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1. January 28: Thomas Hudson: Segre classes and Schur polynomials
for algebraic cobordism

Thank you for coming. The plan for the talk is to start with a review of how
Segre and Chern classes are defined for the Chow ring, please let me know if you
cannot read or if you have any questions. Then I want to remind some results about
the Grassmannian and for Schubert varieties. Then the idea is that these results
can be extended to a more general context where you have oriented cohomology
theories. This is the more general thing I’d like to discuss. The idea is about
how to extend the ideas about Grassmannians and Schubert varieties to oriented
cohomology theories.

I want to start with Fulton’s definition of Chern classes. What he does is first
defines c1(L) of a line bundle. Then he considers projective bundles, so E → X,
a vector bundle of rank e and associate the projectivization P(E) and over it π∗E
which has a subbundle of hyperplanes H of rank e − 1 and a cnonical quotient
O(1). We can consider the pushforward onto the base π∗ ∶ CH∗(PE)→ CH∗(X)2
so ci1(O(1))↦ si−e+1(E). Then you can put together what you get in a power series
and you get st(E) = 1 + s1(E)t + s2(E)t2 +⋯

When you compute these classes you get s0(E) = 1, and for dimension reasons
s−m(E) = 0. Then Fulton can define Chern classes by defining ct(E) as 1

s−t(E) . To

see this makes sense, you can look at E a line bundle, which is silly because the
projecivization is X and the map π is the identity. Then st(L) = 1 + ξt + ξ2t2 + ⋯
and moving on to the Chern polynomial you get

1

1 − ξt + ξ2t2 +⋯
= 1 + ξt

So you get c1(L) = ξ.
Now I want to go to Grothiendieck’s version of this story. To some extend,

Grothiendieck gives a way to define the first Chern class, it doesn’t really matter
too much what it is, and then he observes that CH∗(P(E)), it’s

e−1
⊕
i=0

ξiCH∗(X)

a direct sum of e copies of evaluation on the base, as CH∗(X)-modules. Then the
next question is, what is ξe? This gives the Chern classes. More precisely you have
the following relation

ξe − ξe−1c1(E) + ξe−2c2(E) +⋯ + (−1)ece(E) = 0
Now you can somehow recover the previous relation by pushing forward this equal-
ity. Then ξe gives s1(E). The second term gves s0 = 1. So that’s s1(E) = c1(E).
So if we multiply by ξ and push forward, that gives us something about s2, that
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s2(E) = s1(E)c1(E)+ c2(E) = 0. If you combine this information together, you get
a relationship between the Segre series and the Chern polynomial, which is that
st(E)c−t(E) = 1.

I’m proposing these two because the Grothiendieck is the way you can define
these for oriented cohomology theories. On the other hand, the people who de-
veloped the oriented cohomology theories didn’t think about Segre classes much.
The idea is to keep Fulton’s definition, and try to see what you can get out of this
relationship, that you can still get to define Chern classes. Let me stress another
thing. You may know, Chern classes ci(E) can be understood as an elementary
symmetric function, this is the ith, in the Chern [unintelligible]. The equality says
that you can see the Segre classes as the complete symmetric functions. Why does
this stay true in any context? You don’t have the relation between c and s any
more.

Now the two concepts are used in Schubert calculus to express the fundamental
classes of Schubert varieties. So let k be a field, at some point characteristic zero
when we start talking about cobordism but until then it won’t matter. We start
with a vector space En over a point, an affine space, and we can look at the
Grassmannian of d-planes inside An. Then we have GR(d,m) ×Ank , and there we
can see the universal bundle of rank d. If we fix a basis of An, say f1, . . . , fn, we
define Fi to be the span of the first i vectors. Sometimes I’ll need Fn−i to mean
the same thing. Once you fix a basis you can define Schubert varieties. If we take
a partition λ = λ1, . . . , λd, written in weakly decreasing order, then Xλ is all the
points p in the Grassmannian (so that the restriction of the universal bundle above
it is that point itself), such that the intersection of this fiber with Fλi−i+d is at least
i for all i.

This cuts out the Schubert variety.
One question that one can ask is how to express the fundamental class of these

varieties in the Chow ring as an element in CH∗(GR(d,n)). The answer is by using
Schur polynomials. So (where ℓ is the length of the nonzero part of the partition)

[Xλ]CH = sλ( x1, . . . xd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Chern roots

) =

RRRRRRRRRRRRRRRRRR

cλ1 cλ1+1 ⋯ cλ1+ℓ−1
cλ2−1 cλ2 ⋯ cλ2+ℓ−2
⋮ ⋮ ⋱

cλℓ−ℓ+1 ⋯ ⋯ cλℓ

RRRRRRRRRRRRRRRRRR
So you can do this forX a smooth scheme, and you get some sort of Schubert variety
bundle and this gives you a basis for the Chow ring for the Grassman bundles.

Theorem 1.1. (Kempf–Laksov) The fundamental class [Xλ]CH in CH∗(GRjEn)
is

det[(−1)j−1cλi+j−i(En −Uj − Fλi−i+j)].

An outline of the proof starts by building a resolution of singularities of Xλ.
This is done, recall the setting for a moment, you have En and inside of it F1 ⊂ ⋯ ⊂
Fn−1. We pull back this flag over GRd(E), and inside we have Xλ and we want to
desingularize it. To do this we start with our partition λ and make some numbers
ki = n−d−λi+ i. We consider a projective bundle P(F ∨k1), and over this we have En
with Ud inside of this. Then Fk1 is inside of this with a line bundle D1. We move
on and we want to find a bundle of rank 2 in the second element of the flag. We
look here and find (Fk2/D1)∨, its projectivization, and then inside of this we have
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D1 ⊂D2, and one repeats this until you get an element in the partition. At the end
you will have P((Fkℓ)/Dℓ−1)∨), and here you have X̃λ, which is your resolution.

You need to compute the fundamental class of this thing in your space of flags.
If you are able to do that, since this is a resolution of singularities, and if you can
express the pushforward in GRd, then the pushforward will be the fundamental
class of the desired Schubert variety. We need to be able to push forward along
projective bundles to do this, which is where Segre classes come in.

This was all so far an old story, now comes something slightly more recent, which
is oriented cohomology theories. What we want to some extent is a generalization
of the Chow ring. We want pullbacks f∗, pushforwards f∗, and Chern classes.

An oriented cohomology theory is a contravariant functor from smooth schemes
to commutative graded rings along with morphisms f∗ ∶ A∗(Y )→ A∗(X) of A(X)-
modules given Y

fÐ→X whenever f is projective. You want some compatibilities be-
tween them. You also want the projective bundle formula, the isomorphism between
the value A∗(P(E)) on P(E) for E a bundle over X of rank e and ⊕i−10 ξiA∗(X),
where ξ = c1(O(1)) ∶= s∗s∗(1X).

Now that you’ve asked for a projective bundle formula you can use Groth-
iendieck’s formula to define Chern classes.

There is a third property, an extended homotopy property, which says that
A∗(X) ≅ A∗(E), the pullback under projection is an isomorphism, and really you
ask this for E-torsors.

[some discussion of uniqueness]
So I wanted to give some examples of oriented cohomology theories.

(1) Since these are modeled on the Chow ring, your first example is CH∗.
(2) Taking the Grothiendieck ring of vector bundles, you get one which is not

graded, so you formally add a grading with a formal parameter β, and
modify the formulas for pushforward and pullback to incorporate β, which,
if you project P1 on the point, then the pushforward of the identity is β.

(3) One can consider elliptic cohomology
(4) Algebraic cobordism

This algebraic cobordism is an algebro-geometric analogue of MU . There is a
theorem.

Theorem 1.2. (Levine–Morel) Algebraic cobordism is a universal oriented coho-
mology theory, meaning that for any A∗, there is a unique morphism φA ∶ Ω∗ → A∗.

Suppose you get some formula for cobordism. Then it works everywhere. Then
somehow the diagram you can keep in mind is, if you have CH∗, this modified
version of K0, which goes to K0 by setting β = 1. Then you can see how high you
can push this, can you get to Ω∗?

One way to see how these can differ is to look at the formal group law, to
see how A∗ differs from CH∗, one looks at c1(L ⊗M). For the Chow ring, one
has that cCH1 (L ⊗ M) = cCH1 (L) + cCH1 (M). In general, what is true is that
cA1 (L ⊗M) = FA(cA1 (L), cA1 (M)) with coefficients in A∗(Speck)[[u, v]], so that
the pair (A∗(Speck), FA) is a formal group law. There are requirements, this has
to be a commutative formal group law, so for instance FA(u, v) = FA(v, u), this is
just commutativity, and then you have FA(u,0) = u, and the same for v, thanks
to the previous one, and then you have something involving three elements for as-
sociativity FA(FA(u, v),w) = FA(u,FA(v,w)). At the level of tensor product this
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is associativity and commutativity and tensoring by the trivial line bundle gives
nothing.

A formal group law gives a formal inverse χA(u) ∈ A∗(Speck)[[u]] which plays
the role of expressing c1(L∨) in terms of c1(L).

[some discussion]
Let me give the formal group laws for the examples. For FK0(u, v) you get

u+v−βuv, for FΩ(u, v) = u+v+∑(i,j)Ai,juivj , for elliptic you get the formal group
law of the elliptic curve.

Finally we are back to Segre classes. One first question is how to define Segre

classes. As I mentioned before, we can keep the definiton we had beforeA∗(P(E)) π∗Ð→
A∗(X) takes ci1(O(1))↦ si−e+1(E). The second question is how to compute them?
Here there is an answer because pushforward along projective bundles was studied
by Quillen, we have Quillen’s formula, which looks like this:

π∗(ξi) =
e

∑
j=1

Xi
j

∏1≤k≤e,k≠j FA(xj , χA(xk))

It would be nice to have a formula like before, for sAt (E), in terms of Chern classes
and maybe other stuff.

There is a key observation, which is that if you write FA(z,χA(x)), this factors,
as (z−x)P (z, x), and so in some sense, let me say this in a different way. You have
z −A x, and you have z − x the normal one, and the power series turns one into the
other. If you use this in the product we have, you can start separating things. It
makes sense to look at the products of different P , you can look at ∏ei=1 PA(z, xi)
and make this a power series, this is

∞
∑
s=0

w−s(x1, . . . , xe)zs.

Then just as

cCHe (E∨ ⊗O(1)) =
e

∏
i=1
(z − xi)

we have

cAe (E∨ ⊗O(1)) =
e

∏
i=1
(z −A xi)

If you factor the Chow ring part out, you get the following proposition.

Proposition 1.1. (Hudson–Matsumura)

st(E) =
1

c−t(E)
1

wt−1(E)
PAt−1

with PAt = ∑[Pi]At−1.

