS-isomorphism

DerS ⊗OS
OS[[δ−1W ]] ≅H0

F

where

∑ vℓδ
ℓ
W ↦∑∇vℓ

ζ(−1)δ−ℓW
(2) For k ≥ 1 and v and v′ in DerS ,

K(k)(∇vζ
(−1),∇v′ζ(−1)) = 0

(3) There is a constant r, some homogeneity condition, so that

∇ d
dδW

ζ(0) = ∇Eζ
(−1) − rζ(−1)
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(4) For k ≥ 2 and u, v, and w in DerS , we have K(k)(∇u∇vζ
(−2),∇wζ

(−1)) = 0
(5) For k ≥ 2 and u and v, in DerS ,

K(k)(∇ ∂
∂δW

∇uζ
(−1),∇vζ

(−1)) = 0

This looks technical but if you remember your elliptic integrals and the Kostant–
Kirillov forms, you can see that all of these conditions are satisfied. Then let us
call this object a primitive form.

The definition is okay, but whether there exist other examples, well, that’s an-
other question. So some examples are

(1) elliptic integrals and Kostant–Kirillov form.

(2) f = x3 + y3 + z3 +λxyz (called E
(1,1)
6 ) or x4 + y4 + z2 +λxyz (called E1,1

7 ) or

x6 + y3 + z2 + λxyz (called E
(1,1)
8 ), in these examples,

ζ(0) = dxdydz

∫ dx√
something

and this contains some highly transcendental structure inside.
(3) M. Saito showed the existence for all isolated hypersurface singularities.

But this is just a local existence theorem, and we described on the first
and second day, the description yesterday is global. We don’t know how far
primitive forms can go globally. But in general these are not unique, but
in the elliptic singularity case, you have a choice of cycle to integrate over,
the ambiguity is one parameter. So in the second example this depends on
one parameter. With Si Li and Changzheng Li, we studied [unintelligible],
and this distinction I skip. Unfortunately I have no more time. Only I will
say three things.

One is that a consequence of this structure, you get the Frobenius (or
flat) structure, (S,J,∗, δW ,E), and this leads to the potential, there exists
a function, S has some coordinates, flat coordinates t1, . . . tµ, and with

respect to them, let u, v,w be in { ∂
∂t0
, . . . , ∂

∂tµ
}, then there is a function F ,

called the prepotential so uvwF = J(u ∗ v,w). Then another is that if you
write down the covariant differentiation of ζ by u and v, it terminates in
the second stage. We saw yesterday in the Kostant–Kirillov example, this
structure. Then the period satisfies a second order equation. Your period
map is completely controlled by a holonomic system, not yet done but this
should lead to a quite rich period map theory.

12. Young-Hoon Kiem: Categorification of Donaldson-Thomas
invariants II

So last time, I introduced the notion of a critical virtual manifold, an analytic
space X with an open covering Xα, and each set in the covering is the critical set
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of a function fα from Vα to C. There is a compatibility

Vαβ

φαβ

��

� � // Vα
fα

��?
??

??
??

?

Xαβ

. �

closed
<<zzzzzzzz

� p

closed ""D
DD

DD
DD

D
C

Vβα
� � // Vβ

fβ

??��������

and this is orientable if ξ ∈ H2(X,Z2) is zero. I gave you a theorem that if X is
orientable, you can glue perverse sheaves and mixed Hodge modules. By M. Saito’s
theorem, if you have a perverse sheaf underlying a mixed Hodge module, then
the hypercohomology satisfies many nice properties like the relative hard Lefschetz
property and others.

Tomorrow I’ll use these nice properties to give an application of the existence of
the perverse sheaf P , the gluing of the perverse sheaves of vanishing cycles for Xα.
Then χ(H∗(X,P )) = χv(X), weighted by the Behrend function, because restricting
to a point you get [unintelligible]the Behrend function. This is the Donaldson–
Thomas invariant of X when X is compact.

Today I want to think about moduli spaces of sheaves on Calabi–Yau three-folds.
The goal is to show that the moduli of simple sheaves are always critical virtual
manifolds.

How do we show this? We use gauge theory. Not physical but mathematical
gauge theory.

Let me give you a background on gauge theory on Calabi–Yau three-folds. Now
Y is a smooth projective variety over C, it’s Calabi–Yau, so that KY = Ω3

Y ≅ OY ,
and I fix Ω a nonzero holomorphic (3,0)-form in H0(Y,Ω3

Y ).
I have the stack of simple sheaves Shcsi, where simple means that Hom(E ,E) =

Cid. Then I have the stack of simple vector bundles Vc
si sitting inside tihs open,

and I’ll think mainly about open analytic subspaces, within that.
The only thing I want from X is that the dimension of the tangent space is

bounded above. So first of all, since we fixed the topological type, the underlying
complex vector bundle E on Y is always fixed. Then A0,q(E) denotes smooth sec-
tions of E⊗∧0,qT ∗y , these are E-valued (0, q)-forms. This is an infinite dimensional
vector space, sections of this vector bundle.

The gauge group G is C∞(Aut(E)), a principal bundle over Y , and let me
introduce the semi-connection, a C-linear map ∂̄ ∶ A0,0E → A0,1E, and this should
satisfy the Leibniz rule ∂̄(s⊗f) = f∂̄s+s⊗ ∂̄f . Of course this extends to A0,q(E)→
A0,q+1(E) in the obvious way, ∂̄(s⊗ α) = ∂̄s⊗ α + s⊗ ∂̄α.

Next let me talk about curvature. So F 0,2

∂̄
= ∂̄2 ∶ A0,0(E) → A0,2(E), and

F 0,2

∂̄
∈ A0,2(EndE). It’s a standard exercise (the Bianchi identity) that ∂̄F 0,2

∂̄
= 0.

We say ∂̄ is integrable if F 0,2

∂̄
= 0.

Then E(U) = {s ∈ C∞(E)∣∂̄s = 0}. this turns out to be a locally free sheaf of
OX -modules, a holomorphic vector bundle on Y .

