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Thank you very much, today I will introduce my work on primitive forms. This
work is joint with Si Li and Kyoji Saito.

Let me start with motivation from the mirror symmetry. Why would like to say
that something is the same as something, like A model is equivalent to B model.
We say the A model should be some symplectic geometry and the B model is about
complex geometry. So in the setup, in the story that I will tell today, we can say that
the mirror symmetry in this case, on the B side, we consider a Landau-Ginzburg
model, which is a pair (Y,W ) where Y is a non-compact Kähler manifold and W
is a holomorphic function on Y with finite critical points.

On the A side, we consider some theory, either the Gromov-Witten theory or
the so-called FJRW theory. We have some formulation of mirror symmetry in
different levels. Let me say a conceptual one at the moment.

In level one, on the A side we will have some algebra, the quantum cohomology
or the FJRW ring. On the B-side we consider the Jacobi ring of W . The first level
statement is about an isomorphism of algebras.

At a different level, let me say level two, for the A side, we have a Frobenius
manifold structure which is on the algebra. On this level we may say there is an
isomorphism of Frobenius manifolds with the B side, where the structure comes
from a primitive form, let me say, a “good” primitive form. There may be more
than one, and we make a good form.

There is a higher level, which is, on both sides, we can define the total ancestor
potential function. On the A side, let me just say the A side is equal to the B side.

What I want to say is that, the isomorphism of algebras is about the genus
zero three point story. The second level is about genus zero and all points. The
third level is about all genus and all points. In some situations once we know level
two, then level three is deduced automatically because high genus is determined by
genus zero. We can see from the motivation of mirror symmetry, that this is the
role of primitive forms. In my talk today, I will focus on primitive forms only. My
joint work contains two main parts. The first part is the polyvector field approach
to this construction, and the essential part is constructing a higher residue pairing
via polyvector fields. The second important part is on perturbative formulas. I
will explain the first part in detail and show an example by using the perturbative
formula.

Before starting the details, let me say slightly more on the A side. Then we will
totally skip the A-side parts.
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Basically we count genus g curves with some marked points. We have so-called
Gromov-Witten invariants. Roughly speaking, it counts for a compact Fano man-
ifold (for my own interest I would like to consider flag manifolds or even more
specifically complex Grassmannians,

{∂̄ϕ = 0|ϕ : (Σg, p1, . . . , pk) → (X, γ1, . . . , γk)}

Where ϕ(pi) ∈ γi ∈ H∗(X).
For g = 0, with three points, we obtain the quantum cohomology of X. One

ongoing project is to study the complex Grassmanian case. We tried to construct
a special, well, for level 1, the Jacobian, there’s some construction of W , and an
ongoing project is to understand this isomorphism by constructing a Lagrangian
fibration on an open Calabi-Yau. I hope to report something on this in the future.

The second approach is FJRW theory. It’s like Gromov-Witten. Similarly, in-
stead of counting such maps, it’s associated with a pair (f ;G) where f is a quasiho-
mogeneous polynomial and Gf is the symmetric group of f . Then roughly speaking,
you count the solutions of the equation

∂̄ϕi +
∂f

∂ϕi
= 0

for all i, normally you can get your Gromov-Witten invariants from these.
So for this case, the level one is basically due to [unintelligible]
The second part, there’s a central charge invariant. For smaller than one, it’s

FJR, for equal to one, it was [unintelligible]. As an application for the perturbative
formula, we, LG-LG mirror symmetry forces level 3 from level 2, and we can show
this for fourteen exceptional cases with charge between one and two.

Let me write down one example before going to the B-side.
First, a primitive form (this was introduced around 1979–1983 by Saito) is a

family of holomorphic top forms. Let’s see the case Z = C × C2 → S = C2. So
F (z, u0, u1) = z3 + u0 + u1z. The primitive form is unique up to multiplication by
a constant. So ζ = dz ∈ Ωtop(Z/S).

The starting point is a pair (X, f) where X is a Stein domain in Cn and f : X →
C. The Stein condition is technical and prevents some kind of critical points of X.
We also have f holomorphic with finitely many critical points.