So what does this mean? You want to compute the Segre power series. One
thing is the Chern classes, exactly as the old version. When you apply the unique
morphism to CH∗ the other part goes to one. The second one comes from the PA.
The third comes from the projective spaces.

Now if you want to compute, this is at the level of bundles, but one would like
to have things for virtual bundles. ct is not a problem on virtual bundles. You look
carefully and w is also not a problem because it’s attained as a product. You can
get st(E − F ) by just adding −F in the evaluation of w and c.
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Now there is, there is a geometric result that says maybe this definition makes
some sense for the virtual one.

Theorem 1.3. (Hudson–Matsumura) Let E and F be vector bundles of rank e and
f over X, and consider P(E). Look at the top Chern class cf of O(1)⊗ π∗F ∨ and

push this forward along P(E) π∗Ð→X. That’s the Segre class sΩf−e+1(E − F ).

So this lets you recover the result for any theeory you like. This suggests the
notion has some meaning. Then you can try to express the Kempf–Laksov result
in terms of Segre classes of this type.

The application we had in mind was to compute [X̃λ]Ω
?
≅ [Xλ]Ω. So you want to

do a bunch of pushforwards and need machinery like our theorem. Kazarian showed
that everything you want to do this, you just need something slightly more general,
the pushforward of cs1(O(1)cΩf (O(1)⊗π∗F ∨), and that’s just as easy, you just add
s in our index on the right side. Then there’s machinery to produce determinants.

Now we have two issues. The first is what do you get for the resolved singularity,
and the second is the question of whether it is equal to what you have on the right
hand side. The other problem is that this isn’t necessarily defined before resolution.

One good property of what comes out of the procedure is that they don’t depend
on the size of the Grassmannian, they exhibit stability phenomena. There is a
similar picture with respect to the flag bundle and if you do it with the flag bundle
you get Schubert polynomials instead of Schur. So there you use Bott–Samuelson
resolutions, and that’s pretty awful.

Let me write a formula, for λ = (λ1, . . . , λℓ)

[X̃KL
λ ] = ϕ(tλ1

1 ⋯t
λℓ

ℓ ∏(1 −
ti
tj
) ∏
1≤i<j≤ℓ

P (tj , ti))

where

ϕ(ts11 , . . . , t
sℓ
ℓ ) = Ss1((F

λ1−1+d −En/Ud)∨)⋯Ssℓ((F
λℓ−ℓ+d −En/Ud)∨)

and from the point of view of the polynomials involved this should have good
properties.

2. February 4: Namhee Kwon :Vertex algebras and their
applications to the denominator identity

First of all, I’d like to appreciate Professor Yong-Geun Oh for giving me a chance
to stay at this wonderful place. Most of the people in this room work on topology
and geometry but most of this will be algebra. I intend to give a more accessible
talk so if this is boring, please understand.

Definition 2.1. (1) A superspace is a vector space V = V0̄ ⊕ V1̄.
(2) A superalgebra is a Z/2Z-graded (not necessarily associative) algebra, mean-

ing that VαVβ ⊂ Vα+β .
If a ∈ V0̄ then we say it has parity p(a) = 0 (and likewise for 1). We say also that

p(a, b) = (−1)p(a)p(b).

Definition 2.2. A Lie superalgebra g is a Z/2Z graded vector space with a Z/2Z-
graded superalgebra [ , ] such that

(1)
[x, y] = P (x, y)[y, x]
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(2)

[x, [y, z]] = [[x, y], z] + P (x, y)[y, [x, z]]

If we have no odd part then this is just an ordinary Lie algebra.
Let me give some examples. Let V be a superspace of dimension m for the even

part and n for the even part. Then we can think of End(V ) (linear maps), we
can give a Z/2Z grading to these endomorphisms, End(V )α = {a ∈ End(V )∣aV β ⊂
Vα+β}. Then the endomorphisms are a superspace. Then in matrix form we can

rewrite this as {[ ∗ 0
0 ∗ ]}⊕ {[

0 ∗
0
]}.

We can define a bracket operation as

[A,B] = AB − p(A,B)BA,

and then this becomes a Lie superalgebra, which we denote gl(m∣n).

Definition 2.3. Let V be a superspace. A field is a series of the form

a(z) = ∑
n∈Z

a(n)z
−n−1

in (End V )[[z, z−1]] such that for any v ∈ V , we have a(n)v = 0 for a high enough.
If a(n) is always even we say p(a(z)) = 0.

Definition 2.4. A vertex algebra is the following data.

(a) A superspace V
(b) A special vector ∣0⟩ in V0̄ (the vacuum)
(c) A field Y ( , z) ∶ V → (EndV )[[z, z−1]], given by a↦ Y (a, z) = ∑a(n)z−n−1

such that

(1) there exists a linear map T ∶ V → V defined by T (a) = a(−2)∣0⟩ satisfying
[T,Y (a, z)] = ∂zY (a, z),

(2) Y (∣0⟩, z) = id and Y (a, z)∣0⟨∣z=0 = a
(3) (z − w)N(Y (a, z)Y (b,w) − p(a, b)Y (b,w)Y (a, z)) = 0 for sufficiently large

N .

Let me give an example. Let g be a simple Lie superalgebra and let ĝ be C[t, t−1]⊗
g ⊕CK with bracket [am, bn] = [a, b]m+n +m(a∣b)δm+n,0K where am = a ⊗ tm and
(a∣b) is the non-degenerate Killing form from the simple Lie superalgebra. We set
[K, ĝ] = 0.

In vertex algebras usually people write this down in the operator product ex-
pansion.

Right now we have a formal series a(z) ∈ g[[z, z−1]] and b(w) in the same place.
We assume that a(z) and b(w) are a local pair, so that (z − w)N [a(z), b(w)] = 0.
Then it is known that their product

a(z)b(w) =
N

∑
j=0

ιz,w
1

(z −w)j+1
a(w)(j)b(w)+ ∶ a(z)b(w) ∶

So first ιz,w is, we can expand f(z,w) as a power series, but we take domain ∣z∣ > ∣w∣
and express it there as a power series.

Then a(w)(n)b(w) for positive n is Resz[a(z), b(w)](z−w)n and a(w)−n−1b(w) =∶
∂(n)a(w)b(w) ∶ where ∂(n)a(w) = 1

n!
∂na(w).
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We usually write a(z)b(w) ∼ ∑N−1j=0
a(w)(j)b(w)

z−w and this is the operator product ex-

pansion. This is equivalent to the Lie bracket operation [a(m), b(n)] = ∑N−1j=0 (
m
j
)cj(m+n−j)

where c(w) = a(w)(j)b(w).
Now by going back, the bracket operation is the same as giving an operator

product equation like this.

a(z)b(w) ∼ [a, b](w)
z −w

+ a∣b
k
(z −w)2.

Now let’s go to Verma modules. I’ll define Ck ≅ C as a g[t] ⊕ Ck-module as
follows.

(1) G(t) acts trivially on C.
(2) K acts as a scalar k on C

Then U(ĝ) ⊗U(g[t]⊕CK) Ck, as a vector space this is isomorphic to S(ĝ<0), the
symmetric algebra. This is Poincaré–Birkhoff–Witt.

Call this thing F and make it a vertex operator algebra as follows. For any a ∈ g,
we define a(z) = ∑n∈Z a(n)z−n−1 which means a⊗ tn, where a(n) is an operator over
F .

I’ll give a second example, where the bracket will just collapse. Let A be a super-
space with a skew supersymmetric bilinear form, this is a bilinear form satisfying
(φ∣ψ) = −(−1)p(φ).

Then the Clifford affinization. Take CA = C[t, t−1] ⊗ A ⊕ CK. Then (with

φm = φ⊗ tm−
1
2 ),

[φm, ψn] = (φ∣ψ)δm+n,0K.
So our bracket collapses and we just get this one term.

This is the same as an operator product expansion φ(z)ψ(w) ∼ (φ∣ψ)K
z−w .

Now we consider U(CA)⊗U(C≥0
A
)Ck, where this Ck still has a module structure as

before. Again this is isomorphic to S(C<0A ). Then again the vacuum vector is 1 and
the state field correspondence is Y (φ1

−n1+ 1
2

⋯φk−nk+ 1
2

∣0⟩, z) = φ1
(−n1)(z)⋯φ

k
−nk
(z)id.

Let’s take A as an odd 2-dimensional superspace, spanned by ψ+ and ψ− so that
(ψ+∣ψ−) = 1. The (∣) being supersymmetric is just symmetry.

Then we can think about F = U(CA)⊗U(CA≥0) C1.
Then I’ll define a special element

ν = 1

2
(ψ+(−2)ψ

−
(−1) + ψ

−
(−2)ψ

+
(−1)∣0⟩

and then Y (ν, z) is the Virasoro field ∑Lnz−n−2 where

(1) L−1 = T
(2) L0 is diagonalizable over F

(3) [Lm, Ln] = (m − n)Lm+n + m3−m
12

δm+n,0c

This Virasoro algebra is ⊕CLn ⊕CZ and then something that satisfies the above
conditions (with c replaced by Z) is the Virasoro algebra.

Consider a new field α(z) =∶ ψ+(z)ψ−(z) ∶ (an even field) and once again we
take the normally ordered product ∶ α(z)α(z) ∶ and it turns out that Y (ν, z) is
1
2
∶ α(z)α(z) ∶. It turns out that [αm, αn] =mδm+n,0 and [αm, ψ±(n)] = ±ψ

±
(m+n) and

you can figure this all out from the operator product expansion.
This is the definition of the Heisenberg algebra. So S = ⊕Cαn will act on the

vertex algebra F .
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We want the eigenvalues of α0, where

ψ−(−j1)⋯ψ
−
(−jt)ψ

+
(−i1)⋯ψ

+
(−is)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V

∣0⟩ = (s − t)V.

Then we call this (s− t) the charge and decompose F into F (m) of charge m.Then
each of these parts is an irreducible S-module.

Now we’re going to think about another eigenvalue, take

L0ψ
−
(−j1)⋯ψ

−
(−jt)ψ

+
(−i1)⋯ψ

+
(−is)∣0⟩ = (j1−

1

2
+⋯+(jt−

1

2
)+(i1−

1

2
)+⋯+(is−

1

2
))( ).

and now each charge space F (m) decomposes into energy spaces F
(m)
j and there is

a minimal energy j ≥ m2

2
. This is the decomposition of the charge space.

Why do we have minimal energy? The smallest energy for m ≥ 0 will be realized

by ψ+(−m)⋯ψ
+
(−1)∣0⟩ and similarly for m < 0 and what you get is m2

2
in both cases.

For F we consider two bases.

