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Thank you for the introduction and I’m grateful to have the opportunity to talk
on quantum Monday. I want to talk about nodal domains of eigenfunctions on
negatively curved surfaces. Take a look at my picture. The Chladni pattern was
drawn more than a hundred years ago. If you spread out sand on a metal plate and
play the violin next to it. This is the typical patterns you’ll be getting. Surprisingly,
these are related to the zero set of eigenfunctions on the square.

As the picture gets more complicated you’ll see you get more domains that the
lines divide things into.

The structure of the talk, I’ll give a general setup for the theory. Since this arises
from spectral geometry, I’ll give a review of that field. Then I’ll give my most recent
theorem with Steve Zelditch, which is a theorem about these figures. After that, I’ll
connect these techniques to number theory. I’ll explain how these can be applied
to number theory. So this gives a way to understanding GL2 automorphic forms in
general.

[Why GL2?] Because there are Laplacian eigenfunctions on hyperbolic surfaces.
In these figures we see curves on surfaces. You can think of nodal domains and sets
in higher dimensions, but we don’t have techniques to attack this.

So let (M, g) be a smooth compact Riemannian surface. I’ll consider two cases.
In the first you don’t have boundary, and we consider −∆gφ = λφ, where ∆g is
the Laplace-Beltrami operator. When we have boundary, we consider either the
Dirichlet or Neumann boundary problem. We have the same condition on the
interior. On the boundary, we have Bφ = 0, where B is the boundary operator
such that Bφ = φ|∂M in the Dirichlet case and Bφ = ∂νφ|∂M in the Neumann case.

Spectral geometry is the study of these eigenfunctions with large λ. We’re in-
terested in what happens as λ goes to ∞.

The nodal set Zφ is the zero set of the eigenfunction φ. The critical point set Cφ
is {x ∈M |∇(φ)(x) = 0}. The singular point set Σφ has both of these vanishing.

Nodal domains are the connected components of the surface minus the nodal set.
[Discussion of pictures]. I can raise some quantitative questions. How long is the
nodal line? You might want to compute the total length. One can also ask what
the total curvature of the nodal line is. What is the number of critical points (as λ
goes to ∞)? How about the singular points?

Today’s talk will be about how many nodal domains you get? What is N(φ)?
There are some standard conjectures. I’m first going to talk about known results.

Firstly, regarding the total length of the nodal line, we know that the total length is
bounded below by some constant multiple of λ

1
2 and above by λ

3
4 . The lower bound

1
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is due to Brunning and Yau in 1978; the upper bound by Donnelly and Fefferman
in 1987 and Dong in 1992 (he was the first to mention). What is better about the

total length, if M is analytic, then we have a sharper upper bound of λ
1
2 .

In the case of higher dimensional manifolds, you get the same asymptotics when
M is analytic. But as the dimension grows the smooth upper bound gets worse and
worse. All of this is in the empty boundary case.

Secondly, the total number of singular points, they are points and you can count,
and this number is less than λ

1
2 . Surprisingly, for generic metrics, |Σφ| = 0. In a

generic manifold there are no singular points for any eigenfunctions. This is due to
Uhlenbeck in 1976.

The number of nodal domains N(φ) is less than some constant times λ. This
is due to Courant’s general nodal domain theorem, which says that ordering your
eigenfunctions by the size of the eigenvalue, the nth has fewer than n nodal domain.
Combine this with Weyl’s law which lets you count eigenfunctions.

I should mention that Weyl’s law, which works for any manifold, says that the
number of eigenvalues less than T is the volume of the manifold divided by some

global constant c times T
d
2 pluss O(T

d
2−1). This lets you read off the volume of

the manifold from the eigenfunctions.
The fourth example is that there exist some (M, g) and a sequence of eigenfunc-

tions φj such that although λj →∞, one has uniformly bounded number of critical
ponts or nodal domains. This is due to Lewy in 1977. Spherical harmonics having
just three nodal domains with large eigenvalue is in my picture. There’s no general
lower bound for the number of nodal domains. You can find a sequence in the
square torus that have just two nodal domains. This was done in 1925, 1953, etc.
by [a number of people].

Conjecture 1.1. For any given M and g, can we find a sequence of eigenfunctions
such that the number of critical points goes to ∞? This is one of Yau’s problems.
Can we find a sequence so that the number of nodal domains goes to ∞? This was
Hoffmann-Ostenot.

The second conjecture is a little stronger.

Conjecture 1.2. If (M, g) is negatively curved (bounded away from zero) then for
any sequence of eigenfunctions, we must have N(φj)→∞.