We said that a primitive form is a family of holomorphic top forms. To construct
this, there’s some ambiguity of coefficients. Either we study all holomorphic top
forms and try to specify a particular one or we just choose any one first and then
figure out the good coefficient of this top form. Therefore, let us choose any one, and
the choice will turn out not to matter. Choose a nowhere vanishing holomorphic
top form ΩX . The choice is not essential.

Now we start to say, to define primitive form, we consider the polyvector fields,
then the polyvector fields valued in Laurent series PV ((t)), and then we consider
the cohomology, along with the higher residue and the Gauss-Manin connection,

(Hf,Ω,Kf
Ω(·, ·),∇Ω

t∂t
.

Once we’ve done this it’s easy enough to define a family version, and then ζ is a

section of (S,Hf,Γ
0 ) satisfying properties. This will give a Frobenius manifold.

For polyvector fields, by this, I mean,

PV (X) =
⊕

PV i,j(X)
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where

PV i,j(X) = A0,j(X,∧iT 1,0X)

(here A is smooth forms).
Let (z1, . . . , zn) ∈ X. If we have a sequence I = [a1, . . . , ai] then we denote

dz̄I = dz̄a1 ∧ · · · ∧ dz̄ai and similarly ∂I = ∂
∂zai

∧ · · · ∧ ∂
∂zai

we let α ∈ PV i,j(X) =∑
αI,Jdz̄

J ⊗ ∂I Then

α ∧ β =
∑

(−1)iℓαI,JβK,Ldz̄
J ∧ dz̄L ⊗ ∂I ∧ ∂K .

Then we see some operators. Let us assume this, we will use the nowhere vanish-
ing volume form to identify polyvector fields with differential forms. The natural
identification identifies α in polyvector fields with α ⊢ ΩX via ΓΩ. This identifies
PV i,j(X) with An−i,j(X). An operator on differential forms induces an operator
on PV (X) naturally by PΩ(α) = Γ−1

Ω P (α ⊢ Ω).
So we can define ∂̄Ω and ∂Ω on PV .
We know the Leibniz rule for ∂ and we may want this on the other side. We

define {α, β} to be the obstruction to the Leibniz rule for ∂Ω. Then {g, β} ⊢ ΩX =
(∂g) ∧ β ⊢ ΩX .

We should write {, }Ω but it turns out that the bracket doesn’t depend on the
choices. The same is true for ∂̄. The operator ∂Ω is dependent on Ω. All of these
preserve polyvector fields with compact support.

In fact, (PV (X), ∂̄, ∂Ω) form a BV algebra.
There are two important observations. Consider (PV (X), ∂̄ + {f, ·}). This is

equivalent to (A(X), ∂̄+ df∧). Secondly, (PVc(X), ∂̄+ {f, ·}) is a subcomplex, and
this natural inclusion is a quasiisomorphism. Since this is a quasiisomorphism, the
cohomologies are isomorphic to each other. So we’d like a representative that is
compactly supported, that is, an inverse.

Okay, and then we have TrΩ : PVc → C which takes α to
∫
X
(α ⊢ ΩX)∧ΩX and

we need this compactly supported for this to converge.
The second key observation is that H∗(PV (X), ∂̄ + {f, ·}) is isomorphic to the

Jacobian ring of f , that is, Γ(X,OX)/∂z1f, . . . ∂znf . There is also a residue map
from Jac(f) → C and this commutes up to a constant.

H∗(PV (X), ∂̄ + {f, ·}) Jac(f)

ResΩ

��

|Crit(g)|<∞oo

H∗(PVc(X), ∂̄ + {f, ·})
TrΩ

// C

If we know the key observations, the remaining things are much easier. Now we
consider the polyvector fields valued in Laurent polynomials, so PV [[t]][t−1]. Now
we have

PV (X)((t)) PV (X)? _oo

PVc(X)((t))

OO

PVc(X)
?�

OO

? _oo

Now we consider the Qf = ∂̄ + {f, ·} + t∂Ω. This space depends now on Ω. Now
the cohomology

Hf,Ω := H∗(PV (X)((t)), Qf )
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The chain complex is isomorphic to (A(X)((t), d+ 1
t df∧).

Let’s do a calculation, this is Γ(X,OX)((t))/Im(Qf : Γ(X,T 1,0
X ))((t)) → Γ(X,O(X))((t)).

