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category, and dreams about mirror symmetry over ring spectra

So thanks for the invite. I wrote “I” here in case things don’t quite finish.
Because this is a big picture, it’ll be painted with non-fine strokes. If you’re an
expert, you can raise your hands and complain. The big picture, what is this thing
called the Fukaya category anyway? There’s a conjecture announced publicly at the
ICM by Kontsevich, called the homological mirror symmetry conjecture. Roughly
speaking, this conjecture says that given some sort of sypmlectic manifold M , you
can find a complex manifold M∨ which you can think of as an algebraic variety.
There’s a natural category you can define from this, sheaves, or if you don’t like
infinite dimensions, you can say coherent sheaves. If you want this to have nice
properties, take the bounded derived category DbCoh(M∨). It wasn’t clear until
a few decades ago that you could get a category. Physicists and Fukaya started
studying things and built this so-called Fukaya category and the conjecture is that
these are equivalent categories.

What kind of category is this? It’s geometric; often this means some sort of
analysis. To fully describe it, and this is a reason that grad students had difficulty
getting into it, it needs not only analytic language but also A∞ categorical language.

In case that’s the side that’s familiar to you, ifM∨ is Spec R for some ringR, then
Db is chain complexes of finitely generated R-modules (with a finiteness condition
on the homology). From the beginning of mathematics we’ve been interested in
representations of rings, and this is contained somehow in symplectic geometry.

A lot of the motivation in studying symplectic geometry is to try to understand
this picture.

Let me give some caveats. One thing that is annoying is that the right hand side
still has some technical problems that need to be overcome. When I start describing
it, a lot of geometry and analysis go into making this well-defined.

I’d like to list some complaints or questions about this conjecture. The first one
is:

(1) Can we get rid of the analytical difficulties of defining the Fukaya category?
This involves moduli spaces of solutions to a PDE, and that’s annoying as
hell.

(2) We can do derived coherent sheaves for any base, not just for C. So can
we generalize the Fukaya category of M to accomodate algebraic geometry
over the integers or ring spectra?

There’s a partial answer over Z, but the second one is less trivial for people to
answer. The answer is “who knows?” But there is a conjecture that David Nadler
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and I proposed a few years ago, which is that something that can do both at once
is Lagrangian cobordisms.

I’m not saying there should be an affirmative answer, but maybe the answer
could be yes in some cases.

For somebody who has never seen the Fukaya category, let me give some exam-
ples.

Let me give a brief introduction to Floer cohomology and the Fukaya category.
Here’s the setup. In this setup we’ll fix a symplectic manifold M with form ω. An
example might be R2 with dx ∧ dy. To be symplectic we need dω = 0 and ω∧top

is a top form. I won’t just require that it’s closed, but also exact. I’ll take ω = dθ
where θ = −ydx.

Now R2 also has more structure, J , an anti-involution of the tangent bundle. In
my general setup I’ll require this as well. I’ll require that it be compatible with the
symplectic form in the sense that ω(—, J) is a Rimeannian metric.

Now let L0 and L1 be half-dimensional submanifolds so that the pullback of θ
vanishes. I’ll require that θ = dfi on the Lagrangian submanifold Li. This is the
so-called “exactness” condition.

An example in the case of R2 is this picture. [Some discussion]
Now the Floer cochain complex FloerM (L0, L1) is a cochain complex generated

by L0 ∩ L1 with differential given by counting J-holomorphic strips.
Let me explain this. I promise that this is the most boring part of the talk.

What’s a J-holomorphic strip? Consider a set of maps u : [0, 1] × R → M such
that, well, the infinite strip is some shape in the complex plane so it has a complex
structure, and let’s say that M is T ∗R and I have two Lagrangians. I’ll look at
maps of the strip so that the top boundary goes to L1 and the bottom to L0. We
demand that this respects complex structure on both domain and target. Finally,
the limit as t → ±∞ of u is in the intersection of L0 and L1. The constraint is
insensitive to 0 on the real axis. I can now act on the strip by translations and still
get the same conditions. The R-action is free as long as the strip is non-constant.

What is the differential? The differential is given by, the differential of the point
p is the sum over all points in the intersection of L0 and L1 of the number of strips
from p at ∞ to q at −∞.

In this cochain complex, well, we can consider this in the picture I’ve given you.
For that example, the Floer cochain complex, as a vector space, has two intersection
points. You can see that there is one differential from p to q and none from q to
p. This is zero. I won’t prove it, but it’s invariant by Hamiltonian isotopy, that’s
another way to see it.

Definition 1.1. The Fukaya category F (M) has objects exact Lagrangians and
morphisms the Floer cochain complex from L0 to L1.