Conjecture 1.3. This is Bogomolny and Schmit, published in Physical Review
Letters. They predicted that if M = SL(2,Z)\H, then N(φ) ∼ λ.

Here are some known cases. In 2007, Nazarov-Sodin proved that on S2, for ran-
dom spherical harmonics N(φ) = cλ + o(λ) “almost surely.” By random spherical
harmonics, the sphere you have high multiplicity of the eigenvalues. For eigenvalue
approximately m you have approximately m eigenfunctions. Say you pick an or-
thonormal basis on that eigenspace φ1, . . . φm for λ = m, then consider

∑
αjφj . If

αj is chosen randomly, following a Gaussian distribution, then with probability 1
(given by these Gaussian variables) one has this property. This tells you that the
top right figure is quite rare and only happens with probability 0. One interesting
thing is that they couldn’t compute c. Sarnak conjectured that c must be the same
for any manifold.

Now some number theory. If we think about the Maass-Hecke cusp forms (that
I’ll talk about later) then assuming the Lindelof hypothesis, the second conjecture
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is true, in fact that N(φj) is greater than a constant times λ
1
12−ε
j . This is Ghosh-

Reznikov-Sarnak last year.
Now without assuming anything, I can prove that N(φj) is more than a constant

times λ
1
8−ε
j for almost all φj .

We can introduce this kind of picture on the sphere. We can consider Hecke
operators on S2 but then what one can do, all Hecke eigenforms under the Lindelof
hypothesis one has N(φj)→∞ via Magee in 2013.

You can see that the assumption on the surface was exploited for these papers.
Here I’ll state my theorem with Zelditch.

Theorem 1.1. Assume that (M, g) is compact negatively curved smooth surface
without boundary and I’ll assume there’s an isometric involution, orientation re-
versing isometric involution. Then if we think of joint eigenfunctions of the Lapla-
cian and this involution σ, if the fixed point set is seperating (so you get two pieces
with boundary on removing it) then there exists a density 1 subset A in M such
that the number of nodal domains goes to ∞ inside A. So the first conjecture is
true if you add this symmetry.

We could find a lot of examples without any symmetry assumptions. So recently
we showed that

Theorem 1.2. If (M, g) is a generalized Sinai billiard. Then for any eigenbasis of
the Dirichlet or Neumann boundary problem, one can find [missed]

Let me explain the local structure of the nodal set. The nodal set could look
arbitrary. You can find functions vanishing on any specified set. But there’s nice
structure. Around regular points, where the derivative doesn’t vanish, we can
find some small neighborhood so that it looks like a curve passing through x.
More interestingly, around singular points, where the derivative also vanishes, then,
due to various people (Bers 1955, Cheng 1976), then it’s always some number of
curves passing through that point. This is true for any solutions for elliptic partial
differential equations. This plays a significant role in the proof. For example, from
this you can look at Zφ when ∂M is empty looks like a bunch of closed curves
possibly passing through each other. Then when there is boundary, it might be
a finite union of closed curves and segments with endpoints on the boundary. So
from this observation, you can put a graph structure on the nodal set. You let
the nodal set be a graph. Each intersection point is a vertex. Then the nodal set
becomes an embedded graph on a surface. The critical observation here is that the
graph structure, the nodal domains are the face of the graph. What can we do with
graphs on the surface? Euler’s inequality. This says if v is the number of vertices
e edges, f faces, and c components, then v − e + f − c ≥ 1 − 2g. Since f is the
number of nodal domains, I get f ≥ 2−2g+e−v. This comes from the discrepancy
between edges and vertices. Every vertex has more than two edges emanating from
it, you can say 2e ≥

∑
V degx which is more than 2(v−a) where a is the number of

vertices having degree greater than or equal to 3 plus 3a. So I get 2(e−v) is greater
than or equal to three, so f ≥ 2 − 2g + 1

2#x. So if you can count the number of
these things on the boundary you get a growing lower bound coming through this.

In the boundaryless case I need the involution because when you have a nodal
curve passing through the fixed point set, well you can treat that like the boundary.

Here’s a question. Say f is continuous, real valued, on [0, 1]. How can you tell
if f has a 0 on the interior. My answer will be trivial but I want any others. If
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f(0)f(1) < 0 then there should be a zero. The method I’ve used in this paper is if∫ 1

0
|f |dx ≥ |

∫
f |. Then I found out that this condition is somewhat not very useful,

we can’t count the number of zeros. There have to be some other techniques.
So I’ll fix β ⊂ ∂M and compare

∫
β
|φ| against |

∫
β
φ|. I’ll apply the Kuznecov

sum formula to give this. This becomes the relative trace formula eventually. This
was proved by Zelditch in 1992. The trace formula says, say φi is an orthonor-
mal eigenbasis for the Laplace Beltrami operator, ordered by eigenvalues. Fix a
submanifold H of M and fix a smooth function f on H. Look at

∑
λ<T

|
∫
H

φifdVH |2 = c

∫
f2dVH

√
T +O(1).

