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1. October 13: Yong-geun Oh: Topological extension of Calabi
invariants and its application

Okay, so let me remind you of some background.

1.1. Background. Let me start with some generalities. Let (M,ω) be a closed
symplectic manifold and let Symp(M,ω) be the group of symplectic diffeomor-
phisms, automorphisms of the symplectic structure.

When M is not simply connected, then the canonical subgroup Ham(M,ω), the
group of Hamiltonian diffeomorphisms, is a proper normal subgroup.

I should maybe remind you of this Ham. The way how this diffeomorphism
group is defined is very strange. The symplectomorphism group is natural, it’s the
automorphisms of the symplectic structure. The Hamiltonian group is unnatural
and it’s a historical accident that we consider it. Hamiltonian dynamics studies
this object but there’s no a priori mathematical reason to look at it.

Look at time-dependent functions H(t, x), time dependent functions on M , and
if these are at least C2 or C1,1 functions, well, let me talk about that later. Then
XH is a time-dependent vector field, defined by

XH(t, x)⌟ωx = dHt(x)

This uniquely determines XH by nondegeneracy of ωx if H is differentiable. If H is
C2 or C1,1 (the first derivative is Lipschitz), then x = XH(t, x) defines a global flow
ϕtH , and then Ham(M,ω) is defined as the subset of symplectic diffeomorphisms
which are the time t = 1 image of Hamiltonian flow, with H in C∞([0, 1]×M,R).

A lemma is that this forms a subgroup. A theorem of Banyaga is that this is a
simple group and [Symp(M,ω),Symp(M,ω)] = Ham(M,ω).

Remark 1.1. Say M is connected. At the Lie algebra level, you have a map 0 →
R → C∞(M) → X Symp(M) → H1(M,R) → · · · where these take f to Xf and X
to X⌟ω.

The ordinary differential equation has global flow. So let’s lower the regularity
of the Hamiltonian. If the regularity of H is under C1,1, then the flow does not
exist but we can still think about Hamiltonian functions. Physicists even use non-
continuous potentials. It’s very tempting to ask what happens, is there any way of
completing this group?

I want to, here is Eliashberg–Gromov’s C0-rigidity theorem:

Theorem 1.2. Let me denote Sympeo(M,ω) = Symp(M,ω) ⊂ Homeo(M), the
C0-closure of Symp(M,ω). The amazing theorem is that if you look at Symp(M,ω)∩
Diff(M), and the theorem says that this is Symp(M,ω).
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This means that a sequence ψi of symplectic diffeomorphisms converges in C0

and its limit is differentiable, then its limit is a symplectic diffeomorphism, preserves
the symplectic form as well.

The C0-closure does not control anything about the behavior of derivatives, but
that happens to symplectic diffeomorphisms.

Gromov noticed here that there is something deep in the study of symplectic
manifolds.

So a natural question is:

Question 1.3. What is the analog of Ham(M,ω) inside Sympeo(M,ω).

There is, now, this analog of Ham inside Sympeo and that’s what we’re talking
about.

The most natural way to define Ham is by two stages. First look at the Hamilton-
ian paths, and then evaluate them at time 1. So we’ll define P⟨am(Symp(M,ω), id),

which I’ll abbreviate P⟨am
id . There’s a natural evaluation ev1 : P⟨am

id → Symp(M,ω).

Then Ham(M,ω) = ev1(P⟨am
id ).

So my first step is to define P⟨am(Sympeo(M,ω), id).

Definition 1.4. We say a path λ : [0, 1] → Sympeo(M,ω) is a topological hamil-
tonian path if there is a sequence Hi = Hi(t, x) such that

(1) the flow ϕHi C
0 converges to λ uniformly in time, and

(2) Hi converges in L1,∞ (you can assume C0 if this is uncomfortable. This
means L1 in time and L∞ in space and is much morp natural)

Suppose you are given that the Hamiltonian flow converges. Suppose ϕHi and
ΦFi converge to λ and both Hi and Fi converge. Then do the limit of Hi and Fi

agree?

Theorem 1.5. (Viterbo (C0), Buhovksy–Seyfaddini (L1,∞)) They do agree

Theorem 1.6. (Oh, earlier, easier but still nontrivial) If Hi and Fi converge to
the same function and ϕHi and ϕFi converges, then the limiting flows are equal

limϕHi = limϕFi

This enables us to define a topological Hamiltonian and its flow. A topological
Hamiltonian means the C0 limit of Hamiltonians that arises in this way.

Remark 1.7. Let me extend to open manifolds. Look at R2n. Look at compactly
supported symplectic diffeomorphisms and compare compactly supported Hamil-
tonian diffeomorphisms. Then their C0 closures coincide:

Sympc(R2n) = Hamc(R2n).

So you get nothing interesting.

I will freely use ϕH for topological Hamiltonian flows.

Definition 1.8. By P⟨am(Sympeo(M,ω), id), we mean the set of topological Hamil-
tonian paths from the identity.

Definition 1.9. The group Hameo(M,ω) is ev1P⟨am
id (Sympeo).

It’s an interesting exercise that

Proposition 1.10. The group Hameo(M,ω) is always a normal subgroup of Sympeo(M,ω).
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The main question you ask is

Question 1.11. Is Hameo(M,ω) proper in Sympeo(M,ω)

That’s the general question.

1.2. 2 dimensions. In two dimensions, what does Sympeo mean? In two dimen-
sions, symplectomorphisms are just area-preserving. WriteM = Σ. So Symp(Σ, ω)
is the group Diffω(Σ) of area-preserving diffeomorphisms of Σ.

Theorem 1.12. (Smoothing theorem) Any area-preserving homeomorphism can be

smoothly approximated. That is, Homeoω(Σ) is the same as Diffω(Σ) in Homeo(Σ)

This is not very nontrivial, but that’s the theorem.
That basically implies that Homeoω(Σ) = Sympeo(Σ, ω).

Corollary 1.13. Hameo(Σ, ω) is a normal subgroup of Homeoω(Σ).