(1)

ψ−(−j1)⋯ψ
−
(−jt)ψ

+
(−i1)⋯ψ

+
(−is)∣0⟩

with 0 < i1 < i2 < ⋯ and 0 < j1 < j2 < ⋯
(2)

α−js⋯α−j1 ∣m⟩
where m ranges over Z and 0 < j1 ≤ j2 ≤ ⋯

We need positive subscripts on α so that we don’t violate our minimal energy.
Now we’ll define a character.

Definition 2.5.

chF = trF qL0zα0 = ∑
j,m

dimF
(m)
j qjzm.

If you apply this character formula to the first basis, let’s thing about what we’ll

have. So ψ−−j corresponds to qj−
1
2 z−1. Similarly, we have for ψ+−j , the monomial

qj−
1
2 z1. The character will be

(1 + q
1
2 z)(1 + q

3
2 z)⋯(1 + q

1
2 z−1)(1 + q

3
2 z−1).

If you apply to the second case, let’s see what you get. The energy, each guy has

energy js, so q has exponent j1 + ⋯ + js + m2

2
. For each α the charge is 0, since α

has both plus and minus. Then we only have charge from ∣m⟩ so we have zm. Then

this is q
m2

2 zmqj1+⋯+js . In this case our corresponding character is like this.

chF (m) = q
m2

2 zm
∞
∏
j=1

1

(1 − qj)

because we can have repetition of indices. Then

chF = ∑
m∈Z

q
m2

2 zm/ (∏(1 − qj)) .

Therefore we have our identity
∞
∏
n=1
(1 + qn−

1
2 z)(1 + qn−

1
2 z−1) = ∑

m∈Z
q

m2

2 zm/
∞
∏
j=1
(1 − qj).
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We can generalize this to A with two even and two odd terms. We have multiple
summations and products, but it’s like this.

3. February 18: Grigory Mikhalkin: Planar and spatial real
algebraic curves: (half-)integer indices

Please interact. I’m planning to make a survey in the first half, what kind of
indices, integer and half-integer numbers associated to real algebraic curves and in
the second half curves in 3-space and also indices. Let’s as an example, since we
had yesterday a talk on Legendrian knots. I’ll use that as an example. For these
knots, the Thurston–Bennequin number is such an index. Algebraically we’ll see
similar indices. Let’s start from the planar case and the nineteenth century, the
first part of Hilbert’s sixteenth problem.

Just to remind, in its more or less modern form it appeared mostly by Harnack,
a student of Klein.

uppose RA is a curve f(x, y) = 0 in R2, and suppose for simplicity that RA in
RP2 is smooth.

The question is, what is the topology of (RP2,RA) or (R2,RA).
Hilbert said, if f is a curve of degree 6, what can be (RP2,RA) topologically? We

immediately know that all curves are one-manifolds, so they’re all just circles, but
some circles might sit inside other circles. If you have an oval, the two components
are not equal, the interior is a disk, the exterior a Möbius band.

By the time of Hilbert, Harnack had constructed a series of curves with the
maximal possible number of components. [Pictures]. The question was what else,
in particular, for maximal possible number of components. Here we see the simplest
possible version of the index. The simplest possible index is, first and most naively,
the number of components ℓ. It’s bounded, and as was shown by Harnack, we have
ℓ ≤ g + 1. Here g is the genus of the complexification. By the adjunction formula

this is (d−1)(d−2)
2

where d is the degree. So in particular for d = 6 we have 11 the
maximal number. If ℓ is relatively small, then any configuration of ovals is possible
if it doesn’t contractict the Bezout theorem. Let’s see how the Bezout theorem
works in the simplest possible number. Suppose d = 6, then we cannot have two
disjoint nests. You’d have 8 points of intersection with a line. You could have nests
of two levels, Harnack studied these in connection with some [unintelligible], these
are so-called hyperbolic curves. If you have this, you cannot have any other oval
anywhere because you’d have 8 points of intersection with a line.

If it’s up to 8 there are no other restrictions, but if ℓ is maximal there are many
other restrictions. It would take a long time to survey all possible restrictions.
Let me mention one restriction in the case of even degree curves. There was a
particular configuration asked by Hilbert, which is just 11 ovals all disjoint from
one another. The answer was no, given by Petrovsky in the thirties. The equation,
the restriction which he found, a homological restriction, he had a background in

differential equations, and what he proved is that P −N ≤ 3k(k−1)
2
+ 1 if d = 2k and

P is the number of ovals inside an even number of ovals and N is the number ovals
inside an odd number of ovals.

From the modern point of view, we know where this comes from, we take the
branched covering, complexify, branch it over the even degree, and we get the P −N
is the Euler characteristic. Apparently, not only the 11 ovals were not realizable,
they only had two configurations, and after work of Gudkov–Arnold–Rokhlin (70s),
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only three were possible the two (one nested by Harnack and nine nested by Hilbert)
known since the nineteenth century and one with five nested.

Also if ℓ = 10, there are some restrictions, but now six types, and the smaller,
everything starts to be possible. Even though we have, Rokhlin had congruence
modulo 8, even up to now a complet classification is only known for degree up to 7
(Vito) in the algebraic case.

There is a symplectic version of the problem, when we ask for real parts of
pseudoholomorphic curves. If we do that, then for these curves degree up to 8 is
known, for maximal curves, and this is Orevkov.

This is the first and most classical index. There is some other important notion
introduced in the nineteenth century, I have the name Klein on the board, he
introduced a rather important notion, that of the type of the curve. A curve is type
I if the complement of the real part in the complexification is disconnected and
type II if it’s connected. The maximal ones, where ℓ is maximal, always are of type
I, the Euler characteristic of the quotient, conjugation reverses the orientation, so
it’s just a question of orientability, and then maximality [unintelligible]something
about a disk with punctures.

So we see that restricting to the maximal possible number of components, things
are restricted, and let’s see if there are any other numbers we can associate to such
a plane. Something that can be thought as a variation of the degree of the Gauss
map. Let me give, it will come from the degree of the Gauss map, let me mention
one other index which I will, those of you who will be next week in the conference in
Seoul, I’ll give a more detailed talk about the quantum index of a real curve. Here
we will speak about a curve in the torus, so it will be important how it intersects
RP2 (presented as a toric surface) with three lines. Suppose we have inside of this
RP2 our RA.

For simplicity we don’t need to consider the most general case. Let me just look
at RP2 (toric picture). We have this curve. Let me assume that RA is of type I
and also that it intersects all coordinate axes in real points. If we have a curve
of degree d it should intersect the complexification with d points with multiplicity.
They should be on the real line. For me, purely imaginary intersections are also
okay, in fact. Okay, and the theorem is the following. Now if I take the logarithmic
image Log(RA) ⊂ R2 where Log ∶ (z,w) ↦ (log ∣z∣, log ∣w∣), and since I’m talking
about type I curves, I can choose one half and then the complex orientation give me
an induced orientation on the ovals (switching the choice switches all orientations
simultaneously). In particular, the logarithmic image also has some orientation.
Any time you have a closed curve on the plane you have a region inside. Then I
can take AreaLog(RA) which is the signed area inside Log(RA). Our curve is not
compact but it’s easy to see that there is inside and outside and that the inside is
finite volume.

Okay.

Theorem 3.1. This area takes a discrete spectrum of values (if we’re in type I
and have purely real or purely imaginary intersection with the coordinate axes), in
fact, it’s in 1

2
Z, call it K(RA), the quantum index, the second example of an index

whose maximality puts a restriction on the curve.

Now what can be the maximal index? Let’s do examples. If we have d = 1, then
the area is ±π2/2, and from this Possare determined Euler’s formula, if you take one
third you get π2/6, and then that’s ex+ey = 1, and if you write y = log(1−ex), we’ll
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see this is ζ(2), and on the other hand you can compare with the complementary
map, the argument, you can take the imaginary part, and there this area π2 is the
total area of the argument torus after folding it four times.

The index K is ± 1
2
. Another examples is that if we don’t make those special

assumptions, then the area takes continuous values. For instance, if I take d = 2,
then the conic [picture], the image under the logarithm map will be [picture] and
once it starts intersecting the third line it hits the maximal possible value and it
will be just, actually, if it is a circle then it’s constant. If it’s a circle, the definition
of a circle in affine geometry. Actually let me make an example that is any conic.
It will be a conic not satisfying the coordinate intersection condition. I can take a
small conic. If I take a small one it’s arbitrarily close to zero, so it’s continuous. As
the third example, let me take a circle, a circle, an affine circle is equivalent to its
projectivization passing through 0, 1, and ±i, the dominant terms are x2 + y2. So
just because it’s a circle, the intersection with the infinite axis is purely imaginary,
which is okay. If I take the other intersections real it will satisfy the condition and
therefore the area will be [unintelligible]. [pictures]. The area is π2, so the index is
±1 and as another example, suppose it intersects differently [picture]. Then k = 0
and the picture has two parts. If its a circle, the area on the two sides will be the
same. With these conditions there is this jump by π2 in the area.

In this case the index also implies some condition. So it’s not hard to see that

−d
2

2
≤K ≤ d2

2
, and if K is maximal (torically maximal), it implies that the topology

of ((R×)2,RA) or the projectivization is unique. There’s only one possible type in
the maximal case. Furthermore it is the simple Harnack curve. This was a theorem
(M.–Rullgard) of 2000. This is the corollary of maximal possible area.

It’s always organized in the following way. If I draw [picture], there’s a similar
story of how it’s organized for the odd case. [picture]

In the next hour I’ll talk about indices for dimension three. Here let me mention
some applications to enumerative geometry, the ideas due to Gottsche. The idea
is to replace integer numbers in the classical enumeration porblem with quantum
numbers (like how many curves of degree d and enus 0 pass through 3d−1+g points).
The problem has a well-defined integer answer. The point of view advocated by
Goettsche and Kontsevich–Soibelman—[unintelligible]

In this question I asked, I started from the complex case, which is very sturdy,
almost always defined, sometimes we’re in the superabundant case but in the regular
case it’s an integer number, invariant, on the choice of constraints. Over real
numbers the story is much more delicate. We know it’s also an integer number, and
it was a breakthrough by Welschinger in 2003 but only for g = 0 (even now we don’t
know how to get rid of this). We take real points passing through a configuration
of points, assigning it ±1 which only depends on the self-intersections. For d = 3
and g = 0 we get 12 in the complex case and 8 in the tropical case. We get a
q-number for all g, if we plug in q = 1 we get the projective number and for −1 the
real number. This was one of the motivations.

Let me say how the quantum index for real curves gives an approach for real
geometry where we don’t need any tropical theory. We’ll have to modify the prob-
lem. So genus equal to zero will still be crucial. Instead of taking 3d − 1 generic
points, we’ll take 3d non-generic points. Maybe we’ll take the points on the real
axis. [pictures]
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We can note that Menelaus theorem imposes a condition on 3d points so that
there exists at least one curve of degree d passing through it.