[An example spoken but not written].
From this, I know the average size. I’ll take f to be a bump function on β to

make it look like the square of the right hand side. This tells you that |
∫
β
φj | is

approximately 1

λ
1
4
j

on average. To be precise you can actually prove using Cheby-

shev’s inequality that it’s less that log
1
2
λj

λ
1
4
j

. So now we need a lower bound for the

left hand side. Surprisingly, most PDE techniques are only concerned with L2 or
L∞ norms. So there’s no direct way to estimate the L1-norm. So what I’ll do is,
we can say

∫
β
|φj |dz sup |φ(z)| ≥

∫
|φ|2dz. This is Holder’s inequality.

Regarding this, we actually know that sup |φ(z)|, when M is negatively curved

is bounded above by a contsant times
λ

1
4
j

log λj
which is due to Berard, exploiting the

error term of Weyl’s law. He divided that thing by a log term. All that is left is to
find a nice enough L2 bound to get a nice L1 bound. The theorem called quantum
ergodic restriction gives you

∫
β
|φ|2dz → cβ for a density one subsequence of the

eigenfunctions. Therefore if you combine all these ingredients, then for a lower

bound of the L1 norm you will be getting
log λj

λ
1
4
j

. For the upper bound you had a

smaller numerator.
All that’s left is to say what QER is.
If you fix β1, . . . , βr are disjoint subsets of the boundary, then a density one

subsequence of eigenfunctions, if you apply this argument, N(φj) > R. Then if you
look at this statement closely, it has nothing to do with the choice of the β1, . . . , βR.
This allows you to find a density one subsequence with a growing number of nodal
domains. This is heavily used in the theorem I’m going to say right now. All I’m
going to say right now is what QER is and before that I need to say what quantum
ergodic theory is.

This is concerned about, for a given manifold, say that you weight your volume
form by the eigenfunction |φj(z)|2dVg and want to see what happens when the
energy goes to ∞. This quantum ergodic theory deals with the limit of that distri-
bution function as the energy goes to∞. If you look locally the energy spreads out
evenly. The quantum ergodicity theorem supports this heuristic but not completely.

For any compact smooth manifold without boundary (when you add boundary
you need more conditions) and for any orthonormal eigenbasis {φj} there exists
a density one subsequence of N such that you approach dVg. They do spread out
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evenly on the manifold. This was proved by Zelditch in 1987 and some other people
in the late 80s.

When they proved this, they used the kind of diagonalization argument again
and again. The computation itself was about integration of a function, a special
function, against these. Then they approximate anything using the diagonalization
argument. It might be different j. The subsequence can depend on f but you can
throw away that dependency. This is the theorem. Then here I’d like to mention the
quantum unique ergodicity conjecture. This theorem, one can ask what happens
when, well, can you take the whole sequence? The answer is no, not even on the
sphere. There are eigenfunctions concentrated basically on the equator. If you
normalize your surface measure then it gets concentrated more and more on the
equator, and the limiting measure is a singular measure supported on the equator.
The theorem is wrong if you don’t say density one. The quantum unique ergodicity
conjecture says that if M is negatively curved, then A = N. So the reason why
people expect there are no exceptional eigenfunctions is when you think about
measures that arise as weak limits of the weighted measure, it was proved these
have to be invariant under geodesic flow. That’s chaotic in the negatively curved
case. It’s hard to find even a singular but stable-under-flow example. For example,
Anantharaman said it has to have entropy greater than zero.

So now let me explain the quantum ergodic restriction theorem. What do we
get if we restrict the measure on hypersurfaces? This theorem tells you that if
H is “not very symmetric,” then |φj(z)|2dVH approaches dVH along a density one
subset. So again this is wrong if you remove the density one condition. You have
to allow the density zero exceptions. I’m not going to talk very much about the
not very symmetric condition. Then there’s a theorem by Toth-Zelditch last year,
if H is β and you take some smooth function supported on β you get the result.

So this is the end of the proof of my theorem. Let’s have some break and then
I’ll talk about number theory.

So you can, here is one comment about nodal domains. You can think about
the vector field with gradient of the eigenfunction and can triangulate with respect
to this vector field and each vertex corresponds to points that are local minima
and maxima of the eigenfunction. For each nodal domain you find one, and that
corresponds to the point where every vector points to or from. For instance, my
argument, the previous proof gives you, it tells you that there are a growing number
of minima and maxima.