Now this connects to a well-known open problem in dynamical systems.

Question 1.14. Is the group Homeoω(D2, ∂D2) or Homeoω(S2) simple?

This is the only dimension that is not understood. This kind of simpleness
question, all the other dimensions are understood and this case, just the disk and
the sphere have been open.

If that question, that Hameo is proper in Sympeo, would imply that these groups
are not really simple.

I should say that all of this can be done with boundary.

Theorem 1.15. (Oh)Hameo(D2, ∂D2) is a proper subgroup of Sympeo(D2, ∂D2).

I think I can prove this in any dimension but this is the most interesting case.
My student Müller and myself introduced Hameo around 2004 and Fathi pro-

posed some “wild” area-preserving homeomorphisms. Let me describe this. It’s
very simple, well, not very simple actually.

Look at the radius of dyadic integers, decompose the disk into an infinite sequence
of annuli of radius 1

2k
. On each annuli, consider the diffeomorphism given by

(r, θ) 7→ (r, θ + ρk(r)). Our r lives in [ 1
2k
, 1
2k−1 ]. So ρ is a rotation in the middle,

with something like ρk(r) = 2kρk−1(r). The infinite product ϕ =
∏

k=1 ϕk is
well-defined and differentiable everywhere except at the center, where it is still
continuous.

I claim that this is still not contained in Hameo. I’ll use the “Calabi invariant.”
This kind of construction exists only in the continuous and not in the smooth
category. Freedman uses this to prove the 4-dimensional Poincaré.

This invariant is on Diffω(D2, ∂D2), this is area-preserving diffeomorphisms sup-
ported on the interior of the disk. In a neighborhood of the boundary this is the
identity. Then the Calabi invariant can be defined in two different ways.

One way is using the Hamiltonian. I should say that this group is contractible,
Diffω(D2, ∂D2) is the same as Ham(D2, ∂D2). So for ϕ ∈ Diffω(∂D2), choose

H that gives rise to ϕ and then take
∫ 1

0

∫
D2 H(t, x)dxdt. One proposition is the

following.

Proposition 1.16. This integral depends only on ϕ1H .
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The proof is by Stokes’ formula, using that Diffω(D2, ∂D2) is contractible.
It looks like the integral is well-defined for each Hamiltonian path, but there’s

no way to prove this independence for the continous case.
The second definition is the following. Let ω be dα, since we’re on the disk. Then

ϕ∗ω = ω means that ϕ∗α− α is closed. This is a compactly supported closed one-
form. But since H1(D2) = 0, there is a compactly supported function hϕ : D2 → R
such that ϕ∗α− α = dhϕ. Then Cal(ϕ) = 1

2

∫
D2 hϕdx.

This involves taking a derivative, so it doesn’t work to extend to hameomor-
phisms. So there’s something nontrival that one has to do.

What I want to do, my goal, is to define or extend Cal : Diffω(D2, ∂D2) → R to
Cal : Hameo(D2, ∂D2) → R.

We’ll use the first definition, starting by defining Cal
√ath

: P⟨am
id (Sympeo(D2, ∂D2)) →

R. But that’s obvious, you just take the integral. I’ll need the developing map
Dev(λ) = H when λ = ϕH . So you say

Cal
√ath

(λ) =

∫ 1

0

∫
D2

Dev(λ)dxdt.

So the main task is to prove that Cal
√ath

(λ) = Cal
√ath

(µ) when λ(1) = µ(1) for λ

and µ in P⟨am
id (Sympeo). So for a given topological Hamiltonian loop based at the

identity, is Cal
√ath

(λ) = 0?
This uses a couple of things

(1) The proof of this involves an extension of Alexander isotopy inD2 which ex-
ists in the topological but not the diffeomorphism category. The extension
will exist in the topological Hamiltonian category.

(2) In differential geometry, a Lagrangian can be thought of as a graph. There’s
a correspondence between Hamiltonian isotopy and the so-called Lagrangian
suspension.

(3) We’ll use a C0 intersection, well, that doesn’t quite work, so we’ll use an
L1,∞ version of Lagrangian intersection theorem on the cotangent bundle.

(4) Then we have, I asked about this in lunchtime seminar, this is about re-
arrangement of “Hamiltonian mass.”

Maybe I’ll just answer Jae-Suk’s question. Before answering Jae-Suk’s question, I
want to make an important remark.

Remark 1.17. Suppose you have a topological Hamiltonian loop. By definition,
it’s the C0-limit of ϕHi

and the Hi are smooth Hamiltonians converging in the C0

topology. If your path happens to be a loop, the smoothing sequence starts from
the identity, and you can ask whether the time 1 thing can be chosen to be the
identity.

In general ϕHi may not be a loop, so only, we know that ϕ1Hi
→ id. This is the

source of all kind of difficulty.

Let me answer about Lagrangian suspension. Suppose you have a Lagrangian
submanifold in (M,ω) and Hamiltonian flow ϕH . Then look at the isotopy ϕtH(L).
This can be embedded, there is a natural Lagrangian embedding [0, 1] × L ↪→
T ∗[0, 1]×M . This is defined in the following way. More generally, let me start with
a Lagrangian embedding ℓ : L→ (M,ω) which I denote ι(L,H) where ι(L,H)(t, y) =
(t,−H(t, ϕtH(y)), ℓ(y)).
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Now if you apply ϕF : (D2, ∂D2) → (D2∂D2), this is a compactly supported
flow, and you want to consider the double. You extend ϕF by the identity.

Now, this may not close up, there is a simple way of closing this, by tak-
ing the “odd double Lagrangian suspension,” I want to double it ιodℓ,H(t, y) is

(t,−H(t, ϕtH(y)), ℓ(y)) for 0 ≤ t ≤ 1 and then

2− t,H(2− t, ϕ2−t
H (y)), ℓ(y)

for 1 ≤ t ≤ 2. [something about this making a loop]

2. October 20: Cheol-Hyun Cho: Introduction to Fukaya category
and mirror symmetry I

I was wondering how to proceed for these lectures, and for my lectures I plan
to give four or five lectures, and so, the first lecture and maybe the second will
be about the basic setup of all these things, J-holomorphic curves and Lagrangian
Floer theory and maybe the Fukaya category. The first two lectures will be very
elementary. Actually I read a sentence in some preprint, “abbreviations do injury
to knowledge,” or in Korean [[unintelligible]]. The setup is full of subtleties and to
give all of them takes maybe a year.