Then two integrable connections ∂̄ and ∂̄′ define isomorphic holomorphic vector
bundles if and only if they are related by, if ∂̄′ = ∂̄ ⋅ g for some g ∈ G.
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So we can give a gauge theoretic description of the moduli space of vector bun-
dles. Let A be the space of semi-connections on E, and we take the Sobolev
completion, we’ll eventually apply elliptic differential operator theory. Let’s not
talk about this because we’re not analysts, but trust me, that can be handled. In
that we look at Asi, the simple semiconnections, which have the minimal possible
stabilizer, G∂̄ = C∗id. Inside there we consider Aint

si , the space of simple and inte-
grable semiconnections. Then Asi maps to Bsi = Asi/G, a Banach manifold. Inside
there, the quotient of Aint

si is Vsi, the space of simple holomorphic vector bundles,
and this is a finite dimensional space.

To make things explicit, if we fix ∂̄, then we can write A = ∂̄ +A0,1(EndE), so
if I pick something like ∂̄ + a, I’ll write this sometimes as ∂̄a. With this notation,
the curvature of ∂̄a is

F 0,1

∂̄a
= (∂̄ + a)(∂̄ + a) = ∂̄a + a ∧ a,

this is the curvature.
What is the gauge group action?

(∂̄ + a)g = g−1(∂̄ + a)g = ∂̄ + (g−1dg + g−1ag)

There’s also the Laplacian,

∆0,q

∂̄
= ∂̄∂̄∗ + ∂̄∗∂̄ ∶ A0,q(EndE)→ A0,q(EndE)

and

∆−1∂̄ (0)
0,q =Hq(EndE) = Extq(E ,E)

the harmonic forms, where E is the holomorphic vector bundle defined by ∂̄.
Now the holomorphic Chern–Simons function is

CS ∶ Asi → C

with

CS(∂̄ + a) = 1

8π2 ∫Y
tr(∂̄a ∧ a + 2

3
a ∧ a ∧ a) ∧Ω

and δCS(∂̄ + a)(b) = CS(∂̄ + a + b) −CS(∂̄ + a)∣b=0 which is

1

8π2 ∫ tr(F 0,2

∂̄a
∧ b) ∧Ω = 0

which is true if and only if F 0,2

∂̄a
= 0

So we have

Crit(CS) = Aint
si

� � //

��

Asi

π

��

CS // C

Crit(CS) = Vsi �
� // Bsi

CS

??��������

and if we’re okay with infinite dimensional complex manifolds like Bsi then we’re
fine. But maybe we’re not.

Definition 12.1. Let r ≥ dimTxVsi = dimExt1Y (E ,E) with x = ∂̄ ∈ Aint
si . A Chern–

Simons chart of dimension r at x is an r-dimensional submanifold V of Asi such
that x ∈ V and letting f = CS∣V , we have Crit(f) an open neighborhood of π(x) in
Vsi.
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Now we have to show the existence of a Chern–Simons chart. This is just a
definition. There is a well-known choice due to Miyajima–Joyce–Song. We have
∂̄ ∈ Aint

si , with ϵ > 0 small. Then let V0 = {∂̄+a∣∣∣a∣∣ < ϵ, ∂̄∗a = 0, with ∂̄∗(∂̄a+a∧a) =
0}. I want the curvature to be zero eventually, so I put ∂̄∗ on the curvature.
It turns out that this is a Chern–Simons chart of minimal dimension, meaning
that V0 = dimTxVsi. We are not happy with this, we cannot get a critical virtual
manifold structure here because the dimension varies from point to point, this is
not good, for a critical virtual manifold, this should be fixed. To get uniform
dimension, you cannot decrease the dimension, there’s a definite lower bound. You
can increase the dimension of the smaller chart, increase the number of coordinates.
Suppose we have a function f of x1, . . . , xn, then we can just add x2n+1, and call

that f̃(x1, . . . , xn+1), and the critical ponits of f are the same as the critical points

of f̃ .
The perverse sheaf of vanishing cycles also doesn’t change, this is the Sebastiani–

Thom isomorphism. There’s also a mixed Hodge module version.
You can’t do this in a stupid way, you have to do this in a very careful way. The

way to increase the dimension that doesn’t cause any trouble, you have to increase
it in a controlled fashion:

Definition 12.2.

Q(a, b) = 1

8π2 ∫Y
tr(∂̄a ∧ b) ∧Ω.

An r-dimensional Chern–Simons framing at x = ∂̄ ∈ Aint
si is an r-dimensional sub-

space Ξ in TxAsi such that

(1) Ξ ⊃∆−1
∂̄
(0)

(2) Q∣Ξ/∆−1x (0) is nondegenerate.

Lemma 12.1. For any r ≥ dimTxVsi, there is an r-dimensional Chern–Simons
framing.

This is because we have a nondegenerate quadratic form, we just extend.

Theorem 12.1. Let r ≥ dimTxVsi, let Ξ be an r-dimensional Chern–Simons fram-
ing at x. Let V = V (x,h,Ξ) be the space

{∂̄ + a∣∣∣a∣∣ < ϵ, ∂̄∗a = 0, ∂̄∗(∂̄a + a ∧ a) ∈∆∂̄(Ξ)}.

This is a Chern–Simons chart of dimension r.

So I can always find a chart that is locally the critical locus of a function on a
complex manifold. But I need to get the compatibility condition on φαβ . But that
can be guaranteed.

Proposition 12.1. This Chern–Simons chart doesn’t really depend on the choices
of x, h, and Ξ so V (x,h,Ξ) = V (x′, h′,Ξ′) locally at x if π(x) = π(x′), we needed
to specify the Hermitian metrics h or h′ to get the adjoint of ∂̄, and Ξ and Ξ′ are
Chern–Simons framings.

Proposition 12.2. If you have a Chern–Simons chart V = V (x,h,Ξ), and inside
you have Crit(f), then for every point y in that critical locus there exists a Chern–
Simons framing Ξ′ so that V (y, h′,Ξ′) is locally equivalent to V (x,h,Ξ) locally at
x.
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Then after refining your covering a few times, it’s like an analysis exercise to see
that these glue together.

Theorem 12.2. For X ⊂ Vsi open, this is a critical virtual manifold.