Can we find an upper bound for this number almost everywhere? If we triangulize
the manifold with respect to that flow we’ll get domains that are not the same as the
nodal domain. We can also study this triangulation. Zelditch was very interested
in this.

[discussion degenerates a little bit]
So when M = SL(2,Z)\H, then −∆φ = (1

4 + t2)φ, and Maass-Hecke cusp
forms are parameterized like this. And then Tnφ = λφ(n)φ, where Tn is the Hecke
operator

Tnf(z) =
1√
n

∑
ad=n

∑
0 ≤ b ≤ d− 1f(

az + b

d
)

These are key to studying automorphic forms on GL2. Because these operators
commute with the Laplacian, you can assume that you’ve picked things that are
joint for these and the Laplacian. So that’s what Maass Hecke cusp forms are. Now
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the isometric involution is the center line, the purely imaginary axis. I’ll call this
η. It’s Fix(σ). I’ll assume φ is even or odd, assume φ(x+ iy) = ±φ(−x+ iy). Call
these even and odd.

Now I’m going to fix a curve here, γ, and then see how many sign changes i can
find here. That will give you the number of domains. If I want to compute the
number of sign changes on γ, it’s slightly different, we need to look at

sup |φ(z)|, ||φ||L2(γ), sup
|

∫
[α,β]

φ(s)ds|

The goal is to prove that for all eigenfunctions you have a growing number of nodal
domains.

If we know the three quantities, if φ changes sign m times on γ, then I’ll call the
points ai. You can bound ||φ||L1γ =

∑
|
∫ aj+1

aj
φds| Then this is bounded above by

my third quantity Mφ times (m+ 1).

So then I can also get ||φ||L1γ ≥
||φ||L2(γ)

sup |φ| .

It’s technical but I can expand φ(z) out, look at the Fourier expansion with
respect to the cusp to get the expression

φ(z) =
∑

ρφ(n)
√
yKit(2π|n|y)e2πinx

Then quantum unique ergodicity is equivalent to
∑
ρφ(n)ρφ(m+n)ψ( ntφ ) converging

to zero. This was a Fields medal.
Consider the triple product L-function, L( 1

2 , φxφxφ0). This being 0 (with some
other condition) is equivalent to QUE.

[I stop taking notes].

2. March 10: Hiro Tanaka, Factorization homology for stratified
manifolds II

Like I said last time, this is joint with David Ayala and John Francis. Last time,
what did we do? We chose a symmetry monoidal category (C,⊗) like the category
of spaces with direct product or the category of chains or vector spaces with tensor
product. Today we’ll also use the category of chains with direct sum for fun.

We built En algebras in these categories. We saw last time that for n = 1,
an En algebra in vector spaces is an associative algebra. Given our En algebra
we constructed an invariant “factorization homology” of framed n-manifolds. For
instance, when n = 1, this gives an invariant of 1-manifolds. Given A, it associates
to a circle the Hochschild homology of A.

Today what I want to do (it might be ambitious) is classify all homology theories,
give some examples, and then move on to the stratified case. Does anyone have
qeustions about the reminder I gave?

Let’s give a classification in part one. I’ll classify what John Francis originally
called homology theories for manifolds.

Given an En algebra A, which is a functor from framed n-disks with disjoint
union to (C,⊗), the factorization homology functor

∫
A : Mfldfrn → C satisfies the

following properties.

• It respects the topological structure of hom spaces. Isotopies go to homo-
topies. So for instance in chain, an isotopy gives us a chain homotopy.

• It can be lifted to a symmetric monoidal functor (using q)
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• It satisfies excision. If I have a manifold M which is given as a decomposi-
tion of two manifolds glued along a product manifold Y ×R, then we have
the formula for factorization homology

∫
M
A =

∫
M0

A⊗∫
Y×R A

∫
M1

A.

This is a satisfying kind of invariant. Let me give a name to functors with nice
local to global properties.

Definition 2.1. A functor H from framed manifolds to C is called a homology
theory for framed n-manifolds. Let Hfrn (C) denote the category of such homology
theories.

We have functors. Given En-algebras in C I get a functor to homology in C via
factorization homology. We have a functor the other way called restriction. You can
work with just disks if you have a homology theory that evaluates on all manifolds.

Theorem 2.1. (Francis) This functor, factorization homology, is an equivalence
of ∞-categories, and the restriction is an inverse.

Studying manifold theory in a black box, these three natural conditions, every
one of these things comes from an En-algebra. To study things for spaces that
satisfy Eilenberg Steenrod axioms, you just check what they do on a point. This is
a generalization of that.