The third lecture will be either, well, I want to talk about CP1, then in four an
elliptic curve, and then in the fifth KP1 which is OP1(−2). These generalize to the
toric case, to Calabi–Yau hypersurfaces, and to toric Calabi–Yaus. The mirrors are
like z + q

z . To a hypersurface you have a mirror hypersurface.
Mirror symmetry has many different phenomena, and Lagrangian Floer theory

seems to explain how this mirror symmetry work. I’ll try to show how this ma-
chinery shows how mirror symmetry works in these three examples. If you’re a
symplectic geometer it will be very boring, please feel free to leave.

Basically, we’re doing symplectic geometry so we’re working with a symplectic
manifold. We have this closed non-degenerate 2-form and the way to use the 2-
form is whenever we have a covector you can turn it into a vector, isomorphically

T ∗M
ω−→ TM . So if you have a function, you can take df and then turn it into

a vector field Xf , which gives you a flow, Hamiltonian flow (or diffeomorphism).
Symplectic geometry is about symplectic diffeomorphisms that preserve the form,
or about Hamiltonian flows. If you haven’t seen this setup before then maybe try,

for real starters, look at R2 with variables x and y. Look at f = y2

2 + U(x). This
is, y is momentum and U is potential. Here ω is dx ∧ dy.

The relation between Xf and df is that df(V ) = ω(Xf , V ). The R2 is like a
phase space, you have position and momentum and then the flow tells you how you
move around in the phase space.

The J , we want to relax a condition, is an “almost-complex structure,” an en-
domorphism from TM to TM which squares to − Id. We want it to be compatible
with ω in the sense that ω(JV, JW ) = ω(V,W ) and −ω(V, JV ) > 0. When I
see this, I try to think of dxdy( ∂

∂x ,
∂
∂y ), Then g(v, w) = ω(v, Jw) is a Riemannian

metric. This implies that the space of compatible Js is contractible. This is a
good thing. Somehow symplectic geometry is about global phenomena. Later we’ll
change the almost-complex structures and find that something is invariant. We
want the invariant to not depend on J .

We consider J-holomorphic curves from a sphere to M or a disk to M , and you
can think of the sphere as C ∪ {∞}, and the disk as, well, then in either case you
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have
∂

u
∂s+ Ju

∂u

∂t
= 0.

This is almost the Cauchy–Riemann equation, but J can look different in different
places. Analysis people would say that this dependence on u makes this equation
non-linear so that the analysis is difficult.

We want to say that this kind of J-holomorphic curve knows something about
mirror symmetry.

So when you have this curve you can define its energy, the L2-energy,∫∫
| ∂u
∂s

|2 + | ∂u
∂t

|2

You can also consider the symplectic area∫∫
u∗ω

and actually these are the same notion, if you evaluate on two vectors, you are
integrating ∫∫

ω(
∂u

∂s
,
∂u

∂t
)

and then you use the J-holomorphic condition and this is eventually ||∂u∂s || or ||
∂u
∂t ||.

If you put in a half this is the L2 energy.
These two numbers are analytic and topological respectively, so it’s interesting

that they coincide.
I should have said that the pseudoholomorphic curve should have Lagrangian

boundary. If the dimension of L is half that of M and ω(v, w) is 0 for any v and
w in T ∗L. So the condition is for the boundary of the curve to lie on a chosen
Lagrangian.

Now let M̃(α) be the space of all J-holomorphic curves whose homology class is
that of α in either H2(M) or H2(M,L) as the case may be.

You want to analyze this moduli space, and it’s improtant to look at the limiting
behavior, the compactification, which is very important. It’s called the Gromov
compactification. Let’s see how it goes.

So we fix α, then the symplectic energy is fixed, it’s ω(α). So this means that
the L2 energy is fixed, and that’s somehow

∫∫
|Du|2 <∞.

If you have a sequence of J-holomorphic curves, assume that un is a sphere
mapping toM . What happens in the limit? The total integral is finite, but actually
the values at indidual points go to ∞. In a picture what happens is [picture]

Let me look at an example. Send D2 to itself by sendinig z to z−αn

1−αnz
) where

αn = 1− 1
n . The Lagrangian is the circle. Then this converges to −1.

Something terrible happened, this converged to a constant map. We need a
better limit. You’re moving 0 to −α. Somehow [picture].

You need a new coordinate, which is z̃ = n(z − (1− 1
n )). You magnify near this

point and you can check that this map, in this new coordinate, Un(z̃) =
z̃

2+z̃− 1
n (1+z̃)

.

As n→ ∞ this goes to z̃
2+z̃

So what happens, roughly, is that z is αn + z̃n. If you take a derivative with
respect to z, I’m confused, hold on.

[pictures]
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So that’s Gromov compactness. The more difficult part is gluing, which I won’t
talk about at all. Whenever you have a configuration of curves, you can find
something limiting. Is it generally true that two holomorphic curves that touch
have a holomorphic curve near their union? No, that’s a delicate question. It takes
a bunch of machinery to do this. We won’t go into that and instead will just assume
that the technique works.

You can ask why we care about pseudoholomorphic curves? Gromov used them
to prove a surprising non-squeezing theorem. Why is it so powerful? It’s related to
Lagrangian Floer homology in the following way.

Think of a Lagrangian as a curve on a plane. Suppose you have these two
Lagrangians L0 and L1. We consider P (L0, L1), and γ is an element of it. We want,
of course, the path space is too big. Ignoring this problem we want to consider
some function and gradient flows on it. We fix some reference path. The most
natural function on the path space, choose some bounding surface and consider
its symplectic area. Then the action functional A(γ, U) is

∫∫
bounding surface

u∗ω.