Now I need to define composition, which had better be a map from a composition
to a multiple. I do this over all points in the intersection with weighted coefficients.
We do tis by building a complex triangle

This composition is not associative. I’ts an A∞ thing. Now we can have some
fun.

Let’s talk about Lagrangian cobordisms. Fix two Lagrangians.

Definition 1.2. A Lagrangian cobordism is a Lagrangian inside M × (T ∗(0, 1))
where the overline should be the reverse of the standard form. You won’t die in the
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middle of my talk if you forget about it. If I look at it in small interval near 0, it
should be L0 times the 0-section of my cotangent bundle; on the other hand, near
1 it should be L1 times the 0-section.

In my talk I’ll assume as well that P is exact. The condition is just a collaring
condition. You can go to T ∗(0, 1). You might notice I write T ∗R instead of T ∗(0, 1);
forgive me. At the beginning and end it should be specified, above the zero section,
but in the middle lord knows.

Choose a Lagrangian and cross it with the zero section. That gives “the identity
cobordism.”

Let’s say we have a cobordism in the classical setting, Y ⊂ Rn × (0, 1). I can
take T ∗Y (Rn× (0, 1)), the conormal, the set of covectors that vanish on Y . This will
be a Lagrangian that is collared if Y is.

Let me state a (pretty cool) theorem that shows that Lagrangians have a place
in the discussion of Fukaya categories.

Theorem 1.1. Biran-Cornea have also done amazing things, they came close to
proving this theorem. Let M be an exact symplectic manifold and suppose we fix
two objects L0 and L1 in the Fukaya category, and suppose they admit a compact
exact cobordism. Compact means compact on some interval close to (0, 1). Then
L0 and L1 are equivalent in the Fukaya category.

We know that cobordisms preserved things and what they preserve depends on
the structure of the cobordisms. This is like saying “what to Lagrangian cobordisms
preserve?” They preserve the Floer theory.

Here’s a “proof.” Say we have a compact cobordism P , collared by L0 and L1.
For any object X in the Fukaya category of M , consider the curve γ in T ∗R, and
consider the Floer cochain complex in M × T ∗R between X×γ , P .

We see at the cotangent bundle level, they intersect at two points. We have
intersections of L0 with X and L1 with X. The differential, what is D? Remember,
I drew a strip in a similar looking picture. Because we’ve reversed the orientation,
we’re counting strips in the opposite direction. You might also see strips that work
in the M direction. The upshot of all this is that the differential can be written
explicitly. (

dX,L1
ΞP

0 dX,L0

)
This is the mapping cone of ΞP . The D2 = 0 condition implies that ΞP gives
a map of cochain complexes between Floer(X,L0) and Floer(X,L1). Whatever
the cohomology of this is, it’s zero. The map then is an equivalence. Hamiltonian
isotopy of γ implies that the cohomology of the Floer complex is zero, so the linear
map is a quasiisomorphism. By the Yoneda lemma these represent the same object
in homology.

The issue is that this is just at the level of the objects, this isn’t a natural
transformation. How can one make a natural transformation of functors.

We can’t invoke Yoneda because we don’t know that ΞP defines a natural trans-
formation.

How can we resolve this issue? I’ll do it in a birds eye view way. We’re working in
the category of functors from the Fukaya category to chains. If we could produce a
functor with target this functor category, its image will be a natural transformation
that gives me the result I want.
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Theorem 1.2. There exists a functor from LagcompactM (whose objects are exact
Lagrangians and whose morphisms are compact exact cobordisms) to the functor
category so that any Lagrangian L goes to Hom(—, L) and P goes to ΞP .

There’s something dissatisfactory about this theorem that I’ll rectify. So first,
if I like algebra, I realize the target category has interesting structure. It’s a nice
algebraic category, but can cobordisms see this structure? Can cobordisms see the
triangulated structure of the functor category?

The second disatisfaction is, “are there a lot of compact exact cobordisms?”
What if every one is just the identity cobordisms? Then this theorem doesn’t

tell us anything.
So the second one is a dissatisfaction, a serious one.

Theorem 1.3. Let Q be a smooth manifold with dimension at least 5, simply
connected. Let L0 and L1 be exact compact Lagrangians in T ∗Q. Then any compact
exact cobordism P from L0 to L1 is diffeomorphic to a cylinder. In particular, L0

and L1 are diffeomorphic.

Let me give two comments. For people really into symplectic geometry, this
might be reminiscient of the nearby Lagrangian conjecture. Do cobordisms have
an application to the nearby Lagrangian conjecture? Maybe. Let me remind you,
the cotangent bundle of Q has an exact Lagrangian, the 0 section. You might have
other exact Lagrangians, is it isotopic in a symplectic sense to the zero section?
This would prove these would be diffeomorphic.