What’s a sketch of a proof. How do you prove this equivalence for ordinary
homology theories? You start with a point, then move to a sphere, and then think
of spaces as CW-complexes and you know the effect from Mayer-Vietoris. At the
end of the day I get a homology, determined completely by what I did to a point.

Given a manifold you can put a Morse function on it and build your manifold
with Morse functions. You can recover the value on your manifold from what it
does to handlebodies and that you can get from the sphere which you can get from
Rn.

Now let’s do the example of homology in the usual sense. Take our target
category to be chain complexes with direct sum. This is a symmetric monoidal
structure. Let me give a lemma.

Lemma 2.1. Given V ⊂ Chain there is a unique algebra structure on V with
respect to direct sum.

Let’s give a proof sketch. Set V to be a vector space for convenience. An algebra
structure on V is a lot of data but in particular has maps m : V ⊕V → V and a unit
map 0→ V . The unit map is uniquely defined. This satisfies certain conditions. If
we weren’t in the world of vector spaces, the conditions are actually extra data. In
vector spaces, it’s some conditions like associativity.

A map m is just two maps V → V . If 0→ V is the unit, then the multiplication
map should satisfy equations which imply that both maps are the identity and the
map is addition. So En algebras are just chain complexes. Then chain complexes
are in bijection with homology theories in this category.

Claim: a homotopy theory with target Ch,⊕ is just singular homology with
coefficients in some chain complex V . What does excision tell us? If we have the
manifold X decomposed as usual, then excision tells us, first of all, what’s a module
structure? If M0 is a module over V . I should give a map M0⊕V →M0. Moreover,
on M0 it should be the identity. So it’s just a linear map V → M0. Call it g0.
Likewise, a left module is the same.
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Now how do I compute the tensor product? The factorization homology over X
is

∫
X0
V ⊕∫

Y×R V

∫
X1
V . How do I compute this? I take a colimit over a diagram

that looks like

M0 ⊕M1 ←M0 ⊕
∫
Y×R

V ⊕M1 ← · · ·

Here Mi is
∫
Xi
V . It’s easy enough to check that this is a pushout, that’s just an

exercise. When you have a pushout diagram of chain complexes, you get a long
exact sequence in homology. With some homological algebra this is Mayer Vietoris.

That’s more or less the sketch of a proof. You recover everything else from what
you get on Rn.

Now I’d like to go on to the stratified case if that’s all right.
If you don’t just study manifolds but also algebraic geometry or combinatorics,

then you know about interesting singular spaces. It makes sense to try to find
invariants for stratified spaces. When people say stratified spaces, they might mean
a bunch of things, so let me give you what I mean.

For example, what’s a singular 1-manifold? It should include one-manifolds with
no singularities. It might also include real lines glued along a vertex. Anything
glued out of these is a singular one-manifold. So graphs where you’re allowed to
have no vertices.

Let me generalize this. It might look like R or like some n-valent vertex. Locally
every 1-manifold looks like a cone on a zero manifold (crossed with R).

Given Z, the cone of Z is Z × [0,∞)/(z, 0) ∼ (z′, 0). If z is a circle, you start
out with the cylinder and end up with a cone.

The real line is the cone on the empty set (if my definition doesn’t say that, it
should) cross R.

This is my model of singular manifolds.

Definition 2.2. We say X is a singular n-manifold if X looks locally like a cone
on Z times Rn−k where Z is a singular k − 1 manifold.

Some examples might help, say in the case n = 2. If n = 2, if we take Z = S1,
then the cone of Z is a cone. It’s a copy of R2 with a marked point. If Z is some
collection of points, then I get a graph cross R. If Z were the empty manifold I’d
get R2 with decoration.

Let me say the algebraic consequences and then take a break. What are some
consequences? As a black box, one can define a category MfldSn of singular man-
ifolds. Let me say that you can decorate this category with all kinds of things.
You can restrict kinds of singularities. You can get notions of atlases. You can put
structure on the manifolds. I’ve been agnostic about framing. You can demand
framings or not. In normal theories we demanded framings, we could drop that,
whatever we want. This is singular manifolds with certain kinds of structure.

Why would we want to generalize? We can get different kinds of structure. Let
me give some examples and then we’ll take a break. For notation, let DiskSn denote
the subcategory of MfldSn which is local structures or shapes of MfldSn , closed
under disjoint union.

Let me tell you what I mean. If I were looking at n = 2, I’d get Y -shapes cross
the real line and the marked point and so on. With no singularities I’d get R2 and
disjoint copies of it.