The choice of bounding surface may not be unique. Then the symplectic area will
change. So we’re really defining this on the universal cover of the path space.

So A is defined from the universal cover to R.
The question is, what is dA? To discuss this we need to know about the tangent

space. The tangent space can just be thought of as the space where points move.
[picture]

So we have a uτ : [0, 1] × [0, 1] → M with the condition d
dt |τ=0uτ (1, t) =

ξ(t), along with regular homotopy conditions, and we evaluate dA(γ)(ξ) and it’s
− d

dτ |τ=0

∫∫
u∗τ (ω).

You go to evaluate this and see that it’s a Lie derivative and so you get

−
∫∫

L ∂Uτ
∂τ

= −
∫∫

d(i ∂Uτ
∂τ ω)

and by Stokes you can get ∫ 1

0

ω(γ′, ξ)dt = 1.

Then γ′ must be 0 which implies that γ is a constant path and L0 ∩ L1.
We’ll see what a gradient flow is and that’ll be gradient flow.
What is gradient flow? We have ⟨nableA, ξ⟩ = dA(ξ). The natural inner product

is
∫ 1

0
ω(η1, Jη2)dt. This is a very natural definition. This looks like ⟨∇A, ξ⟩ =∫ 1

0
ω(∇A, Jξ)dt. We can also see that dA(ξ) =

∫ 1

0
ω(γ′, ξ)dt. In the first case you

can see we get −J(∇A) = γ′, and ∇A = Jγ′.
If you consider negative gradient flow, the family of trajectories, write it as

U(s, t). Then ∂U
∂s should be −∇A(U). In the other direction you get ∂u

∂t = −J ∂u
∂t .

To find these negative gradient flows, you should find solutions to this Cauchy–
Riemann equation.

There may be infinitely many critical points in the cover of the path space, and
to handle them all at once, you use the so-called Novikov ring, so that doing a deck
transformation has to do with multiplying by some element of the ring.

In the cotangent bundle, well, think of T ∗L, and the fibers are covectors. The
zero section is a Lagrangian submanifold. The graph of a 1-form is also a La-
grangian. This should be C2-small, and a Morse function. What are the intersec-
tion points? These are critical points of f . In this kind of setup, we want to look
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at the intersection points and count trajectories between them. We consider the
vector space, CF (L0, L1), the vector space generated by L0 ∩ L1, with differential
defined by counting the number of rigid J-holomorphic strips with limit p and q at
±∞ and with boundary on L0 and L1 respectively. Rigid means these don’t come
in families (except modulo the obvious translation).

[Discussion about Morse theory. Pictures.]
Floer’s great idea is that there is a correspondence between Morse flow lines

and J-holomorphic curves. Let’s see how it goes. The basic idea is, you have the
function f : L → R, which has a gradient vector field on the Lagrangian. That’s
in the tangent space of the Lagrangian. Obivously, you have the covector df . In
a neighborhood of the zero section you can define an almost complex structure by
moving ∇f to df . You want to extend this near the zero section. You consider
the projection to the zero section. You can project and then apply f , call that
F . This goes T ∗L → R. Then you can give it the Hamiltonian vector field XF ,
and then you can consider its flow. So time t flow will be ϕtF . So define J̃ by
ϕtF (Jϕ

−t
F )∗. An easy exercise is to show that this one-parameter family of almost

complex structures, well, anyway, I’m over time, if I have a gradient flow line, we’ll
lift by the Hamiltonian vector field, call this γ(s), and this is supposed to be, show

that, well, u(s, t), call this ϕtH(γ(s)). You should show that ∂u
∂s + J̃(u)∂u∂t = 0. A

more difficult thing to show is that this is a generic complex structure.
The picture is the following: [picture]

3. October 27: Cheol-Hyun Cho: Introduction to Fukaya category
and mirror symmetry II

Last time we discussed about the J-holomorphic example. What we did was
consider the path space and find that the kind of holomorphic strip, you can think
of it as a Morse flow of paths and the critical points are given by intersection points
between Lagrangians.

Let me formally write down the definition of Floer homology of the chain com-
plex. The chain complex CF (L0, L1) is generated by intersection points of L0 ∩L1

and the coefficients, it will be the direct sum Λ⟨p⟩ where p is an intersection point.
Here Λ is the Novikov ring, which we need because we have a choice of bounding
surface. [picture] So instead of working on the covering space, we decided to work
with the usual space with Novikov ring coefficients. To make a long story short,
the Novikov ring can be written in the following way (this is the universal Novikov
ring)

Λ =
∑
i=0∞

aiT
λ
i |ai ∈ C, λi ∈ rR, λi → ∞

you can have infinitely many strips with bigger and bigger energy, so you have to
allow this kind of coefficient ring. The differential counts J-holmorphic maps u
from R× [0, 1] where R×0 → L0, R×1 → L1, −∞× [0, 1] → p, and ∞× [0, 1] → q.
This hsould satisfy ∂̄Ju = 0. You can write this ∂u

∂s + Jt
∂u
∂t , we want the almost

complex structure to vary with t for transversality reasons. We count only rigid J-
holomorphic maps. That means we count only those which are finite after modding
out by translation.

Let me point out two things.
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Remark 3.1. (1) The strip, you can look at u∗TM , and you can trivialize this
tangent bundle and then you look at how much the boundary is rotat-
ing, which is measured by the Maslov index. What you do, if you have
Rn times some unitary matrix, you look at the determinant square map
U(n)/O(n) → U(1), which measures how much the Lagrangian subspace
rotates. The full loop gives Maslov index two. If you have a loop, a loop
of Lagrangian subspaces you get a rotation number. You have to connect
from one to another when your loop is made of two strips. When we have
L0 and L1, we get a canonical path by identifying L0 with Rn and L1 with
iRn. There is a symplectomorphism between the two tangent spaces by
rotating via eiπtRn. The Maslov–Viterbo index is given by applying the
canonical path and then its inverse at the two breaking points. The rota-
tion number is the Maslov–Viterbo index. The expected dimension is the
Maslov–Viterbo index. An easy exercise is, well, compute, you can find
that this picture has index 1. It’s one dimensional, just translation.