This also suggests that the second concern is serious.
Let’s resolve both dissatisfactions at once.

Theorem 1.4. Fix Λ ⊂ M (I’ll explain this part later). Then there exists a
category Lag(M) whose objects are not necessarily compact exact Lagrangians and
morphisms are not-necessarily compact exact cobordisms both of which have some
relation to Λ such that

• (Nadler-Tanaka) LagΛ(M) is stable (Lurie-Toen) or triangulated.
• Moreover, there exists a functor from LagΛ(M) → Fun(Fuk(M)op, Ch)

extending the functor from the previous theorem and respecting the trian-
gulated structure.

This is a great resolution. Part two said there weren’t enough cobordisms, so
I threw in more, and part one said there was algebraic structure and throwing in
more gives me that algebraic structure.

Now there’s two directions I could go. I could give a full onslaught definition, I
could give the functor, or I could give future directions now that this is in hand.

Any question you asked about Fukaya you can now ask about cobordisms. So
the first future direction is the analog of Fourier-Mukai transform. Let me remind
you what I mean. If I have two varieties X and Y , I can look at coherent sheaves on
both of them, and I can also look at coherent sheaves on X × Y . There’s a famous
push-pull construction I can make. In the case X and Y aren’t such nice varieties,
I can still do something. This is a common construction. If you believe in mirror
symmetry you should be able to do this in the Fukaya category. There’s some map,
or should be from Fuk(M × N) to Fun(Fuk(M), Fuk(N)). This is a hard thing
to do. Let me state a theorem in progress, or I should say work in progress, to
construct a functor LagΛ1×Λ2

(M1 ×M2)→ Bimod(LagΛ1
(M1), LagΛ2

(M2)).
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You have the right to ask me why this is interesting. This connects to two,
three, and four manifolds invariants. What does some general philosophy from
TQFT tell us? It should be a functor from a cobordism category into a target
category C. Evaluating this on a manifold gives an invariant. What people who
work in QFT try to do is to construct symplectic manifolds and correspondences.
To every 2-manifold Σ you get a symplectic manifold MΣ. To every three manifold
with boundary you get a Lagrangian inside MΣ1

×MΣ2
. What if the category

you’re mapping into is the category of A∞ categories? Then to MΣ I can give the
Fukaya category. This should be able to give a functor from one Fukaya category
to the next. In other words, a field theory to correspondences should postcompose
to give invariants of manifolds. You might think this is a fairy tale. In fact Denis
Auroux’s ICM talk, this is what they do where the manifold invariants they give
are the bordered Heegaard Floer invariants (at least for dimension three). If I can
construct this functor of Lagrangian cobordisms gives us a new functor to Cat from
Corr so a new family of invariants. These should be able to give new invariants
which come with a map to already defined Heegaard Floer invariants.

2. March 13, 2014: Hiro Tanaka, Lagrangian cobordisms, the Fukaya
category, and dreams about mirror symmetry over ring spectra II

This is my last talk, I’d like to thank everybody again. Marcia and I brought
some cake. Let me review some of what we talked about last time. We’re talknig
about Lagrangian cobordisms. The theorem I wanted you guys to remember was
the following

Theorem 2.1. Given a symplectic manifold (of a certain type) M and a subset
Λ we could define LagΛ(M). The objects were Lagrangians Y ⊂ M and mor-
phisms were cobordisms with some conditions. The theorem says there’s a functor
LagΛ(M) → Fun(FukΛ(M)op, Chain). This captures geometry but doesn’t have
nice algebraic properties. There’s no sense in which I can take a mapping cone of
morphisms in Λ. So we use the Yoneda embedding.

This isn’t just a functor, it repsects the stable (triangulated structures)

One corollary, how does this behave? If I have Y I should get an object in the
functor category. It goes to FloerM (—, Y ). As a corollary, we get the following:

Corollary 2.1. If two compact Lagrangian (branes) admit a compact brane cobor-
dism, they are equivalent in the Fukaya category.

Let me give you an outline for what I’d want to do today. I’d like to define the
category with a little more rigor and consider the role of Λ and the stable structure.
So I need to tell you what kernels and cokernels are. I’d also like to give you an
idea about the topology on the space of morphisms. In the second part I’d like to
describe the functor and the relationship with work of Biran-Cornea, who have a
result connecting Lagrangian cobordisms to the K-theory of the Fukaya category.
You might expect this at the level of categories. These are both triangulated and
you can get the K-theory naturally, recovering the results of Biran-Cornea.

Here’s the setup. Fix a symplectic manifold M such that the symplectic form is
the derivative of a one-form. So we know our manifold is not compact. We get a
vector field Xθ so that ιXθω = θ.