Menelaus’ theorem, I have a triangle and I mark points D on AB, E on BC,
and F on the continuation of AC. When are D, E, and F colinear? Menelaus says
it’s true if and only if

∣DB∣
∣AD∣

∣CE∣
∣EB∣

−∣FC ∣
∣FA∣

= −1.

We’ll have to take ratios for all of our points, any 3d− 1 points uniquely determine
the last one. We’ll only consider Menelaus configurations. Then we ask how many
curves pass through this configuration. All of the story before makes sense, we just
lose a few curves that go to degenerations of this, go to reducible curves consisting
of three coordinate axes, three are lost.

Now we can do, set up a real problem, and solve each real cubic which passes
through this has a quantum index, we can enumerate all the curves separately. We
unfortunately don’t get an invariant. There’s a Z2-transformation since R is not
algebraically closed. We can take the square Frobenius map (x ∶ y ∶ z) ↦ (x2 ∶ y2 ∶
z2), a generically 4-to one map. Then we ask about curves RA whose image under
the square contains, passes through our Menelaus configuration, which is generic.
We ask not about the curve but it’s square.

We take the corresponding generating function. Now we define Rd of the config-
uration

Rd(C) =∑
RA
σ(RA)qK(RA)

where we take RA with orientation. This is the corresponding refinement of the
real count. It turns out that this agrees with the Block–Goettsche refinement from
tropical geometry.

Theorem 3.2. Rd

(q
1
2 −q−

1
2 )3d−2

= BG.

If you compute real curves with this index, it’s enough to count real curves to
compute the complex curves. This means that knowing only real curves, of course
heer we go through the doubling, but do it with the refinement by quantum index.
So the number of real curves determines the number of complex curves. On the
logarithmic scale multiplying disappears.

Let me make a break.
When it’s close to maximal there is still uniqueness. There’s still, the projective

topology is still unique. When we enumerate maximal index curves, the leading
power is always one. There’s a unique curve of maximal index, this is not quite
new, this appeared in 2006, a paper of [unintelligible]and Oukounkov.

We’ll also have one with a symmetry and one without in the three dimensional
world.

So now we have RA ⊂ RP3 of degree d, and we have two indices, one due to
Viro in the 90s and one to Welschinger around 2004. The real enumeration in the
plane, each planar curve had a particular sign, plus or minus, and so shortly after
his introduction of invariant count of curves in the plane, he generalized it to three-
space. Suppose RA is what he called balanced. That means its normal bundle (this
is genus 0), this splits into line bundles, the total degree is 4d − 2, and it means it
splits into two line bundles of degree 2d − 1 (example).

All subbundles of this normal bundle O(2d−1)⊕O(2d−1) of degree 2d−1 form
RP1, the space of all of them, take combinations of one and the other. Geometrically
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it means, our curve is some knot in projective space, but we have RP3 as the ambient
space instead of S3, and the subbundle, there are only a circle many of them, the
ones of maximal degree, they form a framing, each subbundle gives a framing of
the knot. The degree is odd, so the ribbon is the Mobius band. It doesn’t matter
which one I take. All of them sit in this pencil. This means the knot comes with
a framing, and a framing for a knot in a rational homology sphere is a number,
half-integer because this is not oriented. This half-integer is half-integer if d is
even, then we have an honest circle, and make a Möbius band, this is Welschinger
number is zero. We get half-integers or integers depending on whether it’s framed
orientably if d is odd.

I think it’s an interesting index but I cannot say much about this index. The
second index is the writhe which we will now consider.

This is originally, Viro called it encomplexified writhe. This doesn’t exist for
smooth knots. This is a finite type invariant of degree 1; for honest smooth knots
these start in degree 2. The Reidemeister I move would kill the writhe. So in degree
1, if we cross, the difference does not depend on the rest of the knots. The second
Reidemeister move we should get the same knot, so then it always doesn’t change,
it’s always trivial, there are no interesting Vassiliev invariants of degree 1. Then
we can explore and exploit the algebraic version, here we change our projection.
This is a spatial real algebraic curve, now we have a planar one. The number of
nodes cannot change. So the point cannot disappear. The planar curve will have
a point that is not visible or defined but in the algebraic world we have a special
point that is still preserved. Viro defined that we have the entire algebraic curve
including solitary singualarities x2 + y2 = 0, and Viro gave these a sign, either +1
or −1, seeing how it separates, and there is a way so that the Reidemeister move
preserves the sign. We’ll never do this using algebraic deformation, Reidemeister I.
So the writhe itself, the encomplexified writhe, is the total sum of all signs of the
knot.

So it is an index of a curve, integer valued invariant, and again we can see that

Vρ is between (d−1)(d−2)
2

and its negative, again this is a symmetric index by a
reflection. So plus and minus behave similarly.

Let me announce a recent theorem, joint work still in progress with Orevkov

Theorem 3.3. If Vρ is the maximal (or minimal) number, then (RP3,RA) is
unique, and this is a [unintelligible]knot. The smooth isotopy class—RA can by
isotoped (smoothly not algebraically) to a curve on a hyperboloid, we have a gen-
erator in one family and d − 1 in another family, and then smooth all of them
consistenly. This is the only knot which is rational. We call these hyperboloidal
knots.

If p and q are greater than 1 then different p and q give different knot types. We
can make (p, q) hyperboloidal ones, this kind is (d−1,1), and it’s not trivial for us.
The universal covering will lift (p, q) to (p + q, p − q). SO we already have several
different topological types.

The last remark I’d like to make is that there, for d up to five, this invariant
determines the topological type completely.
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4. May 12: Yanki Lekili: Koszul duality patterns in Floer theory

Thank you for the invitation, it’s my first time in Korea. I’m here for two weeks,
so I’ll give two talks, interrelated but on different papers, but I’m generally available
to talk to. This is joint with Etgu.

This is about Lagrangian Floer theory and a manifestation of Koszul duality
there. Let me start by reviewing some classical topology which was an entrance
point.

Say X is a smooth manifold. Let me require that it is simply connected, and
pick a point p in X, this will be the input, and associated to this I’ll consider two
augmented dg algebras. The first, which I’ll call A, is the cochains on X, and
this has a natural augmentation C∗(X) → k from the inclusion of the point in
X. The second algebra is B = C−∗ΩpX → k, which has an augmentation given by
contracting everything except the constant loops at p. An augmentation is a dg
algebra map to the ground field. Then we consider RhomA(k,k) and get something
isomorphic to B, and if we look at RhomB(k,k), we get something isomorphic to
A. These are theorems, classical results, I don’t know the correct attribution very
well, but the first one is maybe the Adams cobar construction and the second one is,
I think maybe Milnor–Moore or Eilenberg–Moore or some classical topology. Both
are remarkable theorems. For me the first one, I sholud say the second one holds
true without simple connectedness. The first one requires simple connectedness.
In general, you get some kind of completion of B. One thing I should maybe
emphasize is that, I had a finite dimensional compact manifold in mind so A is
finite dimensional, and B is infinite dimensional, usually, but this gives us a way to
compute it.

Another consequence is that this kind of duality induces isomorphisms at the
level of modules of these guys, so that HH∗(A,A) ≅HH∗(B,B). This is a general
statement, this, soon I’ll change the statement, whenever you have A and B with
these two isomorphisms, you have this Hochschild isomorphism. So in this case
HH∗(A,A) is the homology of the free loop space H∗(LX), the free loop space,
I’ll attribute this to Jones.

Here on H∗(LX) there is a natural BV structure given by loop rotation, I don’t
know whether this is the level at which they’re isomorphic. At least Gerstenhaber
algebras are known.

Now I would like to interpret all of this in the language of symplectic geometry.
I’ll call these algebras different names, just a reinterpretation.

To study the smooth topology of X, we pass to its cotangent bundle and get
a symplectic manifold T ∗X, and there’s increasing evidence that T ∗X captures
the smooth topology of X. We have two canonical Lagrangians. The first is the
zero section X. Let me remind you that the symplectic form is dq ∧ dp. The
cotangent fiber T ∗pX at a point in X (this is a different p, our basepoint) is q = 0.
We have A the Floer complex CF (X,X) and B the wrapped Floer cohomology
CW ∗(T ∗pX,T ∗pX). The first one here is Fukaya–Oh, and the second is Abouzaid.
These are chain level statements.

So now what about the augmentations. Here is our cotangent bundle. We
have these cotangent fibers. We have a specific choice (X is the zero section)
and geometrically they intersect at one point. Floer cohomology is an intersection
theory. You isotope a pair of Lagrangians to intersect at isolated points and these
points generate Floer homology. This prescription is true if one is compact, so if
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X is compact then CF (X,T ∗pX) ≅ kp. When I have a noncompact Lagrangian,
then pushing away from the first copy by a diffeomorphism is ambiguous, I have a
noncompact thing. So one does a “wrapped” construction. Let me draw the picture
for the cotangent bundle of S1. [pictures, words]

As I said, if X is compact we don’t have to do this, this is only when I do non-
compact with noncompact. Now I’d like to emphasize the following picture. When
I have Floer cohomology, there is a natural product CF (X,X) ⊗ CF (X,T ∗pX) →
CF (X,T ∗pX), since these are hom spaces of our category. In this situation, we
have just this k as our intersection, so we have a natural way of making this
one dimensional space a module. We actually have an A∞ structure, so we have
(CF (X,X))⊗m ⊗CF (X,T ∗pX) → CF (X,T ∗pX), and this is actually an A∞ mod-
ule, and we can do the same in the other case and we get these module structures
for B as well, and this gives the A∞ augmentation. In this way the vector space k
becomes a module for both algebras.

The second isomorphism says the following:

Rhom(CW ∗(T ∗pX,T ∗pX))((CW
∗(X,T ∗pX)), (CW ∗(X,T ∗pX)))

this should be CF ∗(X,X). This should be obvious from the Yoneda embedding
along with the fact that the cotangent fiber generates the wrapped Fukaya category
of the cotangent bundle.

I have the wrapped Fukaya category, which has objects given by both compact
and noncompact Lagrangians. In particular, the compact part sits inside here fully
faithfully. If I look at modules over this, this is modules over the endomorphisms of
the wrapped thing. The compact Lagrangian X is an object in the wrapped Fukaya
category, and by Yoneda it goes to CF (X,T ∗pX). That is, I could first apply the
Yoneda map and then compute its endomorphisms.

This doesn’t use the fact that X is simply connected. The second statement
is much more surprising in symplectic topology. It says the following. I have
Fuk(T ∗X), which sits inside the wrapped Fukaya category which allows noncom-
pact Lagrangians. If I use the Yoneda map, I could compute hom spaces for
Fuk(T ∗X) which sits inside. If X is simply connected, then the theorem says
that mod −WFuk(T ∗X) is fully and faithfully embedded in mod −Fuk(T ∗X).
So then L goes to CF ∗(L,X), and surprisingly when [unintelligible], this is fully
faithful.