So far I assumed X is the moduli of vector bundles.

Remark 12.1. By the Seidel–Thomas twist, for X ⊂ Shcsi, open, you can always
find some V c̃

si, maybe a bigger rank or something

Then I should talk about the orientation issue here.

Theorem 12.3. If you can find
√
detRπ∗RHom(E ,E) ∈ Pic(X) then the critical

virtual manifold is orientable.

Then there is a nice argument of Okounkov that says

Proposition 12.3. (Okounkov) If there is a universal family on X × Y then there
is a square root

Then there is a critical virtual manifold, and thus a perverse sheaf, and a Hodge
module, and then all these nice properties.

13. January 9: Qin Li: 1D Chern–Simons theory and algebraic index
theorem

I would like to thank the organizers for the invitation. I was going to talk about
2D B-model theory, and I thought that this is similar, this is a 1D theory but it
has many of the same features and you can still see some interesting results.

This is joint work with Ryan Grady and Si Li.
I’ll say later why I call it 1D Chern–Simons theory. It’s a 1D sigma model with

target a symplectic manifold (M,ω) and the interesting thing is that, I’ll explain the
BV quantization of this theory, and how the deformation quantization of symplectic
manifolds and the algebraic index theorem is encoded in the BV quantization of
this theory.

So let me start from some classical, twenty years ago, a construction of Fedosov.
Given this symplectic manifold, Fedosov considered the following geometric object,
called the Weyl bundle,

W(M) =∏
k≥0

Symk(TM∨)[[h̵]]

and there’s actually an interesting product, the Weyl product, that comes from the
fiberwise Moyal product, so then W(M) is an alegbar bundle. Locally

a ○ b =
∞
∑
k=0
( h̵
2
)k 1

k!
ωi1,j1(x)⋯ωik,jk(x) ∂ka

∂yi1⋯∂yik
∂kb

∂yj1⋯∂yjk

So the way he constructed his famous [unintelligible]is, you choose a symplectic
connection, and modify it to be a flat connection by adding a bracket with γ, the
bracket being associated to the Weyl product,

∇+ 1

h̵
[γ, ]∗

and this is called Abelian if it squares to zero. Here γ ∈ A1(W ), it’s a one-form
valued in the Weyl bundle.

The theorem of Fedosov is
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Theorem 13.1. (Fedosov) Given a sequence {ωk}k≥1 of closed 2-forms onM theree
exists a unique Abelian connection ∇+ + 1

h̵
[γ, ]∗ such that

(1)

γ =∑
i,j

ωijy
idxj + r

for some r ∈ A1(W) and such that δ−1(γ) = 0
(2)

∇γ + 1

2
[γ, γ]∗ +R∇ = −ω +∑ h̵kωk.

Here R is defined in terms of the curvature of the symplectic connection.

(Fedosov)

Theorem 13.2. Flat sections of W is isomorphic to C∞(M)[[h̵]]

The way Fedosov defines this deformation quantization is as follows. Suppose
you are given f and g, then you can make them flat sections of this Weyl bundle,
then the Weyl product is compatible with the Abelian connection, and this is still
a flat section, so

σ−1(σ(f) ○ σ(g)) ∈ C∞(M)[[h̵]]
and we can let this define a star product f ∗ g, so this is, if we expand in h̵,

f ∗ g = fg + h̵
2
{f, g} +O(h̵2)

So something which does not appear in Fedosov’s work is the BV bundle, and this
is motivated from quantum field theory or quantum mechanics.

Definition 13.1. The BV bundle of (M,ω) is

Ω−∗W = Ŝym(TM∨)⊗ ∧−∗(TM∨)[[h̵]]

and later after explaining 1D field theory and BV quantization I’ll explain how
this can be seen.

There are certain operators defined on this BV bundle, for instance dω ∶ Ω∗W →
Ω−∗−1W . There is also the BV operator Ω∗W → Ω

−(∗−1)
W which I will explain later.

Let me turn to one dimensional Chern–Simons theory. This theory describes, it’s
not the whole sigma model, but the sigma model from S1 to a symplectic manifold
in a formal neighborhood of a constant map. There’s a supersymmetric localization,
which is what lets us restrict to this neighborhood.

The space of fields is E = AS1 ⊗C (AM ⊗ TM), and this is actually the way we’ll
describe a formal neighborhood of constant maps from S1 to M . We’ll sometimes
write the second term in the tensor product as gM [1], which is an L∞ algebra (I
won’t get into this). This is where my “one dimensional” comes from.

We will let E∨ denote the Am-linear dual of E , so if we spell this out it’s

HomAm(E ,Am)
We can also consider functionals on this vector space

O(E) =∏
k≥0

Symk(E∨)

and the action functional, there’s a natural map ρ ∶ AM(W)→ Oloc(E), where local
functionals, this is related to S1, my spacetime. This is defined in the following
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way. Let Ik be a section of Symk)T ∨M , the degree k-component of the Weyl bundle,
and this map is

ρ(Ik) = α ↦ ∫
S1
Ik(α, . . . , α).

The action functional we will consider is

S(α) = ∫
S1
ω(dS1α +∇α,α) + ρ(I)(α)

for some I ∈ A1
M(W).

This is a functional, we’re describing a quantum field theory, the next thing we
want to talk about is BV quantization.

We first fix a flat metric on S1 and there is an Hodge Laplacian D = [dS1 , d∗S1],
and we will let Kt in Sym2 E denote the kernel of the operator e−tD ∶ E → E

Definition 13.2. The scale L BV Laplacian on O(E), ∆L ∶ O(E) → O(E), is the
second order differential operator given by the contraction with KL, which lives in
Sym2(E).

We can also define the effective propagator as

PL
ϵ = ∫

L

ϵ
(d∗S1 ⊗ 1)(Kt)dt

and then we can define the renormalization group flow, and the renormalization op-
erator is W (PL

ϵ , ) ∶ O(E)→ O(E), and we can write this as a sum over connected
graphs

∑
γ

h̵g(γ)

Autγ
Wγ(PL

ϵ , )

and the Feynman weight associated to the graph is as follows. Suppose you have
a graph with internal edges, vertices, and external edges. The external edges are
labeled by the inputs, and on the vertices you put the functionals and on the
internal edges the effective propagator. You can contract the propagators with the
functionals I to get the Feynman weights.