For example, M = T ∗Q, then θ = pdq and ω = dpdq while Xθ = p∂p.
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If the manifold is the circle, the flow of Xθ is the outward flow.
Let me make a definition.

Definition 2.1. Let the skeleton Λsk be the limiting set of the flow −Xθ. Let Λ be
a subset containing the skeleton and closed under the flow.

Now LagΛ(M) will be defined in a few steps.

Definition 2.2. Lag�0Λ has objects Lagrangian branes in M ; these are tuples (Y, α, f)
where Y is a Lagrangian, α is a grading, and f : F → R such that df = θ|Y .

The morphisms hom(Y0, Y1) are Lagrangian brane cobordisms Y01 ⊂ M × T ∗R
so that Y01 is collared by Y0 and Y1. Toward negative ∞ this looks like Y0 times the
zero section; near ∞ it looks like Y1 times the zero section.

We also require Y01 to avoid Λ near −∞dt.
Last time when I tried to give a proof of the corollary, I drew a curve that passed

under the cobordism. What does this condition mean? There’s an ε and a τ0 ∈ Rν
so that for all (y, (t, τ)) in Y01 ⊂M × T ∗R with τ ≤ τ0, the distance from y to Λ is
at least ε. So this is how I’m going to use this to make sure I get no intersection.

This category, I’ve defined a set of morphisms. I want to put some topology on
this space. Let me just tell you what a path is.

Definition 2.3. A homotopy between two cobordisms is a Lagrangian brane W in
M × T ∗Rt × T ∗Rs.

I have at Y01 a cobordism, and also Y ′01 and I interpolate between them by W .
So W is contained in a box with boundary Y0, Y1, Y01a and Y ′01.

If I look for instance at W |s≤0 = Y01× [−∞, 0]. For W |s ≥ 1 I want Y01× [1,∞).
There is also a Λ-avoiding condition.

What’s a homotopy of homotopies? It lives in (T ∗R)3

Let me give you some examples. Given a Hamiltonian H : M × R → R, let
φ : M×R→M be its flow. For every Y ⊂M we can look at Y ×R→M×T ∗R by
taking (y, t) to φ(y, t), t,H(φ(y, t), t)). When is this a morphism? It needs to satisfy
the collaring conditions. So H|Y×(−∞,t0) ≡ H|Y×(t1,∞) ≡ 0. Finally, Hφ|Λ×R is
bounded.

Let me make a digression to discuss grading. If I have M , I have the canonical
bundle TM . I can try to put a complex vector bundle on TM . Let’s say it’s an
almost complex structure. I can ask whether c1 vanishes. Let’s assume that it does.
What does this do for us? There’s a canonical bundle, the bundle of Lagrangian
Grassmannians on M . I can look at vector spaces in the tangent space that are
Lagrangian. It’s a homogeneous space, U(n)/O(n). Of course, there’s a natural
map, “the determinant squared” to S1. If 2c1(TM) = 0 then you can guarantee
that the determinant squared map lands in a trivial circle bundle over M . Fix a
trivialization. A Lagrangian gives you a map to this bundle, so you postcompose
to give L→ S1.

Definition 2.4. A grading on L is a lift α : L→ R lifting the map L→ S1.

This is the Z that shows up in shifting the chain complex. This is a constraint
on my Lagrangians (and cobordisms). They must admit such a lift.

Now fix a curve c in T ∗R that shoots off to +∞. Then Y × c is a cobordism
from Y → φ. Usually only a few manifolds are cobordant to the empty manifold.
But for us this is good. Every object gives a map from and to the zero object in
this way, the empty manifold will be our zero object.
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Proposition 2.1. If Y01 is a cobordism such that Y01 ⊂M ×Rt× [τ0, τ1], then Y01

is an equivalence.

If we prove this, the corollary about compact cobordisms follows. This is an
easy proposition to prove. If you’re given Y01, let’s look at some dumb Lagrangian
M ×T ∗Rt×T ∗Rs. Choose a diffeomorphism from a rectangle of height ε to a semi
annulus (which sits inside a big rectangle). This induces a map on Lagrangians.
What does it look like? It looks like Y01 going around to be Y01. It’s switched (t, τ)
to (−t,−τ). Things going to +∞ now go to −∞. In particular it’s Λ-avoiding.
Because I’m collared on the left by Y0 and on the right by Y1, I can cover the rest
of my rectangle with Y0 and Y1. So this becomes a cobordism between the identity
on Y0 and a composition Y01 with Y01. That’s basically the idea of the proof.

This also shows that if your Hamiltonian is bounded away from Λ you get the
same sort of thing even if it’s not bounded, not compact.