This is Z2-graded. Why is it Z2-graded? It’s kind of important, instead
of connecting by the canonical path or anything, when you just have one
point, you want a number, which is only in Z2. You have TpL0 and TpL1.
Choose any path between them preserving orientation. Any two such paths
will differ by a number of full rotations, which gives a multiple of 2. I want
an integer grading. So then we use the canonical path from L1 to L0

(ignoring orientation) and this gives a loop starting and ending at TpL0.
This is some number which is the winding number, well-defined modulo Z2.
Then if this winding number is η then switching the L0 and L1 is n− η.

Let’s give the definition of the complex. Recall that we considered this
kind of cotangent bundle, and we looked at the graph of a 1-form. We
found that we have some kind of Morse flow downstairs which corresponded,
we push it up by some Hamiltonian isotopy s, and this is u(s, t) is a Jt-
holomorphic strip. There was some correspondence when f is very small.
the boundary is given by summing over the count of points in the moduli
space from p to q times the symplectic area of the strip Tω(u)⟨q⟩ where
the difference between p and q is 1 in Maslov index and you’re counting
J-holomorphic strips from p to q.

So the next question is, is ∂2 = 0? There are roughly three settings you could
consider. The first one is the exact case, the second is the monotone case, and the
third is the general case, where you eventually need the full machinery of FOOO.
In the exact case, an exact symplectic manifold, you have ω = dθ for θ a 1-form.
This usually has to be non-compact, because the top power of ω has to be a volume
form which is nontrivial for compact things. Then you can ask whether θ|L is exact,
and if this is dK there then we call L an exact Lagrangian. A good thing about
exact Lagrangians is that they don’t contain holomorphic disks or spheres. If you
had a disk with exact Lagrangian boundary, then the L2-energy

∫
||du||2 =

∫
u∗ω

which, since the symplectic form is exact by Stokes’ theorem is
∫
∂D2 u

∗θ which,
using Stokes’ theorem again, is 0.

In fact, you don’t even need to go to the covering space. You can work with
A(γ) = −

∫
γ
θ. You can check that gradient flow gives, A : P(L0, L1) → R. You

don’t need the area term. You can define, redefine the generators so that you
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don’t need that term in the differential. It’s just an application of Stokes’ theorem.
[picture]

What is the area of this slice?∫
strip

u∗ω =

∫
u∗dθ =

∫
L1

u∗θ +

∫
L0

u∗θ = K1(p)−K1(q) + (K0(q)−K0(p))

and so you get

⟨p⟩TK0(p)−K1(p)

, which we rename ⟨p̃⟩ and then the differential goes from p̃ to q̃ without any area
terms.

Let’s do one more step, maybe I’m getting too technical, if you wanted to go
to the Z-grading instead of the Z2 grading, then, I wanted to define exactly, more
explicitly, what is this chain complex. You need some data, additional assumptions.
This is typically what happens. You have a holomorphic volume form, dz1 ∧ · · · ∧
dzn on Cn, It’s not R2n, this additional data. This works like a determinant.
Any Lagrangian subspace, any U(n)/O(n), to have a well-defined thing you want
to square it, then you get a map to U(1). If you have a Lagrangian, take an
orthonormal basis and plug it in and you get a number. That happens, suppose
you have a holomorphic volume form, at each point you look at the tangent space
and plug in and get some number in U(1) and you can write it as e2πiϕ(p). So ϕ,
this argument, defines a map L → R/Z. Then L is said to be graded if ϕ has a
lifting from L→ R. Somehow we already saw, at each point, we have this rotation
of which path we choose. That’s why, you choose this grading. Morally speaking,
what’s happening, you look at the point, [picture], this is like a complex plane, but
what you are doing, you’re going to the universal cover, and your Lagrangian, your
tangent space is somewhere here. You can assign the degree of p to be ϕ̃0(p) −
ϕ̃1(p) + canonical path from L0 → L1, which is an integer. Somehow if you know
where you are, then you can define a path. Somehow that measures, and to make
it into an integer you add the canonical path and then the Maslov–Viterbo, well,
the degree of q minus the degree of p is the dimension of the space of u maps.

At each intersection point you have a grading in Z and the difference in grading
accounts for the dimension of the moduli space of holomorphic strips.

If you have a loop in your Lagrangian, when you come back you should be on
the same phase. If you come back one step up, you don’t get something graded.
When you come back the phase changes by 2π.

One more comment is that the exact condition is not homotopical. If you slightly
move it, somehow the area, because of the area it’s not going to be exact. Exact
Lagrangians somehow choose a very particular version. In the exact case

Theorem 3.2. You have ∂2 = 0

The proof is that if you have a strip of Maslov–Viterbo index 2, then there
is a theorem which says that this can bubble in the compactification, after time
translation, this looks like a 1-manifold with boundary, so what are the boundaries,
you get a 1-manifold and the possible limits are [pictures]. But because in the exact
setting, you don’t get any bubbling, so the only possible limits are of broken strips.
These now appear, you have a map from the strip to somewhere, and the strip is
a noncompact domain. Just imagine what the maps do. Look at the L2 energy of
this map. You have a sequence of maps, and some part of the energy can escape to
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∞. You have a sequence of maps where the derivatives move to ∞. If you count
with suitable sign, they are supposed to cancel.