This is the renormalization group flow. The reason we want to consider these,
we want to consider what is a quantization of our theory.

Definition 13.3. A family of functionals I[L] ∈ O(E) parameterized by L > 0 is
said to be a perturbative quantization of limL→0 I[L] (mod h̵) if

(1) I[L] =W (PL
ϵ , I[E]) and

(2) the quantum master equation is satisfied:

(Q + h̵∆L)eI[L]/h̵ = 0

Let L =∞. Then we can restrict to harmonic fields in E . The functionals on the
harmonic fields motivate the BV bundle. There is the symmetric part Ŝym(T ∨M)
and the wedge part ∧∗(T ∨M), you have the symmetric part on the 0-forms and the
part on the one-forms.

Let me say something after the quantization procedure. You can consider local
quantum observables. The picture is as follows, the spacetime is S1, consider U an
open interval in S1. Then you have a structure called the factorization algebra of
quantum observables, and if we compute H0(Obsq(U)), this is isomorphic to flat
sections of the Weyl bundle.
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I should mention actually here, one thing I didn’t mention, when we quantize
if we want to find something satisfying the quantum master equation that’s the
same as saying Fedosov’s equation is satisfied. After computation, we can say that
quantum observables supported on U are flat sections of the Weyl bundle.

There’s this factorization structure, if you have U and U ′ within V , you have
this factorization product H(Obsq(U))⊗H(Obsq(U ′))→HObsq(V ), and after iden-
tifying with flat sections of the Weyl bundle, this gives rise to Fedosov deformation
quantization.

For global observables, and after the BV quantization, you can consider the
partition function, and the partition function of 1 gives rise to the algebraic index
theorem.

∫
M
e

ωh̵
h̵ Â(M)

To compute this we need to consider the S1-equivariant localization, we’re looking
at a neighborhood of constant maps in the loop space of M . This genus shows up
in [unintelligible].

14. Matt Young:Cohomological Donaldson–Thomas theory with
orientifolds III

So the last lecture is going to be on orientifold Donaldson–Thomas theory. Now
that we’ve set up this Hall algebra structure and the representation of the Hall
algebra it will be easy to write down a candidate for the orientifold Donaldson–
Thomas invariant.

We’ve been working with a quiver Q and in the orientifold setting we added
σ a contravariant involution of the quiver, and some combinatorial signs s and τ ,
to talk about self-dual representations. Associated to this data we cooked up a
contravariant functor S and wrote down an isomorphism from the identity functor
to the square S2. The objects we’re interested in, the cohomological Hall algebra
of Kontsevich–Soibelman is ⊕H ⋅−χ(d,d)(Md) and the cohomological Hall module

MQ =⊕H ⋅−E(e)(Mσ
e ).

We need to know a bit more about the self-dual objects. I need just two basic
facts about these representations. We’ve been studying symmetric quivers. This
was to avoid some technicalities and make things easier but it’s not strictly neces-
sary. I’ll restrict even further now to make things even easier.

Definition 14.1. Given a representation U ∈ RepCQ, le E(U) = dimHom(S(U), U)−S−
dimExt1(S(U), U)S .

This has the following properties.

Lemma 14.1. (1) E(U) depends only on dimU
(2) dimMσ

e = −E(e), which is similar to dimMd = −χ(d, d). There’s a stronger
statement that says these vector spaces are actually the tangent spaces of
the appropriate stacks

(3) the dimensions of the fibres of the map from isotropic flags mapping to the
first and last terms of the flag has dimension χ(e, d) − E(d). This has a
stronger statement, again, at the deformation theory level. If e is 0, then
this is a flag of Lagrangian extensions, the deformation theory of Lagrangian
extensions is also controlled by E.

So these are some ways to interpret this number.



42 GABRIEL C. DRUMMOND-COLE

Definition 14.2. A quiver with all this data is called σ-symmetric if

(1) it’s symmetric, and
(2) σ∗E = E under this involution.

For example, take an m-loop quiver. A non-trivial example, take the affine A1

quiver. the conditions to be σ-symmetric are that τ and s are constant. If the signs
of the arrows are different it’s not σ-symmetric.

We’ll restrict only to such quivers today for simplicity.

Definition 14.3. A self-dual representation is called σ-stable if it has no nontrivial
isotropic subrepresentations.

This differs from the usual case by adding “isotropic.” This should maybe be
considered a theorem, because there’s a definition of stability from GIT. Then you
getMσ,st

e . This is a non-projective orbifold. You don’t have a smooth moduli space
passing from the general linear group to other groups.

Our goal is that we want to compute H∗(Mσ,st
e ). One thing to note immediately

is that if you have a short exact sequence in the self-dual setting, 0 → U → N →
P → 0 then N won’t be σ-stable, it has U as a subthing.

So we’re not interested in the things that are in the image of the module action,
we only want the minimal module generators, that’s the algebraic translation.

Lemma 14.2. Every self-dual representation has a σ-Jordan–Hölder filtration.
This is a filtration by isotropic subrepresentations 0 = U0 ⊂ ⋯ ⊂ Ur ⊂ N such
that

(1) Ui/Ui−1 is stable, and
(2) N//Ur is zero or σ-stable.

Then up to extensions, N ∼⊕H(Ui/Ui−1)⊕N//Ur where H(V ) = V ⊕ S(V ) gives
a way to make a representation self-dual.

We might expect, if we look at the stack of all representations, how do we build
this up? We need symmetric powers of Mst/C×, we only need to add on a single
factor of the moduli space of stable self-dual representations. We need to be a bit
more careful, we don’t want to count both V and its dual. So we need to quotient
by that action. So

Mσ ∼ Sym(Mst/C×)/Z2 ×Mσ,st

Now we can give a definition.

Definition 14.4. The cohomological orientifold Donaldson–Thomas invariant is
defined to be W prim

Q , the space of minimal module generators MQ/HQ,t ∗MQ.