Now I want to talk about kernels. Note that there exists a functor Lag�0Λ (M)→
Lag�0Λ×R(M × T ∗R). Just cross with a lagrangian in T ∗R. I can take Y 7→ Y ×Rν
or Y01 to Y01×Rν . It’s way easier to study cobordisms in R∞. In usual cobordism
theories, if you take conormals, you get exactly this to go toward R∞.

It seems natural to pass to this next category. The kernel will exist in the
next category. Given a cobordism Y01 ⊂ M × T ∗Rt, you can construct another
Lagrangian where Y0 and Y1 are curved toward −∞. This creates an object in
Lag�0Λ×R(M × T ∗R).

Let me call this K(Y01).
Let LagΛ(M) be the union of Lagi≥0LagΛ×Ri(M × T ∗Ri).
The natural thing to do is take a colimit or homotopy colimit here. In our paper,

the model we use is quasicategories. The homotopy colimit is the honest colimit,
so it’s just union.

Theorem 2.2. Then K(Y01) is the homotopy limit of the diagram 0→ Y1
Y01← Y0.

If you don’t care about homotopy theory, if you get rid of that word it’s the literal
kernel.

The real stable is that this is a stable infinity category. If you go to π0 then this
is triangulated. I’ll be showing that the diagram with the kernel goes to a mapping
cone in the world of chain complexes.

Now I want to turn to functoriality. I should give a functor LagΛ(M)×FukΛ(M)op →
Chain This is like the Hom functor C×Cop → Set. This takes (Y,X) to Hom(Y,X).
So given Y0 → Y1 and X0 → X1 we need commutativity of the following:

Hom(X1, Y0) //

��

Hom(X0, Y0)

��
Hom(X1, Y1) // Hom(X0, Y1)

So commutativity follows from associativity of our category y ◦ (f ◦x) = (y ◦ f) ◦x.
A word of caution. In the A∞ setting, this associativity only holds up to homo-

topy. This means that there exists an H such that dH ±Hd = m2(y,m2(—, x))±
m2(m2(y,—), x)

In our setting, given a Lagrangian coboridsm Y01 and x : X0 → X1 in the Fukaya
category, we want a homotopy commutative diagram. Remember the functor gives



8 GABRIEL C. DRUMMOND-COLE

us Floer(X0, Y0). By contravariance we can go to Floer(X1, Y0). Last time I
defined a ΞY01 which goes from Floer(X1, Y0) to Floer(X1, Y1).

Before we go further, the Fukaya category FukΛM is the Fukaya category where
every object is contained within an epsilon-neighborhood of Λ. You could fix a
uniform ε for LagΛ if you wanted. If you have a Λ you can define a partially
wrapped Fukaya category. If I want a Floer cochain complex, I need a restriction
in LagΛ on my cobordisms.

Here’s a proof sketch that one can construct a functor like this. Consider the
following diagram. Given X0, we crossed it with γ, a manifold in M × T ∗R. We
took our cobordism and looked at the Floer cochain complex. There were two
Lagrangians. We got maps of Floer complexes from this.

Let’s introduce another object and another curve that looks similar, γ1. Now I’ll
study the m2 structure of this equation.

Recall, given objects Z0, Z1, and Z2 in the Fukaya category, there exists m2 :
hom(Z0, Z1)⊗ hom(Z1 ⊗ Z2)→ hom(Z0, Z2). This satisfies the Leibniz rule. Dis-
regarding signs, m1m2(a, b) = m2(m1a, b)±m2(a,m1b). Here m1 is the differential
in each hom complex. Let’s study m2 inside M × T ∗R. It will go

Floer(X1 × γ1, Y01)⊗ Floer(X0 × γ0, X1 × γ1)→ Floer(X0 × γ0, Y01).

Here’s what I’m going to do. I want to study the space of holomorphic disks that
have boundary x and q where x is a boundary between X0 and X1 and q is a
boundary between Y0 and X1. There are two possible intersections of Y0 or Y1 and
X0.

The A∞ relation tells us that m1m2(q, x) = m2(m1q, x) + m2(q,m1, x). There
are two terms. The one type of disk happens entirely before the cobordism and
that corresponds to m1m2

M (q, x) and the other side is m1Ξ2
Y01

(q, x).
We can play the same game for the left hand side. There are two kinds of

differential of q. One is from M and one is from the interaction with Y01. Likewise
for m1x.

I can split again for m1 or for m2. When I take m1Ξ2
Y01

, there’s nowhere for it to
go except to the degenerate M direction. We can do the same thing on the other
side. Finally we get

m1
Mm

2
M (q, x)+Ξ1m2

M (q,X)?m1
MΞ2

Y01
(q, x) = m2

M (m1
Mq, x)+Ξ2(m1

Mq, x)+m2
M (Ξ1

Y01
q, x)+m2

M (q,m1
Mx)+Ξ2(q,m1

Mx)+m2
M (q,Ξ1

Y01
x)

You cancel the pure m terms. The terms with m1 and Ξ2 are the homotopy terms.
The terms with m2

M (ΞY01
q, x) and Ξ1m2

M (q, x) are the things you want to compare,
and the A∞structure gives you what you want. The other two terms vanish; one
because x should be closed and the other for geometric reasons; a certain space
can’t be of the appropriate dimension.