We write down everything and you can just see that this is the calculation of the
image. We can write down the trace map but let’s write down the pairing first;
that is PVc(X)((t)) × PVc(X)((t)) → C((t)). We want to (α, g1(t), α2g2(t)) 7→
g1(t)g2(−t)

∫
(α1∧α2) ⊢ ΩX)∧ΩX . This is a pairing from Laurent-valued polyvec-

tor fields to C(t). This pairing descends to the cohomology. Then we claim this is
Saito’s higher residue pairing. Now this is a non-family version. We can see, once
we know the key observation, the pairing. This is the most complicated part.

One more, we define ∇t∂t : H
f,Ω → Hf,Ω where ∇t∂t(t

kα) := (t∂t + i − f
t )t

kα

for any α in PV i,j(X). This is well-defined on the cohomology. This sort of thing
is kind of standard. It defines an operator from cohomology to cohomology.

One more notation is that Hf,Ω
0 is the same except you replace Laurent series

with formal power series. We obtain this triple now. We can move to the family
version. The whole story is the same, we just need to mention what is a family and
then we do all the same thing.

We consider X and a function X → C but now we consider a map Z → C where
Z sits over S and X sits over 0. So now we have and extension of f : X → C
to F : Z → C, let me consider that Z ⊂ X × S, we require X × S to be Stein.
We also want the Kodaira-Spencer map from TS to OZ/(∂z1F, . . . ∂znF ) to be an
isomorphism, where V maps to [∂V F ]. The third condition is that the projection
to S, restricted to the critical set of F , is proper. This is a technical condition to
ensure that the family version is a locally free sheaf. Let us forget this technical
part.

Let me write down the relative polyvector fields. That is, what is the meaning
of relative? The relative polyvector fields are defined to be, let us say that S ⊂ Cµ

and X is dimension n, then PV (Z/S) =
⊕

PV i,j(Z/S) where 0 ≤ i ≤ n and
0 ≤ j ≤ n+ s. Again, PV i,j(Z/S) = A0,j(Z,∧iTZ/S).

Now our PVc only needs compact support in the fiber direction. If we do all the
same things we get a family version. One remarkable thing, after the integration we
move from the smooth to the holomorphic world. Also the Gauss-Manin connection,
we had previously defined this along the t∂t direction. We need to define what
happens along the base direction. we define ∇Ω

V [S] = [∂V S + ∂V F
t S].

We’ve taken more than one hour to come to the definition.

Definition 1.1. A primitive form is a section in Γ(S,HF,Γ
0 ) satisfying the following

conditions:

(1) t∇Ωζ : T S → HF,Ω
0 /tHF,Ω

0 is an isomorphism.
(2) for any v1 and v2 in T S, we have KF

Ω (∇Ω
V ζ,∇Ω

Z2
ζ2) ∈ t−2OS.

(3) for any Zi in T S, we have KF
Ω (∇Ω

V1
∇Ω

V2
ζ,∇Ω

V3
ζ) and KF

Ω (∇Ω
t∂t∇Ω

V1
ζ,∇Ω

V2
ζ)

are in t−3OS + t−2OS

(4) There exists a γ so that (∇Ω
t∂t +∇Ω

E)ζ = γζ

So we learn from the second thing that gζ(V1, V2) = Rest=0(t
−1KF

Ω (t∇Ω
V1
ζ, t∇Ω

V2
ζ)dt)

From the third we get that ∇Ω = ∇ζ + t−1A so that [something about how this
gives the equivalence with the Jocobian ring] gζ , ◦,∇ζ , e, E is a Frobenius manifold
structure on S.

Let me introduce the perturbative formula quickly and give one example.
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A primitive form is a family and we want to compute this. Say we know the
primitive form at a reference point. How do we extend it? Let me make a remark.

The construction HF,Ω
(0) depends on Ω but if you use ζΩX then it doesn’t depend.

Another remark, this is a formal primitive form. There is nothing about convergence
here. Leave convergence as a separate issue. For weighted homogeneous polynomial,
the formal and nonformal coincide.

So we want to say something from this initial point. We need one notion. So L
is a subspace of Hf,Ω. It’s a vector subspace satisfying Hf,Ω

(0) ⊕ L and t−1L ⊂ L.
We call this an opposite filtration if Kf

Ω(L,L) ⊂ t−2C[t−1]. It is further called a
good opposite filtration if ∇Ω

t∂tL ⊂ L.
There should be some property, some primitivity, for ζ0 = ζ|u=0. Let us skip this

because of the remark that ζ0 is a constant for weighted homogeneous polynomials.
If f is a weighted homogeneous polynomial, [missed].