This is a Λσ,+
Q ×Z-graded vector space.

We don’t have the extra Q[u] term here because [unintelligible].
So we can easily define both the refined and numerical invariants from this. The

first is that the analogue of integrality and positivity of Kontsevich–Soibelman hold.

Theorem 14.1. (Y.)

dimW prim
Q,e <∞

We can now take the Euler characteristic and get a numerical invariant.
This approach via Hall algebras is nice. The main downside is that you’ve only

heuristically related to geometry. The next question is whether this is a geometric
object.
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There’s a partial result in this direction. We can’t compute the cohomology of
this moduli space because of the mixed Hodge structure but we can compute the
pure part.

Theorem 14.2. There is a canonical surjection

W prim
Q,e → PH ⋅−E(e)(Mσ,st

e )

The obvious conjecture is that this is an isomorphism.
Chen’s proof in the general case uses Nakajima varieties which just don’t exist

when you leave the general linear group, so you really need a new idea to prove
injectivity.

Let’s discuss an example. Take Q to be the quiver with one node and one loop.
You check directly that HL1 is Sym(Q(1,0)⊗Q[u]), so this is an infinite number of
even variables this is generated by. This corresponds to, what are the stable moduli
spaces? A representation is a vector space and an endomorphism. In dimension
vector 2 or higher, you can choose an eigenvector and that’s a subrepresentation.
You have a single C for d = 1.

What about, take s = +1 and τ = −1. Recall that Mo
e is soe/Oe. What is the

module in this case?

ML1 =⊕
e≥0

HOe(soe)

which since soe is contractible, is

⊕Q[z21 , . . . z2e]Se ⊕ (O2e+1)

In this case we can compute directly that this module (let’s look at the even di-
mensional subpiece is a free module over some half-dimensional subalgebra,

Sym(Q(1,0) ⊗Q[u2])

with basis, generated by 1σ
o . We should still look at the geometry. The stable

moduli spaces can be computed directly and are all empty (except basically by
definition for dimension vector 0 it’s a point).

We should think, why are we taking this half-dimensional subspace of the gen-
erators, it’s exactly the Z2-quotient because of the self-duality.

Let’s look at this more interesting example, with s = +1, τ = +1, where we look
at symmetric powers of the fundamental representation. In this case ML1 is free
over Sym(Q(1,0) ⊗ uQ[u2]). This has a single generator in each dimension vector.
What is the geometry of this? We can again compute the moduli space, and it’s
Mσ,st

e = SymeC/∆big and then the homology is Q(0)0⊕Q(−1)1, and [unintelligible].
That’s the conjecture in this example.

We see the algebra over which this module will be free changes depending on the
data.

Can we describe the full algebra structure of the Hall module. How do wechoose
the right algebra over which it’s free? There are two basic results we can get.
What extra structure do we have on the Hall algebra? It’s built by smashing
two objects together to make a short exact sequence. We have an induced anti-
involution S ∶ HQ → HQ, it reverses the order of the product (since the functor is
contravariant and reverses the order of short exact sequences) which induces the

geometric involution on the primitive part V prim
Q,d → V prim

Q,σ(d). So this extends the

geometric involution. This is basically a formal property.
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The second part is more interesting. We’re strongly using for the second part
that Q is σ-symmetric. If we’re given f ∈HQ,d and g ∈MQ,e, then acting by f and

its dual we get (f − (−1)χ(e,d)+E(d)S(f)) ∗ g = 0. The twisting sign is important
and depends on what we’re acting on. You should think of this as the analogue of
supercommutativity in the module case.

We have this property when we restrict to the primitives of the Hall algebra, so
consider V prim

Q ⊗Q[u] with the e-twisted Z2 action.
Then from this lemma, we get an induced action of

HQ(e) = Sym((V prim
Q ⊗Q[u])Z2,e)

on

HQ ∗W prim
Q,e ⊂MQ.

The conjecture is the following.

Conjecture 14.1. HQ ∗W prim
Q,e is free over HQ(e) with basis W prim

Q,e

I should say

Theorem 14.3. All conjectures hold for the zero loop quiver, the one loop quiver,
the two node affine quiver and (suitably modified) for all finite type quivers (this is
an infinite family).

In the last couple of minutes I want to talk about some corollaries of this con-
jecture.

It’s nice we have this definition, but maybe I don’t want to compute this, I only
want the numerical or refined invariants.

Recall that we defined the refined Donaldson–Thomas invariants by this plethys-
tic exponential

Exp(
ΩQ

1 − q
) = [HQ]

and this is not as easy to understand but you can have a computer do it. In general
we can’t compute this without, well, a corollary of the last conjecture is an equality.

[MQ] = ∑
e∈Λσ,+

Q

[HQ(e)][W prim
Q,e ]

This is an equality in Q(q 1
2 )[[Λσ,t

Q ]]. We’d like to compute these via computer.

Can we do this? The element [HQ(e)] is in general not determined by ΩQ, we need
to know it as a Z2 character.

This is annoying but also interesting. It motivates why you need the cohomo-
logical ones. It’s not enough to know the graded dimensions. This also tells you
that you need at least this Z2 refinement. However, it’s not all bad. In some cases,
the Z2 structure is trivial. For example, the m-loop quiver, the Z2-equivariant
theory has no more information than the usual theory. In particular, we know how
to compute these series directly, by work of Reineke, ΩLM

are known. There is an
explicit complicated formula. So we can numerically compute the refined invariants
[W prim

Q,e ] in the orientifold setting.
It seems like, sometimes you’re in luck and sometimes not.
One last comment to make, let’s go back to the heuristic. We hoped that

Mσ would be something ike (Sym(Mst/C×)/Z2) ×Mσ,st, so we might hope it’s
Sym(PH(Mst/C×)/Z2)× [PH(Mσ,st)], but this says that’s just not true. There’s
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something non-geometric going on [missed a little]. Maybe it doesn’t make sense
to start something new so maybe I’ll stop there.