I’ve constructed by this sketch a functor Lag�0Λ → Fun(FukopΛ , Chain). The
question is then whether I can lift to a functor from Lag�1. To make the extension,
givesn an object X ∈ FukΛ(M), we can map it to X × R, we can do Floer theory.
What does this mean? I just need to show that this diagram commutes. If I start
in Lag�0 I go to Y ×Rν . If I have X and multiply by the zero section, then I go to
Floer(X × R, Y × Rν). Then the Floer complex will be precisely Floer(X,Y ). So
the functor is compatible with the procedure for stabilization. Now I need to show
that it respects the triangulated structure.

Does this preserve kernels? Say we have a map Y0 → Y1. I go to a natural
transformation Floer(—, Y0)→ Floer(—, Y1). Take now K(Y01). What does it go
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to? It goes to Floer(—×R,K01). I should show that this is the kernel of the Floer
map. This is actually the same computation we did last time.

Recall that the kernel (homotopy kernel) of a map between chain complexes
A0 → A1 is given by the chain complex A0⊕A1[−1] with differential dA0

+dA1
+f ,

maybe with a sign, the shifted mapping cone. I just need to show that these
two chain complexes are equivalent, Floer(— × R,K(Y01)) and Floer(X,Y0) ⊕
Floer(X,Y1)[−1].

So draw the same picture and compute the hom complex. By assumption, X is
within ε of Λ. I can move by Hamiltonian isotopy to a part where Y01 must be ε
away from Λ. So we get Floer(X,Y0) and Floer(X,Y1) and if you look at slopes
you see the degree shift. I get the regular Floer disks in each fiber and then f is
exactly what you get going to the other kind of holomorphic disk.

This completes the proof. It’s a cool result showing that the geometry of cobor-
disms captures a lot of the algebra of the Fukaya category.

Now let me just relate this to results of Biran and Cornea. They are more general
and more restrictive. They don’t just assume exact symplectic manifolds. They
also consider something more constricted where everything in sight is compact.
By using non-compact things I can prove theorems. In the exact setting where
everything is compact our results are compatible.

Their theorem is:

Theorem 2.3. (paraphrased) Given the Fukaya category of the symplectic mani-
fold, you can look at T sFuk(M), which captures exact triangles. The objects are
ordered sequences in the Fukaya category. If I fix one such object, what’s a mor-
phism? It’s a triangular decomposition. Look at a sequence of exact triangles—

[too fast]
They construct a functor from cobordisms to T sFuk(M).

If they have cobordisms with multiple ends, it captures the data of a resolution
of x by yi. How do you capture exact triangles? Look at the kernel.

How are these compatible? Let’s do it for two objects. If you’re given a cobor-
dism, geometrically it’s the same as the cobordism except bending some curves up
to +∞. If you only have two outgoing things on the left, I get something in Lag
with one end escaping to +∞.

Let’s take the kernel. That should give an exact triangle. It gives me a picture
like this. I claim that this kernel recovers exactly the exact triangle decomposition.
How is that so? If I take a test object z ∈ FukΛ(M), look at the intersection of
z × γ with my kernel. We have Floer(z × γ, p) ∼= ker(Floer(z, y1)→ Floer(z, x)).
by a Hamiltonian isotopy, this is equivalent to Floer(z, y2). I’ve messed up the
indexing somehow. This was supposed to show that by turning their legs toward
positive infinity, you get exactly their result.

Whatever is happening in the universe, we agree on what things should encode,
so maybe we’re doing the right things. I’ll stop my talk there.

3. March 20: Joan Millès: Complex structures as homotopy algebras

It’s a pleasure to be here and visit Korea. I’ll speak about complex structure as
homotopy algebra. First of all I’ll ask a general question, which is the following.
Consider a geometric structure. By geometric structure I mean something like a
Poisson manifold, complex manifold, others, maybe symplectic manifold, I’ll make



10 GABRIEL C. DRUMMOND-COLE

this precise a little bit more. We’d like to know if there’s a way to present or
understand this structure in terms of algebra.