So I can compute the maps in the wrapped category using only morphisms
between the compact Lagrangians.

Given that we understood this interplay in this situation (and I should remark,
this situation also implies that HH∗(WFuk(T ∗X)) ≅ HH∗(Fuk(HH∗(T ∗X)))
when X is simply connected.)

I’d like to generalize to more symplectic manifolds where there is no classical
analogue.

One immediate generalization of this kind of Koszul duality is in working over a
semisimple algebra.

Let’s work over k = ⊕i kei with e2i = ei and eiej = 0 for i ≠ j. I learned this
from Beilinson–Ginzburg–Soegel. Say that A and B are augmented to something
like this, k. Then you can study this situation, do you still have RhomA(k, k) ≅ B
and RhomB(k, k) ≅ A? Here A and B will be the Fukaya category of compact
Lagrangians and the wrapped Fukaya category.
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I have several objects now, instead of one pair of dual objects, I should have
several objects dual to each other. Let’s say I have a compact (simply connected)
Lagrangian, and we have a cotangent fiber dual to it [picture]. I want several objects
like this. I’ll take several spheres like this, they’ll be compact Lagrangians, and
then dual Lagrangians. These will be objects in a symplectic manifold. Then S =
⊕Si, the compact Lagrangians, and I can construct L the sum of the non-compact
Lagrangians. Then A is the endomorphism algebra of S and B the augmentation
algebra of L. I can identify the augmentations as maps to k = CF (Si, Li). I drew
my pictures so that this is one of these idempotent rings.

Now I can still, I have A and B and I have k as a module over A and B, and I
want to check if I have RhomA(k, k) ≅ B and RhomB(k, k) ≅ A. I should tell you
the geometry behind it, the space and the Lagrangians I mean.

I’ll start from a finite tree Γ [pictures] and to each vertex I’ll take a copy of
T ∗S2. To each edge I’ll do a plumbing operation. I’ll get a symplectic manifold in
which this configuration sits naturally.

So what’s plumbing? This is a topological construction that can be done in
symplectic topology as well. When I have a cotangent bundle, I locally have p and
q coordinates. I pick a point in the base and I concentrate near the point where I
have these coordinates. What I’ll do is glue this to another cotangent bundle near
a point, where the coordinates p and q are interchanged. So (p, q) ↦ (−q, p). This
operation, you do this, you identify these squares by this gluing and then smooth
out the corners, interchanging the fiber and base directions. This can be done in a
symplectic way. Maybe a helpful example is to imagine the plumbing of T ∗S1 with
itself.

When you do the plumbing the zero section survives for each and they intersect
transversally. Outside of the plumbing region we see just the cotangent bundle of
each piece. This is not the case I’m studying, I’m plumbing T ∗S2 because I want
simply connected things. The corresponding picture here is I get configurations
of spheres, which intersect in this pattern, according to the tree, and away from
the plumbing regions, we see cotangent bundles. So I can take points away from
the plumbing regions and get cotangent fibers. These will be my non-compact
Lagrangians. This is a symplectic four-manifold with the configuration I like, I
built it that way, but for certain trees, this manifold apperas in algebraic geometry
as well. For Γ of type A, D, or E, I have these as well, and the symplectic manifold
XΓ that I constructed here can also be seen as the symplectic manifold associated
to a smoothing of the corresponding singularity {zn+1 + xy = 1}, this is the An
singularity. If I smooth this, I get a Milnor fiber, which is precisely this plumbing.
These were the ones I was studying originally, and then I came across this Koszul
duality story.

We now have these symplectic mainfolds for any tree, and we have Fuk(XΓ)
and the wrapped Fukaya category WFuk(XΓ). Then we can write A = Hom(S,S)
where S is the sum of the spheres and B as Hom(L,L), where L is the sum of the
cotangent fibers. Then we have k = Hom(L,S), and this is an A and B-module.
Then I’ll describe an explicit computation of A and of B and then describe that
they are Koszul dual.

So now we’ll compute these things and get explicit algebras that come out. One
could say that the rest of this talk is almost purely algebraic. So let me describe A
and B. The computation of A and B are in some sense very different. We have to
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introduce some notation. We have A and its cohomology H∗A, and B and H∗B.
So let me compute cohomology of A, that’s the easiest one to compute. So this is

⊕HF ∗(Sv, Sw), and by construction these are exact Lagrangians, non bounding
disks, in an exact Lagrangian. Then HF ∗(Sv, Sw) = H∗(S2). Furthermore, if I
have adjacent ones, I just get a copy of k, and I have to determine the grading,
there’s an extra structure on the Lagrangians, a grading structure, if I choose one
to be in a certain grading, the opposite one will be in 2 minus that grading. I
can choose these to be in degree 1. I don’t intend to discuss grading or signs in
detail. It’s just very hard to write or explain on the board. Therefore, additively, I
computed this algebra, the product is clear, but what about the product of different
objects? I have a Calabi–Yau so I have a Poincaré duality. I should get the degree
two generator of H and that determines the algebra structure. I’ll let av,w be,
I double the tree and put edges in the opposite directions, and I say av,w goes
from v to w, and the algebra is generated over the semisimple ring by these guys,
av,waw,u = 0 if v ≠ u and aw,uau,w = aw,vv,w. This is the algebra. What about the
A∞ structure? Potentially you have an A∞ structure. I basically see the picture. I
don’t see any products in the picture, so maybe the higher products you think are
zero, you have to perturb and what you can say is the following.

You can’t directly compute but in certain situations, if Γ is ADE type, then over
a field k of characteristic zero, HH2(H∗A,H∗A) is 0. What this means is that
because of deformation theory of A∞ algebras, the higher products on an A∞ alge-
bra, if the second cohomology is zero, you can always find a gauge transformation
to trivialize the higher products. So by deformation theory we conclude that A is
quasi-isomorphic to its cohomology, it’s formal.

Here’s an important thing, I said characteristic zero here. I made a mistake
previously. In fact, this is nonformal in other characteristic. There was a correction
to the paper because of this. For Γ = An, the characteristic of k is irrelevant, and
H∗A ≅ A, because the second Hochschild cohomology is zero (Seidel–Thomas). For
Dn, the calculation is quite involved, and you compute it and if the characteristic
is not 2, then HH2

<0 is zero, and so the cohomology of A is quasi-isomorphic to A.
In characteristic 2, there is a class in HH2

−3(H(A),H(A)), which is just Z2, just
k. There is a two-torsion class and potentially that class could be realized by our
structure. We have our geometry, we can check, and see that it does, then over
characteristic 2, H∗A is not quasi-isomorphic to A. The smallest example is D4,
as soon as there is a trivalent vertex you get this failure. The Fukaya A∞ algebra
associated to this, is not formal in characteristic 2. If you care about geometry, you
can’t assume characteristic zero, you’ll miss this. You have a holomorphic curve,
we can’t get rid of it geometrically.

For E6, E7, and E8, in these cases, a similar story, I just have to tell you
exceptional characteristics, for E6 and E7 you have characteristics 2 and 3, for E8

you have 5 as well. In these characteristics you have higher products. I can’t quite
say the precise answer for characteristic 3 and 5 but characteristic 2 is precisely the
same.

Away from these problematic characteristics, we have formality by deformation
theory and computed A. So let me discuss how to compute B. In the non-ADE
cases, the Hochschild homology is huge, I can’t decide if A is formal or not.

So B is the wrapped Floer homology, ⊕CW ∗(Lv, Lw), and there’s a result of
Bourgeouis–Ekholm–Eliashberg, that this is the same as LCH(ΛΓ) for a link Γ,
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this is a nontrivial result, an anouncement of the result is on the arxiv, 90 pages,
I’m just using this, making claims about LCH. So what it says is the following.
Any Weinstein manifold is obtained by surgery on a Legendrian submanifold (so a
3-manifold by surgery on a Legendrian link in a connect sum of S1 × S2—in our
case we will have no one-handles so it will be in S3). The picture is like this. I
have the 4-ball and the boundary S3 with a standard contact structure, and I hav
some Legendrian links. These are embedded 1-manifolds tangent to the contact
structure. With such a link, you can attach a handle along that link, a 2-handle.
When we attach this handle, what happens? The handle has a core part attached
to the knot, and the dual cocore. [pictures]

Therefore the right thing for us is to have links of unknots linked as a Hopf link
links, along the tree. So each double point in the Lagrangian projection is a Reeb
chord. I get 2e + v chords. If I do surgery on these guys I get the manifold I was
initially thinking about. This is a surgery description. What Bourgeois–Ekholm–
Eliashberg tell me is that now I can just look at LCH on these links.

Now we write down a presentation of our dg algebra that will be our B. So let’s
just first start from the simple case, and I’ll tell you the simple case is too simple.
It’s generated by double points, so gv,v, by gv,w, and gw,v. For each vertex I get one
double point and for each edge I get two. So I get an augmented tensor algebra,
k ⊕ V ⊕⊕V ⊗k2 ⊕⋯ and the differential counts polygons in this picture. There are
obvious ones, dgv,v = gv,wgw,v, and there is another one, these triangles are the only
contribution to the differential. That’s how you read this off.

But originally, this presentation depends on the choice of the diagram, you can
isotope these guys and get something more complicated. Originally we drew a
diagram we thought was clever to not have any higher polygons. As it turns out,
this is not true in the Dn case, and this simple situation with triangles, as soon as
you have more valent vertices, you have more gons. In the Dn case, here you have
D4, this is the guy responsible for nonformality. [pictures]. You get dg2 = g23g32 +
g24g42 + g21g12 + g23g32g24g42. We proved that you can find a quasi-isomorphism
from this one to the one without the product in different characteristic. This is the
wrapped Floer cohomology of the cocores. The quadratic one contributes to the
algebra and this one to the µ4 in the dual.

So ten more minutes. Maybe I’ll say a word about Hochschild cohomology. So
A and B are computed this way, this guy has a name, the one without the higher
product is the Ginzburg algebra, so this is a deformation of GΓ, considered by
Ginzburg, I don’t know why, but if you do this computation, we get the Ginzburg
dg algebra, and if Γ is ADE and the characteristic is not one of the problematic
ones, then BΓ ≅ GΓ, by computing Hochschild cohomology of GΓ. So for Γ not
ADE, I don’t really know, I expect this in characteristic zero, and I can prove this
if I complete things, if I take power series. This algebra is just words, but I don’t
know in general.