Let me give some examples. I know it’s abstract.
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Definition 2.3. A DiskSn algebra is a symmetric monoidal functor from this cat-
egory to the target category.

If there were no singularities this would be the En structure you’re used to.
What are some examples?
Let MfldS1 be the category of framed 1-manifolds with boundary. Framing will

just be orientation. You have a circle, you have R, and you have at least two other
objects, the positive and the negative half-open intervals. In particular, anything
glued up of these three pieces, these three lines, is the category of disks.

What kind of algebraic structure does this give us? In case you’re keeping track
this is the cone on a point.

What is a DiskS1 -algebra? It contains all the disjoint unions of R so whatever
you associate to R, that should be an E1-algebra. It has an associative algebra.
What about to the positive interval. Call the thing M0, the object C. What does
this have, what structure? It’s a functor so if I have a map R≥0 t R → R≥0?
This should go to a map A ⊗M0 → M0. If I have a symmetric monoidal functor,
I’ll get a right module. Now maybe you see the punchline. How about the other
manifold with boundary? You get a left module. This fancy notation gives you an
E1-algebra with two modules.

What is the invariant you get from factorization homology. What do you get
from the interval? You get the tensor product over A of M0 and M1. That’s the
end of part one.

Shall I start again? Now we’re really getting into something fun and exciting.
I’ll state two theorems that are generalizations of earlier theorems. First let me
give a definition.

Definition 2.4. Fix an algebra A, a functor DiskSn → C, symmetric monoidal.
Then factorization homology is the left Kan extension

MfldSn

∫
A // C

DiskSn

OO ==

Theorem 2.2. (Ayala-Francis-Tanaka) If X = X0∪Y×RX1 then
∫
X
A ∼=

∫
X0
A⊗∫

Y×R A∫
X1
A

Theorem 2.3. (Ayala-Francis-Tanaka) There’s an equivalence of categories from
DiskSn -algebras to homology theories for stratified manifolds

Here’s a cheater’s way of saying this. You build your manifolds out of handlebody
decompositions. We characterize our finite-enough manifolds. In spirit the proof is
the same.

The tensor product I discussed is an example of the theorem.
You can also put marked points on your one-manifolds. So now let’s take 1-

manifolds with marked points (and no boundary). Locally it looks like a copy of R
with an embedding of R0 inside. So now what is a disk algebra in this setting? As
before, I get an E1 algebra A fro the real line. A real line with a marked point gets
M . There are two interesting embeddings from the real line. If I get one marked
point I get RtR0 ⊂ R and two maps of this to the marked point. I claim that this
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corresponds to actions of the algebra on M from the left and the right. Drawing
the obvious diagram, this is a bimodule action. For this choice of S and this choice
of singularity, what is an algebra? An E1 algebra and a bimodule.

Now what’s factorization homology of a circle with a single marked point? Doing
the same application of excision as last time, it’s the factorization homology of the
real line tensored over two lines with the factorization homology of the bimodule.
So what is this?

We know factorization homology on all these intervals. I get a tensor product
A ⊗A⊗Aop M . So those in the know in algebra, this is Hochschild homology with
coefficients in the bimodule M . This is a definition for Hochschild homology with
coefficients in any category.

Of course, that’s not the only manifold with marked points. If I put k marked
points, it’s the Hochschild homology with coefficients in M⊗k.

Let me make one more comment about S. Here I took framed one manifolds
with marked points. What if I included marked points and colors? This could
be a game where every marked point has either red or blue. There would be
two different colors. Red and blue. So to each of these you’d associate different
objects. An algebra is an algebra with two bimodules. Now if you evaluate you
get Hochschild homology with coefficients in tensor products. You can also give
intervals colors, and these are different algebras. You can glue together different
manifolds with different labels in some physical settings so this gives a model for
those physical systems.

Now let MfldS2 be framed 2-manifolds with marked points. I have a framed two
manifold with marked points. It locally looks like R2 or R2 with a marked point.
What do we get? To R2 we associate an E2 algebra, and to the marked R2 we’ll get
M , and now the space of module actions is interesting. We can find embeddings, a
circle’s worth.

So we get an S1 worth of module actions. There’s very non-trivial geometry
going on.

[Some discussion]
As an example, in the three dimensional setting, you can take framed three

manifolds with framed sub-one-manifolds. These are the kind of singularities we
allow. If you’re keeping track, we are allowed a three manifold with a link inside
it. Locally, this looks like a copy of R3 or near the link, R3 with a standard R1

inside. If you’re keeping score, this corresponds to c(∅) × R3 or c(S1) × R. What
are these two things? In the case that S stands for this kind of singularity, you get
an E3 algebra for R3, call it A, and what do we associate to R1? Call it M and see
what kind of structure it has. The R1 parts have an E1 algebra structure. I can
shrink down and embed my E1, chicken on a shish kebab, I had some in Busan this
weekend. So an algebra, we get a map M ⊗M → M . This is an E1 algebra. So
now we get an E3 algebra and an E1 algebra. There’s also an action of the E3 guy
on the E1 guy. There’s an interesting family of embeddings that I can find.