I’ll explain later what I mean by this. But first there’s is something related to
this, a method used by Kontsevich, who likes to think of L∞ algebra in geometric
terms. This is Lie algebra up to homotopy. It’s a kind of algebra, well, he wants
to consider them as pointed formal manifolds, endowed with a formal vector field.
This means there might be a link between the geometric and algebraic notion.
Following and reversing this idea, Merkulov explained in some sense or some case
how to associate to a geometric structure (in some case) an algebraic data. The

examples are the following:

Geometric structure Algebraic data
Poisson manifold Lie1 bialgebra

Nijenhuis manifold “Nij” algebra
F -manifold Gerstenhaber algebra

Complex structure ?

In this

talk I’ll try to explain what to put here and how to find what to put there in general.
Then we will show that it really is a good notion.

[Jae-Suk: Witten gave this idea before Kontsevich was born mathematically.
This idea should be attributed to Witten. All of his work has been variation of
this idea. The association of algebra to geometry is unfair to give to Merkulov,
others including me did this much earlier. Also, I think it should be BV and not
Gerstenhaber for the F -manifold case.]

So let’s formalize things.

3.1. Formal complex manifolds. We’ll eventually make this intelligible in terms
of algebras over an operad. That’s later. A formal manifold I don’t want to give the
full definition, it’s the same as in algebraic geometry. I’ll recall what I need. The
word “formal” refers to the fact that we will deal with Taylor series of functions
around a point. This means, take a smooth function, look around the point, you
can take the information of the differentials at the point. If the geometric notion
is defined only from the differentials, you can difine everything in these terms.

Thanks to this, we don’t have to deal with convergence problems. We’ll use this
to make something not algebraic into something algebraic.

I should first explain a complex structure, at least in the smooth case.
A complex manifold; there are two ways (at least) to describe one. Either you can

take copies of Cn and glue with holomorphic transition functions. Or you can start
with a smooth manifold M and add what is needed to make it complex, which is an
endomorphism Jx : TM → TM so that J2

x = −IdTxM . This has the interpretation
that Jx should be thought of as multiplication by i. So locally you can provide a
complex coordinate. To have a complex coordinate locally is not enough; we’d like
to glue these locally to get global complex coordinates. The gluing is not algebraic
but there is a theorem due to Newlander–Ninenberg, which expresses the gluing
condition in a way that is only local.

Theorem 3.1. J is a complex structure if and oly if

(1) J2 = −id and
(2) NJ = [J, J ]F–N = 0.

I’ll be a little more precise about what it means.
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Remark 3.1. The Frol̈icher-Niejenhuis bracket is a generalization of the classical
bracket on vector fields to vector forms. On X and Y vector fields, NJ(X,Y ) =
J2[X,Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ].

In the formal case, let V be a finite dimensional vector space. We fix a basis
{eα}. A coordinate system on V is given be xα = (eα)∗. Now I can define a formal

(pointed) manifold as V = (pt = 0,OV = ŜV ∗ = R[[xα]]).
So you can think of this manifold as a point, but in a formal neighborhood. We

want local information around this point. It’s bigger than a point but smaller than
a neighborhood.

Everything for the first two sections will work in characteristic zero.
To speak about J we need a notion of the shifted tangent sheaf. I’ll denote it

TV[1]. It’s the OV module freely generated by { ∂
∂xα to TV [1] ∼= Ø0 ⊗ V [1].

The differential forms are built by means of the dual basis {sdx2 = (s−1 ∂
∂aα
∗
)}.

We have ΩV = ∧OV (OV ⊗ V [1]∗) = R[[xα, dxβ ]]. An endomorphism J̃ : TV [1] →
TV [1] is the same thing a an element J in Ω1

V⊗OVTV [1]. That is, J = Jba(x)dxa⊗ ∂
∂xb

.

Here Jba(x) =
∑
k j

b
α1,··· ,αk;ax

α1 · · ·xαk .
The Taylor series at a point is given by these coefficients j. We’re just taking

the Taylor series of my endomorphism J .
Now I will describe the Frölicher-Nijenhuis bracket just for this J = Jba(x)dxa ⊗

∂
∂xb

.

[J, J ]F–N = 2

(
Jba1(x)

∂

∂xb
Jda2(x)sJdb (x)

∂

∂xa1
Jba2(x)

)
dxα1dxα2 ⊗ ∂

∂xd

We should check others but I’ll just check this one here.

3.2. Operadic interpretation. It’s hard to study this formula because there are
too many coefficients. We’ll assume that J is J(0) = Jba(0)dxa ⊗ ∂

∂xb
, a constant.

So I just have something in R which is finally given by a matrix. To see what it
means for this particular example to be a complex structure.

This means that J0 : V [1] → V [1] is characterized by V [1] → V [1]. Remember
that J was a morphism of OV modules OV ⊗V [1]→ OV ⊗V [1]. We have J0 which
can also be interpreted as a map from V → V . Let me use the picture −| VV to mean
J and the picture |VV to mean the identity. Then to be an almost complex structure
means that the composition of −| VV with itself is minus the identity.