Finally, my main motivation was to compute symplectic cohomlogy of ADE
plumbing, so SH∗(XΓ) is given byHH∗(BΓ), this is Bourgeois–Ekholm–Eliashberg,
but BΓ is this infinite dimensional Ginzburg algebra, but then we can compute this
with the Hochschild cohomology of the A algebra, but by Koszul duality between AΓ

and BΓ, this is the same as the Hochschild cohomology of AΓ, but it’s a formal A∞
algebra, a finite dimensional associative algebra. Then you can compute Hochschild
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homology, there’s a periodic resolution. Therefore we obtain the complete compu-
tation. You can use different resolutions. So this we computed explicitly for Γ = An
and Dn and the E cases on the way. What’s the answer? Can I give it? It turns
out that SH0 is the Jacobian of a function W , which is associated to the corre-
sponding ADE graph. This is, we computed this as an algebra, generators and
relations, and we just observe it’s this one. If you had a mirror matrix factorization
category where the potential had isolated critical points, then [unintelligible]of the
matrix factorization category is the Jacobian. The story doesn’t end here because
the critical points aren’t isolated, SH∗ is generated by SH0 and two other vari-
ables, in degree 1 and −2, free variables, the odd variable the square is 0 and the
even variable. This is the form of the answer. As far as I know this is the first
complete computation of symplectic homology, we can say things about the BV
algebra structure, away from cotangent bundles, at least to first order.

5. May 19: Yanki Lekili: Talking about my G-generation

The title that I gave is the name of a song by the Who, but it’s not very
well-known, so, I’m talking about generating Fukaya categories of Hamiltonian
G-manifolds. This is joint with Jonny Evans. Thanks again for the invitation.

Let’s set up what I’m talking about. X is a compact symplectic manifold and
for technical reasons or convenience I’ll assume it’s monotone. That will make my
Fukaya categories defined over the integers. Monotone means the symplectic form
is positively proportional to c1, it’s a useful condition for removing some technical
problems. It’s crucial in working over the integers or a finite field.

So I have this compact symplectic manifold, the second part of the geometric
setup is a Hamiltonian G-action. So G is a compact Lie group and G acts on X in
a Hamiltonian fashion, in particular we have a moment map µ ∶ X → g∗. What I
will next require is that µ−1(0), the preimage of zero under the moment map, this
will be in general coisotropic, but I’ll require it to be Lagrangian, and I’ll require
that G acts on µ−1(0) freely and transitively.

In other words, µ−1(0) will be a Lagrangian submanifold isomorphic to G. This
is the geometric setup. The way one can think about it, X is our ambient symplectic
manifold, G is a Lagrangian, then T ∗G is a neighborhood of this, and the remaining
part is a divisor. If G is a torus then this is a toric variety. The preimage of the
interior of the toric polytope is the cotangent bundle and the preimage of the
boundary is the divisors.

I want to extend this kind of picture to more compact Lie groups because toric
varieties have been studied quite extensively. I’ll usually think of a simple Lie group
like SU(n) but you can also, you can have SU(n)×S1. For me it will be a torus or
a compact Lie group. You can study different ones. I gave lots of examples where G
is a torus. Let’s look at other examples, when G is not a torus. There is an action
of U(n) on the Grassmannian Gr(n,2n), and so Gr(n,2n) is of this form. There’s

an action of PSU(n) on CPn
2−1 and this gives an interesting decomposition. Here’s

an example, SU(2) acts on the quadric three-fold, and remember quadric n-folds
are T ∗Sn ∪Qn−1, so here that’s T ∗SU(2) ∪ S2 × S2. So there are many examples
where G acts on the symplectic manifold and you get this kind of definition. The
theory is not empty at all.

What we want is to study Floer theory of this particular Lagrangian. Let me
try to state the theorem. I have to prepare one more thing before I can state it.
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If I have this monotone symplectic manifold X and say I’m working over a field,
then look at the quantum cohomology of X, this is a vector space over k the same
size as the regular cohomology but with deformed ring structure, and I can always
decompose it into idempotent pieces,

QH∗(X) =⊕
α

eαQH
∗(X)eα

where eα are a complete set of primitive idempotents that sum to the identity.
There is a “closed-open map” from QH∗(X) → HF (L,L), which makes the

Floer homology into a module over this ring, and the idempotents decompose this
module:

HF (L,L) ∶=⊕
α

HF (Lα, Lα).

I can lift this to the chain level up to homotopy so I get a decomposition of the
Fukaya category into independent summands

CF (L,L) ≅⊕CF (Lα, Lα).
The different summands don’t talk to each other in the sense that HF (Lα, L′α′) = 0.
When one studies this, one studies each summand, and now I can state the theorem.

Theorem 5.1. Let p be a field characteristic such that H∗(G) has no p-torsion
(vacuously satisfied if p = 0). Then G = L = µ−1(0) (in the sense of split generation
for triangulated categories) the Fukaya category F (X)α if and only if HF (Lα, Lα) ≠
0.

This last condition means that the summand in the object is nonzero. If it’s
zero, there’s no point of generation. An interesting question is which summands it
projects as nonzero. Let’s just suppose that there is only one summand. Then this
says the object generates the category if and only if the cohomology is nonzero. In
particular it applies to toric varieties and then some of this was known.

Lets look at one of the examples I was talking about. QH∗(CPN) isK[H]/HN+1−
1. If chark ∤ N +1, then this is a semisimple ring, which means it’s a direct sum of
copies of k corresponding to roots of unity. If the characteristic of k divides N + 1
then this is far from being semisimple. Then for example, L = PSU(n) in CPn

2−1

generates if n = pk for some k.
In the toric Fano case, Tn ⊂X, for any α there is a local system ξα so that Tn, ξα

generates F (X)a.
[another example]
One thing I’d like to discuss is, there is a general generation criterion due to

Abouzaid, and a followup by Abouzaid, Fukaya, Oh, Ohta, and Ono, which says,
if X is compact, take HH∗(⟨L⟩) → QH∗(X) via the open closed map, and if this
map, the open-closed map. If the open closed map hits 1 then ⟨L⟩ generates.

[missed some]
Of course, as I said, geometrically the meaning is about intersection of La-

grangians. But I want to think about representation if I care about mirror symme-
try, generating objects on either side could be matched up for this.

Now I want to outline the three steps in the proof.

(1) The first step is to understand the wrapped Fukaya category of T ∗G. There
will be two important Lagrangians, the zero section and the cotangent fiber
at the identity. I want to understand the Floer cohomology of G with itself
and the zero section at the cohain level.
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(2) I want a correspondence C in T ∗G ×X ×X. This is easy to write down a
formula for, it’s

(g, µ(gx), x, gx).
This was intoduced by Weinstein, and there is a study of it by [unintelligi-
ble]and [unintelligible]but I learned about it from Telleman.

For us, FC will be W (T ∗G) to Fuk(X × X). So FC(G) = L × L and
FC(T ∗idG) is the diagonal of X in X ×X.

(3) Something to do with Koszul duality, it’s not easy to explain what it is.
What happens, in words, in the domain wrapped category, the cotangent
fiber generates the zero section. We push down to the diagonal, so the
diagonal generates L ×L

Maybe I should in more down to earth way say, this is a consequence of
the octahedral axiom that we’ll see.

That’s the plan, let’s begin with 1. This is somehow classical and can some-
how be understood in an independent way. We have CF (G,G) ≅ C∗(G) and
CW (T ∗idG,T ∗idG) ≅ C−∗(ΩidG).

I want to study the right hand sides. When G is Tn, then C∗(G) is H∗(Tn) ≅
∧⟨x1, . . . , xn⟩. On the other hand C−∗(ΩG) is k[y±11 , . . . , y±1n ]. If G is a non-Abelian
simple compact group, then G is rationally equivalent to a product of odd spheres.
For example SU(2) ≅ S3 and SU(3) ≅Q ×S5. In fact there’s a theorem of Serre

that this is true over p for p ≥ dimG
rankG

− 1.
Here I’m talking about homotopy groups. I care about the A∞ structure of the

cochains.
Let p be a prime so that H∗G has no p-torsion, then C∗G ≅A∞ H∗G = ⋀⟨x2ei+1⟩.
This is kind of a strange thing, when the characteristic is zero, there’s nothing

to do, when the characteristic is large there is nothing to do, so we only had to do
small characteristic. There is a paper of Munkolm from which I put together an
argument. Similarly, C−∗(ΩG) ≅ k[y1, . . . , yn].

Furthermore, there’s something called the Koszul resolution, Abouzaid has the
result that the cotangent fiber of G generates G. In this case we understand what
these are and we can write down what these are. This is the Koszul resolution.
Geometrically it looks like a cube. Let me give an example for G = SU(2). This is,
G = {T ∗idG[2]→ T ∗idG}. For SU(2) we’ll have a square

T ∗idG
// T ∗idG

T ∗idG

OO

// T ∗idG

OO

It’s easy to see that G goes to L × L and T ∗id goes to ∆ under FC ∶ W (T ∗G) →
Fuk(X ×X).

Let’s take SU(3) as before. Then G goes to L×L, this is a triangulated functor.
It goes to a square

∆ // ∆

∆

OO >>~~~~~~~~
// ∆

OO

where the maps are F 1(y1) and F 1(y2). The diagonal map is F 2(y1, y2)+F 2(y2, y1).
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It’s important to see that the directedness is preserved. For our arguments, it
suffices to understand what happens on the edge maps.

So we deduce that the diagonal generates L×L. I said I want L×L to generate
∆. The claim here will be the following. The edge maps are quantum cohomol-
ogy maps, remember QH∗(X) ≅ HF (∆,∆). This is a commutative algebra on a
finite dimensional vector space. Any element x in a summand QH∗(X)α is either
nilpotent or invertible.

Let me restrict to ∆→∆ representing L ×L. If the morphism is invertible then
this is the zero object. If x is nilpotent then I claim L × L split generates ∆. If
x = 0 then L × L = ∆ ⊕∆. Then L × L split generates ∆. Suppose instead x2 = 0.
What do we do then? Then we consider the following diagram.

∆ // ∆

||yy
yy
yy
yy

// ∆

||yy
yy
yy
yy

L ×L

bbEEEEEEEE
L ×L

bbEEEEEEEE

If I take the cone I get ∆⊕∆. The octahedral axiom says that taking this big cone
is the same as taking the cone of the morphism L ×L→ L ×L

Now we have something we got in two steps, built out of L × L. If x3 = 0 I’ll
need to do this three times or whatever.

If any direction is not nilpotent, the complex becomes nilpotent. If all directions
are nilpotent you can again play this game.

I’ll finish with an application. We have an application about, a non-formality re-
sult about the chain complex of quantum cohomology. IfX is monotone symplectic,
such that QH∗(X) is not semisimple, there are examples of this kind by Ostrover-
[unintelligible], there’s an example of a Fano 4-fold. Over characteristic zero (for
concreteness; it’s easy over other characteristics as well), the chain complex qH∗

(the chain complex) is not formal. There’s an A∞ structure then, on HF (∆,∆).
This was mentioned in a paper of Ruan and Tian, people early expected that this
might be formal for Kähler manifolds, but it’s not true. It’s not true generically
because usually you don’t have semisimple quantum cohomology.