Then the problem is that, we are given (L, ζ0). How do we construct a primitive
form ζ(L, ζ0). The data we have is sufficient data to make a bijection. There is
a unique primitive form. Therefore we ask how to extend it. The construction
of L is highly nontrivial in general. It’s elementary for a weighted homogeneous
polynomial. What we need is to find a doable way to obtain the primitive form.

The theorem is that

Theorem 1.1. (LLS)

Given s ∈ Hf,Ω, then e
f−F

t s makes sense and is flat along the S direction but not
in the t direction. So it’s a flat extension to HF,Ω.

As a mathematical statement this should be more careful because t goes to ∞
and −∞ but that’s technical.

Our theorem says that e
f−F

t ζ0 has a splitting ζ+ ⊕ ζ− and ζ+ ∈ HF,Ω
0 (formal

power series) while ζ− ∈ e
f−F

t L. Then the statement is that ζ+ = ζ+(L, ζ0).
Let’s see one nontrivial example. Let f(x, y, z) = x3 + y3 + z3. This is the so-

called simple elliptic singularity. This is a weighted homogeneous polynomial with
qx = qy = qz = 1

3 . The central charge ĉf is
∑

(1− 2qi) = 1
Therefore let us try to use, well, assume some facts and then obtain the an-

swer. In this case the family, Jac(f) = C{ϕi|i = 1, . . . 8} where it’s spanned by
{1, x, y, z, xy, yz, xz, xyz}. So we have a basis. Then S = C8. Then F (x, y, z, u⃗) =
f(x, y, z)+

∑
uiϕi. This has degree because each basis element has a weight. Each

ui should then have a degree so that the total degree is 1.
So our aim is to find ζ = ζ(L, 1). One fact is that, for a quasihomogeneous

polynomial, the grading of Kf
Ω is −ĉf . This is some fact. From this fact we can say

something. First, L is parameterized by a complex number. Any L is of the form,
let me say L is a good opposite filtration if and only if L = Lc = t−1B[t−1] where
B is the span of {ϕ1, . . . , ϕ7, xyz + ct}. We know what is L, it is parameterized by
c. So we have the initial data.

Second, for all weighted homogeneous polynomial, we choose a standard volume
form dxdydz. Now ζ is homogeneous of degree 0. This is an easy fact. This implies
that ζ can only be a function of u8 because, well, it’s a section, it could be a function
of the base space and then some power series. We have this special fact that it’s
degree 0. The only possibility is that it’s a function of the parameter u8.

Let us use this. We want to find e
f−F

t 1 = ζ+ ⊕ ζ− associated to Lc, 1. We want
this splitting. Let us do two things. First, we consider the inverse part, because the
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splitting is in the family version. But somehow in the calculations we invert more

things, so let’s reduce to the non-family version. Let’s try to write ζ0 = e
F−f

t ζ+⊕•
where • is in L. So we have

e
F−f

t − e
u8xyz

t = e
u8xyz

t (e
F−f−u8xyz

t − 1)

From 1 to 7 the degrees are less than 1 so the differences are negative. Once we
subtract 1, the whole right term is of negative degree. The whole thing on the
outside is of negative degree. Then Lc contains the negative degree, at most degree

0. The highest degree of B is 1 so the highest in Lc is 0. So Hf,Ω
(0) can only have

nonnegative parts, so all the negative parts, strictly negative, must belong to L.
On the other side we want to obtain a splitting. We’re doing this on a cohomol-

ogy. Each term is a summation
∑

1
k! (

u8xyz
t )k. This means that, well, Qf is exact,

is zero in homology. We calculate,
Qf (y

2z3∂x), this is (∂̄ + {f, ·} + t∂Ω)(y
2z3∂x). But {f,

∑
gi∂i} =

∑ ∂f
∂zi

gi and

∂Ω
∑

gi∂i =
∑ ∂gi

∂zi
. So we calculate Qf and get that iti is x2y2z2. Then we see

that xk−2ykzk∂x, by calculation, Qf of this is xkykzk + t(k − 2)xk−3ykzk.
If we do this three times, we get that xkykzk = −(k − 2)3t3xk−3yk−3zk−3.