If I do some representation theory, I have T (R−| )/(R(=| +|)) =
⊕

(R−| )⊗n/R(−| ⊗
−| + 1)→ Hom(V, V ), a morphism of associative alegbras, is the same as having a
J0 such that J2

0 = −Id. The integrability condition is obvious because we’re doing
a partial derivative of a constant.

If I do a change of basis I should still get a complex structure. Since the notion
of a complex manifold is geometric, when we change the base {eα} by an element
of GLV we should again get a complex structure.

We want this to be true for more general diffeomorphisms from V to V . What

is a diffeomorphism? A diffeomorphism ϕ is a map from (0, Ŝ(V ∗)) to (0, Ŝ(W ∗)),

a map sending 0 to 0 and an algebra map Ŝ(W ∗)→ Ŝ(V ∗). It is characterized by

W ∗ → ŜV ∗. I can rewrite this as a collection of maps V �n →W .
We want to characterize the complex structure in terms of algebra of type P . The

transfer property means that the morphism of algebras of type P should contain
some such diffeomorphisms.
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So now to operads. This is a collection of vector spaces P (n) with an action of Sn,
the symmetric group which is a “monoid” meaning that there is a unit R → P (1)
and a composition rule which tells you how to compose elements. If we represent
elements in P (n) by trees with n entries. I can give some examples. Let me put C̃,
which is (C, 0, . . . , ). In more generality an algebra is an operad. Another example
is endomorphisms of V . This is given by morphisms from V ⊗n to V . Composition
is the composition of functions.

I’ll give you a new one, which is Lie, and the operad is given by one generator,
binary trees in the single generator, with one relation, the Jacobi relation.

One can define

Definition 3.1. A P -algebra is a morphism of operads P → End(V ).

This means in particular it’s a collection of maps P (n)→ EndV (n).

A C̃-algebra is a constant complex structure on V . A Lie− alg is a Lie algebra.
Let me go back to the notion of diffeomorphism. In this setting it is well-

understood and such a collection of maps gives exactly an L∞ morphism. The
diffeomorphisms are exactly the Lie(1)-algebra maps up to homotopy. Therefore to
have a geometric notion we need to add some new algebraic element, which will be
the Lie algebra structure.

Why should we do this? When we consider a new algebraic notion, it will contain
some of the data from this.

So what will we get? We get the following algebraic data. First we get the
generators −| and the bracket Y along with the relations between these. We want
−| to be an almost complex structure so =| + 1 = 0. Secondly, Y satisfies Jacobi.
You don’t want all the diffeomorphisms, only the holomorphic ones. For this you
have the compatibility relation, that Y commutes with J . A priori, we need the
integrability condition. We have no extra information from that at this point.

So we get an operad CX with these generators and relations. We want to study
this operad. A CX -algebra structure on Rn is a constant complex structure on Rn.
The bracket will be zero automatically. This notion is too easy. Now we want all
complex structures. For those who know L∞ or A∞ algebra that’s what we’ll do
now.

3.3. Homotopy algebra. I will need curved Koszul duality, which is a previous
work with Joey Hirsh. What it does, if you have an operad with a presentation
T (E)/R, you want to resolve this to find a new one P̃ which has good properties. A
way to do that is to use Koszul duality, and works when R is quadratic, in T (2)(E).
This is the classical picture. The J2 = −1 relation is not quadratic. You should
treat the constant and linear terms as well. So for example, if you want to treat C
or CX .

I won’t say a lot of things about this, but we can construct in a general way
some element P ¡¡ which is a “curved” cooperad such that if P is Koszul, we get a
resolution ΩP ¡ ∼→ P via the cobar construction.

I won’t be explicit, let me just cite this theorem.

Theorem 3.2. CX∞ = ΩC¡X
∼→ CX ; that is, CX is Koszul.

Remark 3.2. C¡X are trees with stacks of dots on the leaves. The degree of such a
thing is one less than the number of dots.
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Proposition 3.1. A CX∞-algebra structure on V is given by a collection of linear
maps jn+1 : V �n → V . These should satisfy

(1) =| + 1 = 0
(2) some sum with signs of compositions of these is zero.
(3) some other sum with signs of compositions is zero.

The first two are J2 = 0 and the last is [J, J ] = 0.

Theorem 3.3. There is an equivalence of categories from CX∞-algebras on V ect
with ∞− (CX∞)-morphisms to complex structures on V with holomorphic maps.

To explain a bit how this is given, let me make the remark, the map jm+1 :
V �m → V is characterized by its values on a basis jn+1(eα1

· · · eαk ⊗ ea) =
jbα1,...,αk,a

eb. So in the same way you can give a formula for morphisms.