So how do we prove this? It’s an application of our theorem. Say X is one of
these guys. If A is a commutative algebra and is not semisimple, then HH∗(A)
is infinite dimensional. For semisimple algebras this will be finite dimensional. I
assume that quantum cohomology is not zero. If I can show that QC∗(X) is finite
dimensional, I’ll be done. If they were isomorphic, their Hochschild homology would
be isomorphic. So we’d like to show that HH∗QC∗(X) is finite dimensional.

Suppose I arrange things so that L generates. I did this by showing that
⟨L × L⟩ = ⟨∆⟩. If I look at Fuk(X ×X) to nonunital endofunctors of F (X). This
is full and faithful on product Lagrangians. This is due to Abouzaid and Smith.
Then this is fully faithful on ∆, which goes to the identity functor. So CF ∗(∆,∆)
goes to HomFun(id, id) ≅ CC∗(X). Then at the level of cohomology it’s an isomor-
phism, HF (∆,∆) ≅ HH∗(X). Then QH∗(X) ≅ HH∗(F (X)). This is because
we could generate the diagonal by product Lagranians. We want to show that
HH∗(QC∗(X)) is finite dimensional. This is the same as HH∗(CF (∆,∆)), this is
the same as HH∗(CF (L×L,L×L)). Now apply our generation criterion to L×L,
which is also a monotone toric fiber. Then, up to summands, this is QH∗(X ×X),
the result above applied to X ×X. Via this we have a computation of this and then
we are done because quantum cohomology is finite dimensional.
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6. July 14: Craig Westerland: Homology of Hurwitz spaces and the
Cohen–Lenstra heuristics for function fields

Thank you for the invitation and thank you for coming to listen. Indeed the
title that Gabriel gave you is the long version. The short version is “arithmetic
statistics.” I hope to talk about Cohen–Lenstra as well as another topic. This is
joint with Ellenberg–Venkatesh–Tran. The first is with Ellenberg and Venkatesh
and the second with Ellenberg–Tran.

Let me try to tell you the general theme, which is to study arithmetic questions
in a probabilistic or distributional sense. I’ll give you very concrete examples of
what I mean as we go along.

These problems are arithmetic, originally defined over number fields. I have no
idea how to address those problems. What I’ll be talking about is a reformulation
of these problems over function fields and when you do this, one of the things that
comes out is a much more geometric picture. The geometric picture allows us to
address these problems using algebro-topological tools.

We will sort of solve these problems using algebraic topology. In summary,
the problems began in what would be called classical number theory. They get
translated into algebraic geometry, but the solution is approached from classical
algebro-topological tools.

If I time this correctly, in the first half I’ll tell you about the number–theoretic
conjectures and translate into algebraic geometry and in the second half talk about
using algebraic topology to solve them.

Let me start with the setup, some number theory probably well-known to all
of you. I have a number field K over Q of degree n, a degree n extension of
the rationals. I want to write down a few things that are the basics of number
theory over this field. I’ll let OK be the ring of integers, these are the elements
{x ∈ K ∶ f(x) = 0} where f is a monic polynomial over Z. Because this is a
degree n extension, this is abstractly isomorphic to Zn, and what I can do is pick
a basis, Z{e1, . . . , en}, and I know that there are n embeddings σi ∶ K → C, and
I can put these two things together and let the discriminant ∆K be the square
of the determinant of the matrix given by all of the basis elements under all the
embeddings

∆K = det(σi(ej))2.
The problems we will study is about arithmetic in a distributional sense, and the
discriminant is the filter that allows us to do the distribution.

Let me remind you that if K = Q(
√
d) is degree 2 (for d squarefree) then the

discriminant is either d (if d is 1 (mod 4)) or 4d (otherwise). The basis is 1,
√
d,

and the determinant is 2
√
d.

I can state a conjecture which I have been told is possibly due to Linnik?

Conjecture 6.1. Let x ≥ 0. Let Zn(0, x) be the number of number fields K/Q
of degree n such that 0 ≤ ∆K ≤ x. This is a finite set. For instance, if n is two,
I’m looking at quadratic number fields, then the discriminant is either d or 4d. So
there are at most basically x

4
of these. Maybe these should be in C or something.

So the conjecture is about the growth of this as a function of x.
Linnik’s conjecture is that Zn(0, x) grows asymptotically linearly in x.

This is known to be true in several cases. When n = 2, you could swap 0, x with
−x,0, but let’s stick for the moment with the positive discriminants, then d should
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be positive, so real quadratic fields. If n = 2 then this is true, then counting Z2(x),
this is approximately the number of squarefree integers less than x or 4x, and it’s
fairly easy to show that this is asymptotically x

ζ(2) . This requires that we know

how to count squarefree integers.
For n = 3 this is a theorem of Davenport–Heilbronn. So for instance Z3(0, x) ∼
x

12ζ(3) and in the negative direction Z3(−x,0) ∼ x
4ζ(3) . For n = 4,5, this is work

of Bhargava and again you have interesting constants. Bhargava and collaborators

improved the Davenport–Heilbronn work to give the second order term with is x
5
6

times a constant that is zeta-function-y.
Any questions? What I want to do is give two more conjectures and evidence

for them and then finally start talking about proving them.
Let K/Q be degree n. Notice that the Galois group Gal(K/Q) acts on {σi}

transitively. What do we know? This is a transitive subgroup of the symmetric
group on n letters. Let’s reverse engineer the question. Let G ≤ Sn, and be a
transitive subgroup. Then we can ask, let’s define ZG(x) (for simplicity I’ll only
do positive x) as the number of K/Q of degree n with ∣∆K ∣ ≤ x and with Galois
group isomorphic to G. I want to count those.

Conjecture 6.2. (Malle) ZG(X) ∼ cxa log(x)b−1 where a, b, and c are constants
which depend on G. In the paper he tells you what a and b are and asserts the
existence of c.

The constant a is defined entirely in terms of the group theory of G and b uses
the absolute Galois group of the rationals, its action on G.

I don’t know about you, but this looks somewhat innocuous when you first look
at it, you say “okay, that’s a formula,” but that implies a very very strong positive
solution to the inverse Galois problem. Pick your favorite group. It’s a transitive
subgroup of some symmetric group. Not only does it exist as a Galois group, but
it does so infinitely many times, in a way growing as the discriminant.

One thing Malle proves in his paper is that if this conjecture is true, then Linnik’s
conjecture is true (this is not surprising, it comes from adding up Malle’s numbers
over all transitive subgroups of Sn). This is again stupidly easy if n = 2, and more
deeply than that, it’s a theorem of Wright that this is true if G is Abelian. This is
misleading to state this in this way, it was proved before Malle and was a foundation
for Malle’s conjecture. If you fiddle with Davenport–Heilbronn, then this is true
for G = S3 because there aren’t many transitive subgroups of S3.

For a symmetric group a and b are both 1.
One more round of definitions and theorems and we can move on to new things.

Let ClK be the class grop of K, this is the Picard group of SpecOK and more
directly it’s the fractional ideals of OK modulo the principal fractional ideals. It’s
the Galois group of the maximal Abelian unramified extension of K. This is the
version that will be most useful for us in what is forthcoming. What can I say
about it? It will always be a finite Abelian group and it is trivial if and only if
OK is a unique factorization domain. So it knows something about the structure
of the ring. In Malle’s conjecture, we asked, let’s count the number of fields with a
specified Galois group. Now you could ask about counting the fields with a specified
class group. That’s what the Cohen–Lenstra heuristics do, but let me state that in
a probabilistic context.
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Conjecture 6.3. (Cohen–Lenstra) For K = Q(
√
−d), the conjecture predicts that

if you tell me your favorite finite Abelian ℓ-group (for ℓ some prime), the conjecture
tells you the probability that that is the ℓ-part of the class group of K. I want to
say that the probability that A is the ℓ-part of the class group of K, I count the
number of such K whose class group has ℓ-part isomorphic to A. That’s an infinite
set. I’ll make it finite by asking that ∣∆K ∣ ≤ x as before. Then I’ll compare that
number to the number of fields K with ∣∆K ∣ ≤ x. This is the probability that your
field has class group with ℓ-part A, conditional on ∣∆K ∣ being small. Let x → ∞
and they tell you this is

(
∞
∏
j=1
(1 − ℓ−j)) 1

#Aut(A)

If ℓ is three, this normalizing factor is something between 2
3
and 3

4
. But what

this tells you is that the probability is inverse to the size of its automorphism group.
This is the “natural way of counting things in a groupoid.” So this has a category–
theoretic reason that it’s a pleasing answer, sort of an orbifold Euler characteristic
answer.

Again, this is not known, but there is lots of evidence, lots of computational
evidence. Cohen, who is a computational number theorist, did a lot of these com-
putations, he counted these numbers up to discriminants very large. It started
looking like this. He showed this to Lenstra and they started finding lots of reasons
this might be true. I went to a conference on these heuristics a couple of years
ago. This and related questions were posed. Someone asked such a question in the
morning. At lunch, Cohen got out his computer, wrote a program, and computed
up to 107 and was like “yeah this is probably true.” People even hassled him for
only going up to 107. It blew me away that you could do something like this.

There are variants in other Galois situations. You needn’t do imaginary qua-
dratic. You could do real quadratic, you could start doing cubic and quartic fields.
Cohen and Lenstra have conjectures but it’s clear in their papers that they believe
their conjectures less and less as you go up.

I should say to set this up, there is a reformulation, this is equivalent to the
statement

lim
x→∞

#{(K,f)∣∣∆K ∣ < x, f ∶ ClK ↠X}/ iso
#{K ∣∣∆K ∣ < x}

that is, the expected number of surjections from ClK ↠ A, and it’s equivalent to
that being 1.

The previous one states what the probability measure is, and this is testing it
on particular values.

I’d like to translate these into algebraic geometry. Linnik’s conjecture will be
implicit, let me tell you about Malle and Cohen–Lenstra. I want to replace Q with
Fq(t). So Let q = pm for p a prime, and I want to look at K/Fq(t) of degree d.
The ring of integers, SpecOK is now the ring of functions on a curve over Fq. call
Σ = Spec(OK). So Fq(t) is the ring of functions on the affine line, A(Fq), and this

becomes a map Σ
πÐ→ A(Fq) which is a ramified cover of degree d.

So how did we begin the talk? We looked at extensions K of Q and counted
things. You can do the same thing, but you can interpret the things we’re counting
in a geometric setting.