15. Atsushi Takahashi: From Calabi–Yau dg categories to Frobenius
manifolds via primitive forms

Thank you for the introduction and to the organizers for the invitation. I’d like
to explain how to define a Frobenius structure from a Calabi–Yau dg category. The
motivation is from Kontsevich’s homological mirror symmetry conjecture that says
that DbCoh X and Db Fuk(Y ) for mirror pairs (X,Y ). This should imply the so-
called classical mirror symmetry conjecture, which is an isomorphism of Frobenius
manifolds between ⊕Hq(X,∧pTX) ≅⊕Hq(Y,Ωp

Y ).
The key observation is that the Hochschild cohomology of X is the same as

⊕Hq(X,∧pTX) as a vector space. So the problem is to construct a Frobenius
structure on HH ⋅+2(A) for a smooth compact Calabi–Yau A∞-category.

I will also use the theory of primitive forms developed by Kyoji Saito. I will
recall classical Saito theory, review the talk yesterday in one or two minutes. The
initial data was an isolated singularity f ∶ Cn+1 → C, with an isolated singularity

at 0, and then he got a filtered de Rham cohomology H(0)F with a Gauß–Manin
connection ∇ and a higher residue pairing KF , let me call this a Saito structure.
Then you construct a primitive form for this Saito structure, and once one is given
it automatically gives a Frobenius structure (flat structure). Therefore what we
should do in order to do this is give an analogue of f starting from a dg category.

So now I’ll write a table from an appendix in a paper with Kyoji Saito
classical categorical
(f,OCn+1) Calabi–Yau (weak) A∞ category
Jac(f) HH ⋅(A)
Ωf HH⋅(A)

Hf ,H(0)f HP ⋅(A), HC ⋅(A)
The correspondence is not so precise and to do this I need formality. In order to

have the Jacobian ring starting from this data, this is a quotient of some ring by
the Jacobian ideal, and this ideal, well, this is not the total cohomology group but
the cohomology of some cohomology. So in order to connect them we need some
formality assumption. If we assume these, we obtain a Frobenius structure from a
dg category. This is what I will explain today.

So let me start with some basic terminology. Today I’ll work over a field k which
is algebraically closed and characteristic zero. Usually I assume k is a complex
number field or the universal Novikov field. For me, a differential graded algebra
is Z-graded and dA is an operator of degree 1 satisfying d2A = 0 and dA(ab) =
dA(a)b + (−1)āadAb, where ā is the degree of a.

SoA is non-negatively graded ifAp = 0 for p < 0 andA is compact if dimkH
⋅(A,dA)

is finite. It is smooth if A is a perfect Ae = Aop ⊗k A-module. Here per(A) is the
smallest triangulated subcategory containing A closed under isomorphism, direct
sum, and direct summand. It is connected if H0(A,dA) = k[1A]. We’ll assume
these conditions on all algebras.

Next I want to define the Calabi–Yau condition. Let me sayA! = RHom(Ae)op(A,Ae),
this is an inverse dualizing complex.

Remark 15.1. There is a mapA→ RHomAe(RHom(A,Ae),Ae) = RHomk(A!,Ae)
and this map is an isomorphism.
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This means that A⊗L
Ae A ≅ RHomAe(A!,A) in per(k).

Definition 15.1. (Ginzburg) A is Calabi–Yau of dimension w if A! ≅ T −wA in
per(Ae).

Remark 15.2. A∗ = RHomk(A,k), this givves the Serre functor or per(A), and
this, A∗ ⊗L

A A
! ≅ A ≅ A! ⊗L

A A
∗.

By using A∗, this is also TwA, and so from this isomorphism and also the above
one, we obtain

RHomAe(A,A) ≅ T −w(A⊗L
Ae A).

Now in order to describe the correspondences I should introduce Hochschild (co)
homologies. There exist a double complex (C ⋅(A), ∂ = d + δ) which is quasiiso-
morphic to RHomAe(A,A). The differentials come from dA and “the usual” H
codifferenetial.

Now the cohomology of this complex is called the Hochschild cohomology. Later
I want to use another one, Tpoly(A), which is cohomology with respect to the second
differential δ, and for safety, we have d2 = 0, δ2 = 0, and dδ + δd = 0.

Now we have some operators to define on Hochschild cochains. First, there is a
product

○ ∶ C ⋅(A)⊗C ⋅(A)→ C ⋅(A)
and a Gerstenhaber bracket

[ , ]G ∶ C ⋅+1(A)⊗C ⋅+1(A)→ C ⋅+1(A)

which satisfy the properties

(1) ○ induces a graded associative commutative product onHH ⋅(A) and T ⋅poly(A).
(2) [ , ] induces a graded Lie bracket on HH ⋅+1(A) and T ⋅+1poly which satisfies

[X,Y ○Z]G = [X,Y ]G ○Z + (±1)Y ○ [X,Z]G.

Now we can give an analogue of f . There exists mA in C2(A), from the dga
structure on A. Here mA =m1 +m2 where m1 comes from the differential and m2

from the algebra structure. Then [mA,mA]G = 0, and this comes from knowing
that [m1,m1]G = 0 from d2A = 0, that [m1,m2]G = 0 from the Leibniz rule, and
[m2,m2]G = 0 fro the associativity of the product. Then dX = [m1,X]G, δX =
[m2,X]G, and ∂X = [mA,X]G.

Definition 15.2.

fA ∶= [mA] ∈ T 2
poly

Proposition 15.1. (Euler’s identity)

fA[degA, fA]G
where degA ∈ C1(A) is degA(a) = āa. I can’t do this if I don’t have a Z-grading.

Okay, Hochschild homology, (C⋅(A), d + δ) ≅ A⊗L
Ae A.

By considering the total homology of this one you get the Hochschild homology
and also here I need Ω⋅(A) = H(C(A), δ). Here there is also the Connes operator
B ∶ C ⋅ (A) → C⋅+1(A), satisfying B2 = 0,Bd + dB = 0, and Bδ + δB = 0. There are
also contraction and Lie derivative operators ιX and LX on C(A)
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Proposition 15.2. (Daletzki–Gelfand–Tsygan) For X in Tpoly(A), thera are ιX
and LX ∶ Ω(A) → Ω(A) such that ιXιY = ιX○Y = [LX , LY ] = L[X,Y ]G , such that
LXιY + (±1)ιY LX = LX○Y , so that [ιX , LY ] = ι[X,Y ]G , so that [B, ιX] = −LX , so
that [B,LX] = 0, and so that LfA = −d.