Let’s go to the monotone case. This is the second easiest case that people discuss.
This means the Maslov index µ which is attached to the homotopy class of a disk
π2(M,L) → Z, the rotation number around the boundary, you have the symplectic
area, integrating the symplectic form. Monotone means that the Maslov index is a
positive λ times the symplectic area. Then µ is positive for J-holomorphic disks.
Let’s look at the dimension of the moduli space of disks with homotopy class β
and one marked point, so this is u : D2 → (M,L), and z in the boundary and u
is J-holomorphic, [u] = β, and you divide by the relation that u : (D2, ∂D2, z) →
(M,L, p) and if you have another map (D2, ∂D2, z′) → M,L, p), and if you have
an automorphism, if u and ũ differ by an automorphism, so you’re modding out by
an automorphism of the disk. The dimension is supposed to be n + µ(β) + 1 − 3,
whenever I used to see this dimension estimate I didn’t like it very much, it seems
hard to understand. To give you a feel, if you have a circle in the complex plane,
then the honest disk with one marked point, the space of these is 1+2+1− 3 = 1.
Without worrying about marked points and automorphisms, you get eiθ z−α

1−ᾱz , three

dimensions, and winding twice you get something like eiθ z−α1

1−ᾱ1z
z−α2

1−ᾱ2z
, so you get 5

for Maslov index 4.
Let’s look at the sphere mapping into a Kähler manifold M . Then we have

for u∗TM the sheaves E of holomorphic sections, A of C∞ sections, and A0,1 of
(0, 1)-forms. We have the “fine resolution”

0 → E → A ∂̄−→ A0,1 → 0

and the analytic index of ∂̄ which is the kernel minus the cokernel is the global
sections, this is H0 and H1, the fine resolution says this is the same as H0(P1, E)−
H1(P1, E), and then you apply Riemann–Roch to show that the difference is the
degree of the bundle, twice the degree of the first Chern number of E plus n times
χ(P1), which is 2c1(u

∗TM) + 2n.
I’ll just use one minute and stop. In the monotone case what happens is, if you

look at the moduli space of disks, if you put one marked point and evaluate the
Lagrangian, n + µ + 1 − 3, if this index is bigger than 2, the µ index, then what
this means is that this index is at least n. If you have only one marked point, it
will cover L, the dimension of the image will be n only when µ = 2. So we need to
distinguish µ = 2 and the higher case. Let N be the minimal Maslov index of the
monotone Lagrangian L. You get the following theorem:

Theorem 3.3. If N > 2 then ∂2 = 0.

The proof is that, the boundary has parts with sphere bubbles, but generically
they cannot appear because the moduli space of sphere bubbles is N and so the
moduli space of strips has dimension 2−N .

Next time I’ll discuss what happens with N = 2 and the toric case.

4. Nov. 10: Changzheng Li: Lagrangian fibrations on Gr(2, n)

I’ll first talk about Gelfand–Cetlin fibration on Fln1,...nk;n. Then I’ll talk about
a new fibration for Gr(2, n) = Fl2,n. This is joint with Kwok-Wai Chan and
Naichung Conan Leung, still work in progress.
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I wanted to make a review for mirror symmetry for Grassmannians. Today I’ll
focus just on Lagrangian fibrations.

Let us start with a definition.

Definition 4.1. Let (M,ω) be a symplectic manifold. Then a submanifold L is
called Lagrangian if it is half-dimensional and the symplectic form restricted to the
submanifold vanishes.

Definition 4.2. Let (M,ω,Ω) be a Calabi–Yau manifold. This could be compact
or noncompact. A Lagrangian L is called special if Ω restricts to a constant.

The goal is to construct a special Lagrangian fibration with total space M over
some B. Here M will be open and dense in Gr(2, n). The fiber generically should
be a special Lagrangian of M .

We have some motivation from mirror symmetry. Why do we consider this
problem?

Mirror symmetry says roughly that theA-model and theB-model coincide. Some
information on the A-side, the symplectic geometry of the object, will be equivalent
to the complex geometry of the mirror object. We’ll try to make this more precise
in order to say why we consider this.

Up to maybe 1993, there are some statements and conjectures, but I think the
event is about the quintic, about the compact case with c1(X) = 0. In other
words this is the compact Calabi–Yau case. After that people wanted to generalize
this to the Fano case, c1(X) ≥ 0. It was proposed by givental in 1993 and then
later by Hari–Vafa. So I just want to say a couple of things about this. For this
formulation, Calabi–Yau or Fano, then the mirror object, On the A side is (X,ω)
compact and c1(X) = 0 or c1(X) > 0. On the B side the object is a family
∨Xq,∨Wq : ∨Xq → C,Ωq parameterized by q ∈ H1,1(X); ∨Wj is holomorphic
functions and Ωq a holomorphic top form.

In the case of a Calabi–Yau, ∨Xq is compact so ∨Wq is constant. In the non-
compact case this is a Landau–Ginzburg model.

In Givental’s formalism, the quantum cohomology D-module of X is equivalent

to, should be equivalent to the D-module generated by
∫
Γ⊂∨Xq

e
∨Wq

ℏ Ωq. This is

imprecise but I wanted to say something.
For c1(X) > 0, this conjecture holds for toric Fano (Fano just means positive

first Chern class) (Givental 1993) or Fln := Fl1,2,...,n−1,n (Givental 1996).
If the conjecture holds, then the quantum cohomology of X as a ring is isomor-

phic to Jac(∨Wq). Then the dimension of the classical cohomology should be equal

to the number of critical points of Ŵq.
I want to say one more sentence about why we study Lagrangian fibrations.

Maybe this is the same question, how can we construct ∨X and ∨W? One approach
is to construct a (special) Lagrangian fibration on X and then do holomorphic disk
counting. It’s likely that some wall-crossing phenomonena will be involved. This is
the SYZ mirror symmetry approach.

If we want to construct the B-side, then one approach is to construct a special
Lagrangian fibration and do disk counting. Later I’ll say something about the
Grassmannian. But this is our motivation.

We will describe this model for Grassmannians precisely. We’ll discuss two fi-
brations.
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Let us start with the Gelfand–Cetlin fibration, which is well-known, on Fln1,...,nk;n.
We consider the partial flag manifold, and then we have an embedding, well-known,
of X in P(∧n1Cn)× · · · × P(∧nkCn) so that (X,ωFS |X), which makes X a smooth
projective manifold.

For example, for Gr(2, n) = Fl2,n this is X ↪→ P( ∧2 Cn) where this is defined
as pijpkℓ − pikpjℓ + piℓpjk = 0.