Therefore, in cohomology, in cohomology the thing we are interested in is of the
form

e
u8xyz

t = g(u8) +
xyz

t
h(σ).

Then this g and h, they are formal power series, and these are the solutions of the
Picard-Fuchs equation ((1+u3

8)∂
3
u8

+3u2
8∂u8 +u8)ϕ = 0. In particular it’s analytic.

In this way we get an analytic formal power series. The last step is the splitting.

The left hand side is equal to e
F−f

t − (g + xyz
t h) in cohomology.

Then this is e
F−f

t − (g − ch) − xyz+ct
t h. We want something in L, which is

t−1B[t−1] where X is the span of ϕ1, . . . , ϕ7 and xyz+ ct. So then e
F−f

t − (g− ch)
is in L and we are done.

From the theorem 1
g−ch is a primitive form. Then ζ = 1

g−ch . Now these are

both functions of u8. So that’s the primitive form associated to this good opposite
filtration associated with σ = u8.

2. Danielle O’Donnol, December 18, Combinatorial Spatial Graph
Floer Homology

What we’ll look at today is combinatorial spatial graph Floer homology. We’re
looking at knot Floer homology. That’s an invariant for an oriented knot in S3.
We want to extend this to spatial graphs, where we have oriented edges.

To be able to define it we need a special class of graphs, I was planning on getting
to that later. I’ll start with knot Floer homology, why it’s successful and strong,
and then talk about the setting of various different Floer homologies and how our
results fit in to that, then the specifics of our version.

For knot Floer homology, which was defned by Ozsváth and Szabó and inde-

pendently by Rasmussen, to K you associate ĤFKi(K, s) a bigraded vector space
where i and s are Z-gradings and F is Z/2. You might look at this as some ordered
pairs (s, i), and then you have some ranks. s is the Alexander grading and i the
Maslov grading.

This is one way you can represent what is going on, and we’ll come back to this
looking at all of our nice properties.
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2

1

1

2

1

1

2

1

i

s

(1) The graded Euler characteristic gives the Alexander polynomial. This is one
of these things where in most of these homology theories you get some poly-

nomial invariant as your Euler characteristic, you have
∑

(−1)irkĤFKi(K, s)ts,
this is the Alexander polynomial ∆K(t). In our example we can just read
this off, in this example ∆K(t) = t−2− t−1 + t0 − t+ t2.

(2) Another thing that Floer homology can tell us is the genus of a knot. A
Seifert surface of a knot is an orientable surface with boundary the knot.
The easy example is [trefoil example]. The genus of a knot is the minimal
genus of any Seifert surface for the knot.

A theorem of Ozsvath and Szabo from 2001 says that g(K)max{s|ĤFKi(K, s) ̸=
0}. In our example, g(K) = 2.

Corollary 2.1. K is the unknot if and only if our Floer homology just has

one group ĤFK0(K, 0)

(3) We can detect if a knot is fibered. A knot is fibered if there is a fibration
f : S3\K → S1 which is well-behaved near K.

Theorem 2.1. (Ghiggini, Ni(2006)) K is fibered if and only if ĤFK∗(K, g(K)) ∼=
F.

That’s our situation in the example which implies that K is fibered.

Now I’ll talk about more the overall picture of Floer homology. First of all, Ozsvath
and Szabo defined Floer homology for Y a closed oriented 3-manifold, defined
HF o(Y ) which are graded groups.
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Then Ozsváth-Szabó and Rasmussen independently defined knot Floer homol-

ogy. We just talked about the hat version ĤFKi(K, s). This a bigraded F-vector
space. This also has different versions, and the one that’s interesting to us is
HFK−(K) which is a bigraded F[u]-module. This has some more information in

it and actually what happens is, to go from HFK−(K) to ĤFKi(K, s) you set
u = 0. So Jukász defined sutured Floer homology. You have (M,γ), where M is
a sutured manifold, and this in particular extends to a manifold with boundary.
This is usually denoted SFH(M,γ). Now sutured Floer homology is an extension

of ĤF (Y ) to manifolds with boundary. This gives us our homology but in the
simplest version.