This is the Cartan calculus.
On (C ⋅A,C⋅A), we have only these structures “up to homotopy.” This is called

homotopy calculus by Dolgushev–Tamarkin–Tsygan.
Now we can discuss formality.

Conjecture 15.1. (C ⋅(A),C⋅(A)) ≅ (Tpoly(A),Ω(A)) as homotopy calculus alge-
bras.

If A is a usual algebra, you have this kind of formality in many situations.
The main statement is that if we assume this conjecture plus something, then we

have a primitive form. Today we assume this conjecture and I think the following
statement follows from the conjecture, but also that (Tpoly(A), d) ≅ (Ω(A), d) as
an isomorphism of complexes, so that I can move B to Tpoly.

ThenHH ⋅(A) ≅H ⋅(Tpoly(A), d) = Jac(fA) andHH⋅(A) ≅H⋅(Ω(A), d) = TwΩfA .
Then Hw(Ω(A), d) ≅HHw(A) ≅HH0(A) ≅ k[1A].
Here w is the Calabi–Yau dimension.
So we can define HfA = H⋅(T −wΩ(A)((u)), d + uB), where u = δ−1w of yesterday

and similarly

H(−p)fA
=H⋅(T −wΩ⋅(A)[[u]]up, d + uB).

Then from Kaledin’s Hodge to de Rham we have 0→H(−p−1)fA
→H(−p)fA

→ ΩfA →
0, and then nondegeneracy is Hodge to de Rham degeneration. Then ∇ d

du−
1
u2 ιfA

,

degined on Ω(A)((u))
Proposition 15.3.

[∇ d
du
, d + uB] = d + uB

and this preserves H(0)fA
.

This propertiy was also explained by Kyoji Saito about primitive forms. In
order to calculate this, we use Cartan calculus, and especially we have the following
formula,

∇u d
du
= u d

du
+LdegA

+ [d + uB, ιdegA
]

where LdegA
is NA and “counts exponents.”

Proposition 15.4. [NA, d] = d which means that NA defines an element of End(ΩfA).
Now we can define

Ωp,q
fA
= {ω ∈ ΩfA ∣ω̄ = w − p + q,NAω = qω}

and in this way we get a Hodge filtration. The q is called the exponent, and this is
not the sum of p and q, just simlpy q.

We choose a homogeneous basis and lift to this to get the primitive form. Let
me write down the main statement here.

Theorem 15.1. (existence of a very good section) We have 0→H(−1)fA
→H(0)fA

r(0)ÐÐ→
ΩfA → 0 a short exact sequence, and there is a section S0 ∶ ΩfA → H

(0)
fA

such that

∇u d
du
(S(0)(ΩfA)) ⊂ S(0)(ΩfA).
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Corollary 15.1. Defining S as S(0) ⊗k k[u−1]u−1 ⊂HfA , and HfA =H
(0)
fA
⊕ S, we

have u−1S ⊂ S, ∇u d
du
S ⊂ S

and KfA(S,S) ⊂ k[u−1]u[unintelligible].

[some fast details about the higher residue pairing K].

16. Young-Hoon Kiem: Categorification of Donaldson-Thomas
invariants III

So last time, X was simple sheaves on a Calabi–Yau three-fold, and [unintelligi-
ble]universal family. We saw that X was an orientable critical virtual manifold, and
there is this perverse sheaf P and the mixed hodge module M ∈ HMp(X) where
rat(M) = P . We saw that χ(H∗(X,P )) =DT (X) and then H∗(X,P ) satisfies nice
properties, in particular the relative hard Lefschetz and decomposition theorems.
Today I’ll talk about an application of this.

16.1. Curve counting. Y is a smooth projective 3-fold, KY ≅ OY . There are
many way to count them, you can think of them as maps up to parameterization
and get Gromov–Witten invariants, you can think of them as defining equations
and get Donaldson–Thomas invariants, you can get many other versions as well.

Today I’ll talk about a proposal of 1998 of Gopakumar–Vafa. Imagine the follow-
ing, imagine that you have a space of curves of given topological type, whose class is
β ∈H2(Y,Z), and suppose you have a moduli space, X = {(C,L)∣C ∈ S,L ∈ Pic(C)},
and say you have a the forgetful projection h ∶ X → S. Imagine everything is nice,
we have h−1(Csm

g ) = Jacg
We have S = ∐Sg where Sg are the genus g curves in S, and we want to count

Sg. Recall that the cohomology of H∗(Jacg) is the same thing as H∗(Jac1)⊗g, and
the Hodge diamond is

1

2

1.

We use hard Lefschetz, and we have two trivial representations and one 2-dimensional
representation, and you take g copies of this, call this representation Ig. By the
Clebsch–Gordan rule, you find that any sl2-representation is an integral linear com-
bination of these Ig.

Now imagine you have a nice cohomology theoryH∗(X) which satisfies a relative

hard Lefschetz property. We have X
hÐ→ S

cÐ→ pt. We have relative ample line
bundles Oh(1) and OS(1). The Chern classes of these are ωL and ωR respectively,
and the relative hard Lefschetz theorem give us two sl2-actions, the left and the
right action on H∗(X), they commute, and so we get an (sl2)L × (sl2)R-action on
H∗(X).

Let’s think only about the left action for the time being. Consider (sl2)L, write
H∗(X) = ⊕ Ig ⊗Rg, then this is irreducible, there’s another sl2-action, this Rg is
an (sl2)R-space.
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Now another imagination, well Ig = H∗(Jacg), and my X looks like ∐Jacg ×Sg,
let’s just imagine this is true. If you have a smooth genus g curve, the fiber is
Jacobian, then Rg should be the cohomology of Sg. Okay, so we are counting
virtually, so suppose for instance, if Rg is a finite set we count the Euler number,
then #vir(Sg) = χ(Sg), then you do this by thinking of the trace Tr(−1)HR where

HR is the diagonal element [ 1 0
0 −1 ] in sl2. So why is this? If I take (−1)HR ∣Hi

then I get (−1)i,id.
So then if all these things are true then the Gopakumar–Vafa invariant is

ng(β) = TrRg(s1)HR

and these numbers are integers.