We have the natural action of the unitary group on Cn which induces an action on
X so that X = U(n)/ ∼. In the case Gr(2, n), this is a quotient by U(2)×U(n−2).
We can consider the moment map X → u(n)∗, and X can be identified with the
adjoint orbit Oλ, where λ is a sequence — for Gr(2, n) it’s (1, 1, 2, . . . , 2), and Oλ

is matrices A in Mat(n,C) such that A∗ = A and the spectrum of A is λ.
Once we’re given a matrix A with fixed eigenvalues, where λ1 = λ2 < λ3 =

· · · = λn, then we can consider square (n − 1) × (n − 1) submatrices. We can
write down a sequence of square matrices like this; eventually we get to a 1 × 1
matrix. We keep the inequality; the sequence of eigenvalues is increasing.So we get

a map Oλ = X → R
(n)(n−1)

2 Some of the entries are constant, however. If we are
considering Gr(2, 4), we can choose 1, 1, 2, 2, and then we get a = 1, c = 2, so we
get a variable b and then d and e and f . So this X maps to a polytope in Rm which

embeds in R
n(n1)

2 .
This image is a convex polytope and this map is continuous. Its restriction to

the preimage of the interior of the polytope is a Lagrangian torus fibration (smooth,
even). There is a toric degeneration of the flag manifold to a toric variety so that
the generic fiber is the flag manifold and the central fiber is the flag variety. Then
we get a fibratino over the same polytope. It’s the moment map polytope for
[unintelligible].

[picture]
This is like a toric degeneration. But φ−1(∂∆) is not complex.
So from this Lagrangian fibration, then we can classify holomorphic disks. This

is work by Nishinor–Nohava–Ueda (2009). We reduce this to the central fiber.
After classifying this, you can write down the [unintelligible]function. The problem
is that the superpotential W obtained in this way is the same as the previous one
obtained by Givental for complete flags and also by Eguchi–Hori–Xiang and Kiem,
well, by B–C–F–K–S, it’s hard to say the names, different methods to get the same
superpotential. It’s sometimes good. For complete flags, it gives all the information
and has enough critical points. But even for Gr(2, 4), the function obtained this
way doesn’t have enough critical points.

On the other hand, we have another superpotential. Rietsch gave WRie : ∨X →
C for G/P , conjecturally the correct Landau–Ginzburg model for all Lie types, in
a representation theoretic way. Also by Marsh–Rietsch. This is difficult to read;
they somehow reformulate it for the Grassmannian case in Plücker coordinates.

This is more readable, and we want to understand this in terms of the XYZ
mirror symmetry approach.

We’ll need to pick out a divisor. We start from X = Gr(2, n). We know the
first Chern class. There are many subvarieties that represent a class, so I should
say c1(X) = [−KX ]. For a Grassmannian and also for complete flags, just for these
two extremal cases, somehow there is a standard choice, a “canonical” anticanonical
divisor, given by X ∩ {p12p23 · · · pn−1pn inside P(∧2Cn).
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This divisor is good in several ways. It goes to (X0, DX0) under the toric
degeneration; that is, the anticanonical divisor degenerates to the anticanonical
divisor. This is the first good property. The second good property is that the
dual Grassmannian, ∨Y = Gr(n − 2, n), it’s preserved under this action. Then
∨WRie : ∨Y \ ∨D has a simple pole along the divisor. So Y = X\D, there’s not a
unique choice of volume form. Let me say it in local coordinates, ΩY , in coordinates
zij =

pij

p12
where p12 ̸= 0. Then

dz13 · · · dz1ndz23 · · · dz2n
z23

· · · zn−1,nz1n.

The dimension of the torus that is acting here will be much lower than the
dimension of the target space. This torus action gives us a moment map. Just
one thing, even though we have X in here, the diagonal matrix, the diagonal torus
action is trivial. This torus is diagonal matrices in U(n). Then the condition from
X → Rn is that we have n functions (µ1, . . . , µn), but µ1 + · · ·+ µn is a constant.

So we have n − 1 linearly independent functions. We can only find an n − 1-
dimensional torus action. If we want a torus fibration, dimension n− 3 is missing.
We need to look for the remaining n− 3 fibers.

Our statement is that

Theorem 4.3. (Chan–Leung–Li)
If we define fi =

p1,i+2p2,i+3

p12pi+2,i+3
for i = 1, · · · , n− 3, then

µi =

∑n
j=1 |pij |2∑

1≤j≤k≤n |pjk|2
.

Then (µ1, . . . , µn−1, |f1|, . . . , |fn−3|) : X\D → R2n−4 is a special Lagrangian
fibration on (X\D,ΩX\D).

We’re considering in our case 1 < 2 < i + 2 < i + 3. We have p12pi+2,i+3 −
p1,i+2p2,i+3 + p1,i+3p2,i+2 = 0. We choose the first two terms to span. We have
a torus Tn−1 “in” Tn which acts on Gr(2, n). We can consider the holomorphic
vector fields of this torus action.

A key calculation is that if we contract the given volume form by the holomorphic
vector field of the [unintelligible], it turns out to be the exact volume form of
[unintelligible]. As a consequence, assuming this is Lagrangian, it’s special. We
follow Tyurin’s idea [unintelligible]pseudotoric structures. The setup is also very
similar. The point is to prove. You can somehow, fi looks like X//T . Something
looks like here. [too fast]

5. November 24: Cheol-Hyun Cho: Introduction to Fukaya category
and mirror symmetry III

I’ll change the subject a little bit. In the beginning I was planning two lecture
series, two different topics. It seems like I’ll only give one, so I combined the two
and I’ll go back and forth. Today I’m going to speak about quadratic differentials.
Recently this has played an important role in studying the “stability conditions” for
categories appearing in mirror symmetry. Today’s lecture is a gentle introduction
to this.

So let’s start with the canonical bundle. S will be a Riemann surface and KS

is the canonical bundle of S. The fiber at p is the set of complex linear maps
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TpS → C. The cotangent bundle T ∗S has fiber R-linear maps TpS → R. So these
two are different. In local coordinates, what we’re interested in, if we have KS ,
then a section s locally looks like f(z)dz.