This is a bunch of pictures. This is the higher Deligne conjecture.

Theorem 2.4. I apologize if I miss some names. Getzler-Jones, Voronov, McClure-
Smith, Thomas, Francis, Lurie, et cetera
In short, the above data is equivalent to giving a map

∫
S1×R2 A→ HH∗(M) of E2

algebras.
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Now the question is, what are the link invariants you get? It’s hard to find E3

actions on E1 algebras?
Some simple computations that you can do, this part may be a little category

theoretic. Can we detect something? The biggest question is where you can get
examples.

So here’s an example. Where might you get such an example? If someone gives
you an algebraic structure, can you give an example? A cheater’s answer is a free
algebra. You can create the free algebra, that’s a cheater’s answer but let’s do it.
Fix X. Then I claim, well, Diskn −Alg(Spaces) forgets to spaces. This has a left
adjoint called free. So here I’ve gotten rid of “framing” to make things easier. What
is FreeDiskn(X)? it’s a disjoint union of configuration spaces Confk(Rn)×Σj X

j .
I claim this is a Diskn algebra. If you have two configuration like this, you can

shove the configurations in, that’s the En algebra structure.
Here’s a theorem.

Theorem 2.5. (Ayala-Francis-Tanaka) We can take factorization homology of this
Diskn-algebra. We get qConf j(M)×Σj X

j.

If you like, X is a point, then you just get Conf j(M). Hopefully that’s un-
derstandable. If you now have a link inside of M , then you get, evaluating on
FreeDiskS3 (X,Y ), a souped up version of this, qConf j(M\L) × Confk(L) (with

points in X and Y ). Let’s take Y to be empty.
Then we get the configuration space of j points in the complement of the link.

You can detect π1, which is a knot invariant. That was the last example I wanted
to end with.

3. March 24: Bruno Vallette: Givental action and trivialization of
circle action II

Let me tell you briefly what I’m going to do. I have two operadic resolutions
I want to do totally explicitly. This will give a good definition of homotopy BV
algebra. You get a good notion of homotopy BV . Then from that I will derive two
things, address some questions. Inside we have the BV operator, ∆, and we relax,
we think of that as a circle. When we trivialize we get one thing, when we go to
the higher things, we get Givental.

Last time we had a homotopy retract, and if we had an operator which squares
to zero. We got a first δ1, δ2, et cetera. The relation ∆2 = 0 is broken and instead
we get ∂δ2 = δ2

1 . Higher up, we get that ∂δn =
∑
δiδn−i. This is a mixed complex

becoming a multicomplex. This is T (∆)/∆2, a representation of this algebra, and
I call this a circle because it’s H∗(S1).

We saw that an algebra over D = T (∆)/(∆2) does not have good properties. I
should replace this by something projective. We replace with something quasifree,
meaning it’s free except for the differential.

What do we have on the right hand side? We have k1, k∆, and nothing else.
We start with a free algebra on δ1, and we get δ1, δ⊗2

1 , et cetera.
I’m saying this should split with respect to some weight. This splitting will

simplify my life. Say ∆ has weight 1, so 1 is weight 0, and so on. This is not the
homological degree. It’s bigraded. If you want the homological degree, I will write
it for you. Chopin agrees with the bigrading. The homological degree of ∆ was 1,
the homological degree of δ sholud be as well. So now we’re good to weight 1. So we
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introduce a first syzygy to kill this guy. So I put δ2 in weight 2. It’s the homotopy
for δ⊗2

1 . So it must live in homological degree 3. I have nothing else in weight two.
It’s perfectly acyclic. I’m doing what you’re doing with modules and syzygies. I’m
not working with free modules, I’m working with algebras. Now what does δ1 and
δ2 generate? Well, we have δ1⊗ δ2 and δ2⊗ δ1 in weight three. I have a non-trivial
kernel of the differential which is the sum of the two. Let me introduce a generator
δ3 which should be of degree 5 and weight 3. The boundary of δ3 should be this
sum, δ1 ⊗ δ2 + δ2 ⊗ δ1.

Higher up I hope you see the same pattern, where boundary(δn) =
∑
δk⊗ δn−k.