Conjecture 16.1. (Gopakumar–Vafa)

(1) ∑
g,β

Ng(β)qβλ2g−2 =∑
g,β

ng(β)
1

k
(2 sin kλ

2
)2g−2qkβ

where Ng(β) is the Gromov–Witten invariants for Y . It’s obvious that you can
compute ng(β) from Ng(β), what’s not obvious is that ng(β) is an integer.

Okay, so we want to make it rigorous.

16.2. Translation. We need a space X and S. Somehow, many mathematicians
seem to agree (let me mention S. Katz in 2000) that X should be the stable sheaves
on Y

If i ∶ C → Y is a curve in Y and L ∈ Pic(C), then i∗L, the direct image is a
coherent sheaf on Y .

So we want to take X as stable 1-dimensional sheaves E on Y , with (E) =
β,χ(E) = 1.

Then S is the image of X under h into Chow1,β(Y ) and everything in side is
projective.

Conjecture 16.2. Hosono–Saito–Takahashi and Katz conjectured that n0(β) should
be the Donaldson–Thomas invariant.

There are some cases where X is smooth. Then χ(H∗(X)) is χ(X), and this
guy, the cohomology of X, the Euler characteristic of the Jacobian is 0, so χ(R0)
survives, this is n0(β) with the sign (−1)d, and this is the Donaldson–Thomas
invariant.

The consequence of this conjecture is the following, combining these two conjec-
tures:

Conjecture 16.3.

N0(β) =∑
k∣β

DT (β/k)
k3

Now Hosono–Saito–Takahashi observed that if you can find a perverse sheaf P
which underlies [unintelligible], thenH∗(X,P ) satisfies the desired properties. They
propose to use intersection cohomology, the most obvious one, for P , so H∗(X,P ) =
IH∗(X). Maybe I should explain something about relative hard Lefschetz in this
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case. So h ∶ X → S and ω = c1(Oh(1)) and ωk ∶ pH−k(Rh∗ICX) → pHk(Rh∗ICX),
an sl2-action, and Rh∗ICX decomposes into simple summands

Rh∗ICX ≅⊕
k

pHk(Rh∗ICX)[−k]

and this gives an (sl2)L × (sl2)R-action on IH∗(X) which gives us ng(β). They
checked equation 1 for a special K3-fibered Calabi–Yau three-fold.

This is probably not the best example.
Now let me summarize what has been expected about Gopakumar–Vafa theory.

We expect the following:

(1) {ng(β)} should arise from an (sl2)×(sl2)-action on some cohomology theory
H∗(X), with X the moduli of stable 1-dimensional sheaves on Y .

(2) The genus zero invariants n0(β) should be the Donaldson–Thomas invari-
ants.

(3) Gopakumar–Vafa should be Gromov–Witten, we want equation 1.

(This is all still joint with Jun Li).
The paper of Hosono–Saito–Takahashi realized the first item perfectly, but we’re

not sure about the second one, because this does not capture the vanishing cycles.
Also, IH∗ is not deformation invariant but the Donaldson–Thomas invariants in
the second item are.

So now we should look for a different perverse sheaf also underlying a polarized
Hodge module.

16.3. Categorification helps. We have a nice perverse sheaf underlying a polar-
ized Hodge module. So we propose to use the perverse sheaf P made by gluing the
perverse sheaves of vanishing cycles.

Here X, I need it to be the moduli of stable sheaves E on Y with Hilbert
polynomial dm + 1, because the coefficient of the first term and the constant term
are coprime, there is a universal family [unintelligible]coscheme descent, and so X
is an orientable critical virtual manifold. What’s automatic about this perverse
sheaf P from last time is that χ(H∗(X,P )) =DT (X) and H∗(X,P ) comes with a
sl2×sl2-action. Using the recipe of Gopakumar–Vafa and Hosono–Saito–Takahashi
we get ng(β) invariants. Then when g = 0, χ(R0) = n0(β), so condition 2 is
automatic and condition 1 is also satisfied by construction.

We’re in much better shape. We checked, the remaining issue is the formula 1.
By the same argument as in Hosono–Saito–Takahashi, the formula holds for some
special K3-fibered Calabi–Yau three-folds. What we are trying to prove at this
point is the local genus 2 curve case. Here Y is a total space of a general rank
2 stable vector bundle F on a smooth genus 2 curve C with det F = KC (the
Calabi–Yau condition). It turns out the rank 1 case is easy. The important thing
is the rank 2 case, so X is stable sheaves E on Y with χ(E(m)) = 2m+1. So this is
a smooth five dimensional projective variety. This has a divisor with non-reduced
scheme structure, so we have to do some calculations related to the vanishing cycles
there. That’s what we’re working on now.

This is a kind of bonus for the categorification problem. It would be nice, let me
finish this lecture, we’re all tired,

16.4. Problems and projects. Maybe I’ll work on some of these but not all of
these.
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(1) The most important is to prove Equation 1, the Gromov–Witten Gopakumar–
Vafa connection, this is probably hard.

(2) Probably easier is to prove that ng(β) is independent of the choice of po-
larization of Y . This would be true because Gromov–Witten invariants do
not depend on polarization. Also we should show that this is deformation
invariant (we know this for genus 0 since Donaldson–Thomas is deformation
invariant).

(3) So how would you do this? You could use a wall-crossing formula between
X+ and X−, then X+ −X− = {0 → E1 → E → E2 → 0∣[unintelligible]} and
similarly for X− −X+. Then d+ = ext1Y (E2,E1) and d− = ext1Y (E1,E2) and
[SuppEi] = βi
Conjecture 16.4.

ng(β)+ − ng(β)− = (−1)d+−d−−1(d+ − d−)
g

∑
h=0

nh(β1)ng−h(β2)

So in the case d+ = d− so for instance c(E1) = c(E2), this would mean
that ng(β)+ = ng(β)−, which would give you the independence of choice of
polarization.