An Abelian differential or holomorphic differential is a holomorphic section of
π : KS → S. We could also have a meromorphic differential, which is a meromorphic
section. Before we proceed, let me tell you the Euler characteristics of these bundles.

The cotangent bundle, if you think of T ∗S, the Euler number is, you think of
a generic section and count the number of zeros with multiplicity. In this case,
what you can do is choose a Morse function on S. Then the intersections happen
at critical points. Then df at critical points will look like −x1dx1 − x2dx2 − · · · −
xµdxµ + · · ·+ xndxn, and so I’ll get

∑
(−1)µ which is χ(S).

Now KS is a complex line bundle over S. I choose a meromorphic section ω over
S. This will have zeros and poles. Then the Euler number is the sum of the index
over all critical points. It will look like zndz for some n ∈ Z, and we try to write
this as complex numbers, if z = reiθ then this is rn(cosnθ + i sinnθ)(dx+ idy).

We’ll take the real part of ω, which will be a section of the contangent bundle
(with poles) rn cosnθdx− rn sinnθdy, this is our section, and you can look at the
intersection, when r = 0 this also intersects the zero section of the cotangent bundle.
The intersection index, the multiplicity is −n.

[A lot of discussion]
A quadratic differential is a section of the tensor KS⊗KS which we just write as

K2
S , if it’s meromorphic or holomorphic it is called a meromorphic or holomorphic

quadratic differential on S.
Of course, you can define equivalence of quadratic differentials, if you have two

surfaces S1 and S2 and a biholomorphic map h such that h∗ϕ′ = ϕ then it is
equivalent.

In local coordinates it looks like f(z)dz ⊗ dz where f is either meromorphic or
holomorphic.

Then the critical points of ϕ are the zeros and poles of ϕ. There is a natural
coordinate, I think this is rather important. We’re given the expression f(z)dz ⊗
dz away from critical points. We want to write this as dw ⊗ dw in some other
coordinates. If w = g(z) then dw = g′(z)dz, so dw⊗dw will look like (g′(z))2dz⊗dz.
So what should g′ be? It should be

√
f(z), and then we need to integrate, g(z) =∫ √

f(z)dz. The natural coordinate is well-defined up to sign, if dw⊗dw = du⊗du,
then w = ±u plus a constant.

There’s an associated metric |f(z)|(dx2 + dy2). Then in the natural coordinates
this is the regular flat metric dx2 + dy2. It’s known that curvature doesn’t change
under holmorphic changes of coordinates. So it’s this process, if you want to define
a surface using A4 paper, you can make a cylinder. If you have a quadratic differ-
ential, then locally you see how to make it. Then the question is how you glue, and
this is a more difficult part, this happens near zeros and poles.

To investigate the singular loci, what’s important is the horizontal foliation. In
natural coordinates, then it’s really the horizontal foliation. When you transfer it
to z coordinates, it will look more interesting, if f(p)(dz(v))2 > 0

Let me show you an example. To draw them we need to identify these coordi-
nates, locally suppose ϕ(z) = λzndz⊗dz, with n ∈ Z. Then the natural coordinate

is given by taking square roots. Then w =
∫ √

λz
n
2 dz which is

√
λzn+22 when
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n ̸= −2. We’ll discuss n = −2 separately. When n = 0, this we already know, then
w =

√
λz. [pictures, other examples]

Lemma 5.1. If ϕ is a meromorphic quadratic differential, then the number of zeros
of ϕ minus the number of poles of ϕ with multiplicity is −2χ(S) which is 4g − 4.

This formula you can prove using Poincaré Hopf line fields instead of vector
fields.

Let me mention, this is a standard result by Strebel. Assume that g ≥ 0, n ≥ 1,
and n ≥ 2 − 2g, and S a smooth compact Riemann surface and p1, . . . pn marked
points on S. Choose an n-tuple of positive numbers. Then there exists a unique
quadratic meromorphic differential ϕ such that

(1) ϕ is holomorphic on S\{p1, . . . pn} and has a double pole at pi (with imag-

inary
√
λ)

(2) The union of noncompact horizontal leaves form a closed subset of measure
zero.

(3) All compact horizontal leaves are closed trajectories near marked points
with

∫
αj

√
ϕ = aj , the prescribed real number, where the branch is chosen

so that the integral is positive.

[picture]
The horizontal foliation between zeros gives you a ribbon graph.
Let me tell you about the GMN differential. Here all zeros are simple and

there is at least one pole and at least one zero or simple pole. This is Goresky–
[unintelligible]–[unintelligible]. What’s good about them is, a saddle trajectory is a
horizontal leaf of finite length. Sometimes people use the word “saddle connection”
but that’s different, that’s a phase θ leaf of finite length. Given this foliation, you
can measure the angle of something that crosses it, so consant phase is constant
angle.

Lemma 5.2. A saddle free (no saddle trajectory) GMN differential which has a
pole with an order greater than 2, then there is no closed trajectory and no recurrent
trajectory.

[pictures]
So you have a space of quadratic differentials which has a natural cell structure.

The cells are when the polygonal decomposition does not change. You integrate
something and get some coordinate. If you move to another cell the decomposition
changes and you get a very strange coordinate change, and the whole together it
may define [unintelligible]varieties. People want to understand, you can imagine,
this is a Riemann surface. You’re studying some algebraic or geometric category
parameterized by this Riemann surface. People want to understand what happens
as you move around this space. You have stability structure for the category and
when you move to the next cell, the stability condition changes, but it doesn’t
change wildly, but there are wall-crossing phenomena.

Last week I had this slide in the last part of my talk, I had a Calabi–Yau three-
fold that was a conic fibration over this surface. At each zero you have a thing like
this, and if you connect these two things, you get this vanishing sphere. These con-
nections, you have a constant angle trajectory which corresponds to a Lagrangian
three-sphere, and you can consider a quiver whose vertices are midpoints of this
triangulation. [pictures]