So let’s ask the same questions, but what can we do about them? We can
translate what the Galois group is, Gal(K/FQ(t)),this is the same as Aut(Σ/A1),
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the group of deck transformations. Similarly, the class group ClK = Gal(KAb,ur/K),
this is also a group of deck transformations, Aut(ΣAb,ur/Σ), an actual cover, the
maximal one so this is Abelian and unramified.

Finally, ∆k is qn where there are n branch points of π. Over Q where does this
come from? A prime p divides ∆k if and only if the ideal (p) ramifies in OK . In
the geometric side, the same thing is true except that ramification corresponds to
branching. So we’re counting ramifications in the cover.

So all of these conjectures, Malle and Cohen–Lenstra, what are they? They are
asymptotic enumeration problems. In the number field setting, they are enumer-
ations of number fields, which are not points in something. But this geometric
thing, we can ask the same exact question, but these are now points in a scheme.
These are asymptotic enumeration problems in a moduli scheme, and I may as well
say, in a Hurwitz moduli scheme. We’ll come up with a scheme whose points are
in bijection with this data and count those points. The number of those points is
what the Malle and Cohen–Lenstra conjectures will be asking about.

So let’s just define the scheme.

Definition 6.1. Let G be a finite group and c ⊂ G be a union of conjugacy classes,
and n an integer greater than or equal to 0. Then the Hurwitz moduli scheme
(I should probably say moduli stack) has L-points HurcG,n(L) the set of branched

Galois G-covers Σ → A1(L) with n branch points and monodromy around the
branch points in c.

This is a scheme whose points are exactly these ramified covers. When I go
around the branch points I shouldn’t use an arbitrary element of G but this re-
stricted subset c. Let me define, also, CHurcG,n(L) to be the same data but with
Σ connected. In principle the first thing I defined could be a stupid cover which
breaks up.

Let me tell you how to rewrite Malle and Cohen–Lenstra in this form, then take
a break and switch to algebraic topology.

So Malle is easy to write down in this setup. What were we doing? We were
counting, I claim that CHurcG,n is just what ZG was counting.

Malle’s conjecture over Fq(t) is

#(
n

⊔
m=0

CHurGG,m(Fq)) ∼ cqannb−1.

Let’s take a moment to unpack this. Without dijoint union, this is connected
branched covers with m branch points. That’s part of the Malle thing, because the
discriminant is q#branch points. So if x = qn I’ll count up to the number of branch
points. That’s the left hand side, the ZG(x). I’ve got an exponential in n times a
polynomial in n, but the log happens because x is an exponential in n.

Maybe I’ve inflicted enough of this on you, let’s take a break and then I’ll tell
you about Cohen–Lenstra and how do prove some of these conjectures.

Okay so we’ve rewritten Malle’s conjecture about asymptotic counting in these
function spaces. Remember the reformulation of Cohen–Lenstra was that the ex-
pected number of surjections was 1. Waht happens if I have a surjection from
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ClK ↠ A, let’s draw the diagram of covering spaces.

ΣAb,ur

S

Σ = Spec(OK)

A1

ClK

A

Z/2⋉A
Z/2

and imaginary here means ramified at infinity. The semidirect product, Z/2 acts
on A by inversion. This is a highly ramified thing, in fact ramified at n points. The
two covers over Σ are unramified. So I can reformulate this about the cover S → A1

as things that are ramified in the Z/2 direction and unramified in the A direction.
So the Cohen–Lenstra heuristic, I want to write down that expectation value, well,
let me state the theorem.

Theorem 6.1. (Ellenberg–Vankatesh–W.) If ℓ > 2 and q and q − 1 are coprime to
ℓ, there exists a Q(A) such that, if q is odd and greater than Q, there exists B(A)
such that the limit

lim
n→∞

∣
#CHurcG,n(Fq)
#CHurcZ/2,n(Fq)

− 1∣ < B(A)√
q
.

The denominator counts [unintelligible]. The numerator counts these extensions
ramified in the Z/2 direction S → A1. If we were better algebraic topologists, the
left hand side would be zero, because we’d be saying that the expected number is
1, but we’re not good enough, this only works for a constant which gets smaller as
q grows, and this messes up for some q.

These conjectures, in the end, boil down to enumeration of the points of these
schemes. As I imagine you may know better than me, enumerating points on
schemes is hard. Maybe I’ll say our version of Malle as well.

Theorem 6.2. (Elleberg–Tran–W.) There exists Q such that

lim
n→∞

#CHurcSr,n(Fq)
qnns

= 0

where c is the conjugacy class of transpositions in Sr and s is some constant,
probably bigger than b−1 for Malle’s conjecture. We’re working on getting it down.

Malle says the number of these things grows, for Sr, all possible monodromy, and
we’re doing this to include the restricted monodromy, and it predicts the number
of points grows asymptotically exponential in n times polynomial in n, and if I
take a polynomial of a degree bigger than what Malle conjectures, this goes to 0.
So we have an upper bound that’s a little weaker than Malle’s conjecture. There’s
the extension to larger classes of conjugacy classes and larger groups, but this is a
start.

All right. So we need to find a way of enumerating Fq points on these schemes.
The standard trick as we learned from Grothendieck is the Grothendieck–Lefschetz
fixed point theorem. I won’t write it down in full generality, but morally I need
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to count the number of points on X(Fq), I should compute the étale cohomology
of X and the action of Frobenius on the étale cohomology. I will do nothing so
advanced. I’ll compute the singular cohomology of the complex points, and I’ll do
it with rational coefficients. Under assumptions on X this has the same rank as
étale cohomology. This tells me nothing about Frobenius. But Deligne gives me
bounds of the eigenvalues. This gives me bounds on the trace of Frobenius. This
is a weak bound for what’s going on but it suffices for these approximations.

I want to do this now, I’ve seen my collaborator give a talk about this, he
presented a lot of the number theory, and the way he did what I’m about to do,
he said, “we’re going to transition to topology, and this is going to look like a
David Lynch film. All the actors will stay the same, but the characters they play
will change and everyone will continue as if nothing happened.” So let’s study
this Hurwitz space HurcG,n(C). What I need to do to tell you about this, I need
to tell you about the configuration space of points in C. Let P Confn(C) be the
n-tuples of distinct complex numbers. This has an action of the symmetric group
on the indices, let Confn(C) = P Confn(C)/Sn. It’s a very well-known gadget. We
know that its fundamental group is the braid group Bn, the nth Artin braid group
because, if I have a configuration of n points and stretch my path through time it
draws a braid in three-space. This has a presentation

⟨σ1, . . . , σn−1∣σiσj = σjσi, ∣i − j∣ ≠ 1;σiσi+1σi = σi+1σiσi+1⟩
There is a covering map

HurcG,n → ConfnC
which takes π ∶ Σ→ C to its branch locus, which is a set z in C, a set of cardinality n.
This is a forgetful map, it forgets the data of the cover and only remembers where
the cover is branched. You can reconstruct the Hurwitz space from the branch locus
if you know how the sheets come together around the branch locus. Why is that?
We notice that π ∶ Σ→ C is equivalent to π′ ∶ Σ′ → C−z, where Σ′ = Σ/π−1(z), that
is you can fill this in uniquely knowing it’s a Galois cover. This is an actual cover,
fπ′ ∶ π1(C/z) → G, but this fundamental group is a free group on n letters. So this
is in G×n. But since the monodromy is in c, this is really in c×n. So this is the fiber
of the covering space. How does the braid group act on c×n? So σi(gi, . . . , gn) is
g1, . . . , gi−1, gi+1, g

gi+1
i , gi+2, . . . , gn.

So what does that tell me? If I want to compute the homology H∗(HurcG,n,Q),
that’s the same as H∗(Bn,Qc×n), with this action of the braid group. I’m implicitly
using the fact that this thing is K(π,1) for the braid group. In the paper we used
very classical techniques, the arc complex, that you use to study the homology of
braid groups. One thing we’ve learned since then, there’s a surprising connection
between, there’s a new approach to compute this in terms of quantum groups. I
don’t begin to, can’t begin to claim that I’m an expert in these things, but I’d like
to give you a hint of where this comes from.

The first thing to notice is that this is a special case of something called a braided
vector space. If k is a field (really Q), then a braided vector space over k is a finite
dimensional vector space with a map σ ∶ V ⊗ V → V ⊗ V which is an isomorphism
and satisfies the braid equation on V ⊗3:

(σ ⊗ 1)(1⊗ σ)(σ ⊗ 1) = (1⊗ σ)(σ ⊗ 1)(1⊗ σ).
This first data gives me an action of the integers, the second braid group. This
relation then means I have an action of the third braid group. In general, you’re
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going to get an action of Bn on V ⊗n. This is an example, let V = Qc, and I’ll braid
by σ(g ⊗ h) = h ⊗ gh. This satisfies the braid equation and V ⊗n with this braid
action is the Hurwitz action.

Okay, I’ve made the problem harder, not easier, but when you have this braided
vector space, you can produce something called the quantum shuffle algebra.

Definition 6.2. The quantum shuffle algebra A(V ) is a braided Hopf algebra
(unfortunately not a Hopf algebra), which I can tell you in a concrete sense what
it is, it’s the tensor coalgebra T cV with the deconcatenation coproduct and the
multiplication is given by

[v1∣⋯∣vn]X[w1∣⋯∣wm] = ∑
τ∈(n,m)−shuffles

τ̃[v1∣⋯∣vn∣w1∣⋯∣wm]

where τ̃ is a particular lift to the (n +m)th braid group.

Let me give an example, a shuffle is a permutation that keeps the first n and last
m in fixed order but intermingles the two. If I look at a (2,3)-shuffle, an example
is like [picture]. If I have such a τ , how do I make a braid? I make a choice once
for all time [picture], and that’s a braid. So that’s the multiplication.

So when you look at the formula, there’s no reason to believe this is associative,
but it is. The diagonal is not an algebra map in the usual sense, but it is if you
incorporate the braiding into the target.

Maybe what I’ll finish with, and this is a misleading place to finish with, it’s
what justifies the calculations.

Let Vϵ = V with σϵ = −σ.

Theorem 6.3. (Ellenberg–Tran–W.) There is an isomorphism H∗(Bn, V ⊗n) ≅
Extn−j,n

A(Vϵ)(k,k) where the first grading is the homological degree and the second the

internal degree.

That’s misleading as a place to stop because I’ve given you a terrifying algebra,
and said “compute its cohomology to get the answer you want.” The quantum
shuffle algebra is not extremely well-known, but it has the quantum symmetric
algebra sitting inside of it, which is a very well-known gadget. This is also called
the Nichols algebra. So you can leverage what you know about that. This is a
central object in the Hopf algebra community for the classification of Hopf algebras.
For transpositions in Sn, this is isomorphic to the [unintelligible]–Kirillov algebra,
a non-commutative form of [unintelligible]for the flag variety. You can push what
is known just far enough to get what you need. Thank you very much.