I’ll talk now about what a sutured manifold is and how this is not just a gener-
alization of the original Floer homology but also how you can get the knot Floer
homology.

Definition 2.1. A (balanced) sutured manifold is a pair (M,γ) where M is a
compact oriented three-manifold with boundary and γ is a subset of the boundary, a
set of disjoint finite oriented simple closed curves that split our boundary into two
pieces R+(γ) and R−(γ) such that R(γ) = ∂M\γ and γ are consistently oriented.
This is the definition for a sutured manifold. To be balanced you need the additional
condition which is that there are no closed components and the Euler characteristic
of R− is the same as the Euler characteristic of R+.

There’s a nice example. Take a knot K in a three-manifold Y . Then let Y (K)
be Y minus a neighborhood of K and then we’ll add some sutures in an appropriate
way. The sutures are two oppositely oriented meridians. We look at these being
our sutures and so then we have R+ and R− and in this case, the sutured Floer

homology SFH(Y (K)) ∼= ĤFK(Y,K). So sutured Floer homology is really nice
and not only generalizes what’s happening in Floer homology for a general three-
manifold, but also the hat version of knot Floer homology.

You get a nice interpretation of the graded Euler characteristic, due to Friedl,
Juhász, and Rasmussen, and they define the torsion invariant T(M,γ) ∈ Z[H1(M)]
which is the maximal Abelian torsion for the pair (M,R−). This is equivalent to
the Alexander polynomial we were talking about before in this setting.

We can do something similar with graphs. There’s a natural way to associate
sutured manifold to a oriented spatial graph. So what’s going to happen is we have
a vertex in an oriented graph, we’ll take the exterior, E(f) = S3\ν(f(G)). Then
there’s a particular way you put sutures on this. Separating incoming and outgoing
edges you put a suture, and then on each edge you put a suture. The sutured Floer
homology for this sutured manifold is equivalent to the hat version of our theory.

So what happens, for our thing, we have a relationship between our thing
and their Alexander polynomial. This defines an Alexander polynomial ∆f :=
T̄(E(f),γ(f)). There have been Alexander polynomials defined for graphs. In 1958
there was a definition that was just the Alexander polynomial of the exterior, this
also uses half of the boundary and retains more of the information.

Putting this in context, we define a minus version of HFG using grid diagrams.
We extend this thing in the context of sutured Floer homology to a more general
theory using a combinatorial approach. This is a good place to take a break.

All right. So originally the definition for was using holomorphic disks. This
was complicated and kind of hard. So Manolescu-Ozsváth-Sarkar introduced a
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combinatorial description of HFK with grid diagrams. Now the major advantage
to this is that in this setting it’s very easy to tell when you have a holomorphic
disk that you should be counting. In the other setting it’s much harder to tell. As
a result you don’t have to worry about the complicated counting part.

Then Manolescu-Ozsváth-Szábo-Thurston gave a self-contained combinatarial
proof of invariance of the grid diagram setup.

The general plan is that we have some sort of objects we’re interested in and
we encode these in our grid diagrams. Then there’s a standard way to turn a grid
diagram into a chain complex. This then gives us our homology invariant.

The passage from a grid diagram to a chain complex is standard. The tricky
thing is to pass from objects to grid diagrams in ways that preserve the eventual
homology.

The natural choice for what to start with is what we call transverse spatial
graphs, which I’ll define in just one minute. Then we get our grid diagrams that
we associate with that, and for each spatial graph there are a lot of grid diagrams
which are related by grid moves. Then we get our chain complex and from that we
obtain our homology invariant.

So the steps that are involved are showing that our transverse graphs and our
grid diagrams are well-defined and that we can pass among different ones via grid
moves. Then the other important thing to show is that grid moves correspond to
quasi-isomorphisms.

The objects we’re working with are transverse spatial graphs.

Definition 2.2. A transverse spatial graph is an oriented spatial graph where each
vertex locally looks like, the incoming and outgoing edges are separated. There is
a disk that separates our incoming and outgoing edges. This is halfway rigid. You
can’t have interactions among incoming and outgoing edges.

In a diagram, we can always move things so that this disk is perpendicular to our
plane of projection, so that when we have a diagram, our incoming edges should
be separated by a vertical line in the diagram. We don’t write the disk because it’s
implied. In the original example of the trefoil with an extra edge, it looks like this.

There are standard Reidemeister moves for pliable graphs with one restriction
based on the vertex restriction.

[pictures]
Let’s talk about grid diagrams. For a graph, a grid diagram is an n × n grid

where the squares contain either X, O, or nothing along with a subset of the Os
which are marked with ∗. For knots you have no ∗. There are certain conditions
on what can happen. We require

• There is exactly one O in each row and column
• There is at least one X in each row and column (if I want a homology
theory)

• If an O does not have exactly one X in each row and column it is marked
with a ∗

• O∗s are called vertex Os.
• When there are multiple Xs in a row or column, it must look like O∗ with
a line of X above and to the right of the O∗.

We’ll focus on these. For example, [picture]
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O∗ X

X

X

O X

O∗ X

O

X

O

O X

O∗ X X

X O

X O

O∗ X

We write in edges horizontally from O to X and vertically from X to O, letting
vertical going over horizontal and choosing a convention for O∗ vertices.

It’s possible to put any spatial graph in a form like this.
You’ve made a lot of choices and that’s where grid moves come in.

Theorem 2.2. (Harvey, O’Donnol) If g and g′ are grid diagrams representing
f(G) then they are related by a sequence of graph grid moves.

These are, first of all, cyclic permutation, where we move a row from the left to
the right or the top to the bottom.

Second of all, they are commutation, you can sometimes commute adjacent rows
generally if the O and X in a column are separated or contained but not if they
are interspersed.

· · · X · · ·
· · · O · · ·
· · · O · · ·
· · · X · · ·

→

· · · O · · ·
· · · X · · ·
· · · X · · ·
· · · O · · ·

We also allow you to interchange where the two X overlap or there are multiple X
in a row or column.

The other standard grid move is stabilization, where we have an X and O and
add a new row and column. We need to know what to do if there are multiple Xs
in a row or column and what will happen when we split that column up.

[pictures]
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Let g be the grid diagram for f : G → S3. Then g ⇝ HFG−
i (g, s) is a bigraded

F[U1, . . . , Uv]-module where v is the number of vertices in G.
So i is our Maslov index which is in Z, which is an absolute grading. The

s ∈ H1(S
3\f(G)) is our Alexander grading which is relative.

What will happen is that HFG−
∗ (g, s) is the homology of the chain complex

we define. Then ∂ will count certain rectangles in the toroidal grid diagram, and

ĤFG∗(g, s), the sutured Floer homology, is the homology of (ĈFG(g, s), ∂) setting
Ui = 0.

Define (CFG−, ∂) as follows. Take your toroidal grid diagram. Then the gener-
ators are n-tuples of inetresections of the horizontal and vertical grid circles. Then
to define our boundary map, we need to know what a rectangle is. These are
rectangles from x to y which do not contain xi or yi

O∗1 X

X

X

O2 X

O∗3 X

O4

X

O5

•

•

•

•

•

•

•

So the boundary of such a tuple x is sum over
all y of ∑

r∈Rect(x,y),r∩X=0

UO1r
1 · · ·UOnr

n y

Then label each O with {1, . . . , n} then Oi(r) is the number of Oi in r. Some of
these are equivalent and this will eventually be a module over the right thing.

So in our example, ∂x = U3y + · · ·
The Maslov grading is M(x) −M(y) = 1 − 2nO(r) where nO(r) is the number

of Os in the rectangle. In our example, if we look at M(x)−M(y) = −1.
Then the Alexander grading, giving a weight to each O and X it is given by its

class in H1(S
3\f(G)). So A(x)−A(y) is∑

X∈r

w(X)−
∑
O∈r

w(O).

This is the only thing that is slightly different in this setup but it is really following
the same ideas of what happens in the other theories.

This is the complete definition of how we get our chain complex and like I said
before the homology is taking the homology of the chain complex. The final theorem
is that

Theorem 2.3. (Harvey-O.) HFG−(g, s) as a bigraded F[u1, . . . , uv] module, is
independent of the choice of grid g for our f(G).

For knots moving along an edge you see that the generator ui is equivalent to
uj if these O are along the same edge. When you hit a vertex you act as zero and
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so only the ones for vertices act. It’s just not even. You have a nice one-to-one
correspondence for knots.