This is a step-by-step Koszul-Tate resolution. This is the transfered structure. Let
me call this algebra D∞. What is a D∞ algebra? It’s a dg algebra map from D∞
to End(A). This is a morphism of dg algebras. First let’s see that it’s a morphism
of algebras. The underlying guy is a free algebra. So it’s free on δ1 ⊕ δ2 ⊕ · · · . To
be a morphism of associative algebra, you need to give the image of the generators.
So δ1 should give you a map, give you δ̄1 in Hom(A,A)1. The image of δ2 should
be δ̄2 ∈ Hom(A,A)3, et cetera. Now these must commute with the differential.
Each time I have a generator, I can apply the differential to get

∑
δk ⊗ δn−k and

then look at the image in End(A) and get the composite
∑
δ̄k ◦ δ̄n−k. If I do it

the other way around, I get ∂δ̄n. We’ve proved that to have a well-behaved algebra
structure, we should replace by a free algebra. Now I’ve solved the problem.

What we do, if we have algebras of type P , the idea is to encode that with
an operad P which encodes the category but is not well-behaved up to homotopy.
You’d like to be able to find a homotopy stable category, like homotopy P -algebras.
That’s the kind of guy you have on the right hand side. You resolve P to P∞.
Let’s say P∞ is quasifree, then because it’s quasifree, we get a category that’s
well-behaved in homotopy.

So we can view ∆ as an operator with one input and one output, like −| . We
should compose them in many ways, like =| , but I write this linearly because there
is only one output. But I quotient by ∆2 and then everything vanishes except −| .

What about As? An associative operator has one product, if you look at the
free operad on that, I get planar binary trees. If I want this to be associative, I
identify left combs with right combs. So what do I have? I have the trivial tree, I
have my product, and in arity three, let me see what I have. For me, the product
also has the homotopy type of a point. But in three we have two points but we
have to identify them. Let me try to find a resolution of this?

What does it mean? We are in the world of operads. We want a free operad with
a differential so that the underlying complex is equivalent to As. I need a generating
product. I take the free operad on that one binary generator. I will recover A∞
algebra by hand. In arity five you have five planar trees. Do you agree? They are
all identified with the associative relation. It’s just one point. If I consider the free
operad generated by a single product I get the same kind of picture. Let’s postpone
that. I’ll put that in degree zero, drawing a topological picture. I have the right
thing in arity two. In arity three I have total degree zero, I have two points on the
left and one on the right. These cannot be quasiisomorphic. I have to introduce
a homotopy to relate them. I should introduce one generator in three inputs of
degree 1. I want to attach the interval on these two products. So d of the 3 to one
corolla is the associator of the product.
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This is exactly what you do with a module. You get, passing to chains, a quasi-
iso. You’re perfectly happy. Let me do the next step. I’ve introduced the corolla,
it will appear in the next step. I’ll get a tree, and d of that tree will be one of the
five vertices. So I continue and draw in, I think I have the five trees. Here’s what I
have in arity four. I have loops. I must introduce one new corolla of arity four and
its boundary is the sum with appropriate signs of the boundary of this pentagon.

You introduce one corolla for each n whose boundaries are stacks of two corollas.
I have resolved the operad. This is a quasifree resolution of As. Let me call that
A∞. So A∞ is a free resolution of As. What is a morphism of dg-operads to
EndA = End(A⊗n, A). This only needs to be defined on the generators since A∞
is quasifree. I’ll get a degree zero product in Hom(A⊗2, A), a degree 1 operation
of arity 3 µ3, and so on. If you look at what’s going on with the corolla, you get
∂µn =

∑
µk ◦i µ`.

You can give that example to any freshman undergraduate. Then you can tell
me, Bruno okay, that’s cool, you did two very trivial examples. One generator with
simple relations. What if now we do a more complicated example.

Let me take a more difficult example, the operad encoding BV algebras. It’s
made up of a commutative product and a ∆ operator. The relations are associativity
for the product, we should have that ∆2 = 0, and we should have the order two
relation, [picture] if I do ∆ of the product, this should be the same as doing ∆ of
two of them, and multiplying by the third, there are three of these, and then there
are three places to do ∆ of one of them.

This is the operad BV . The product comes with a symmetric group action. We
take the symmetric action for granted. If you can say what to put there, by hand,
you should get the fields medal. Solving that problem will give me a good notion
of homotopy Batalin-Vilkovisky by hand.

We were starting from a ∆ and a commutative product. Remember the two
examples we did before. Relaxing ∆ up to homotopy, we should have δ1, δ2, and so
on, surely this has to sit there. The associativity should relax up to homotopy too,
a product, a triple product, and so on. I’ve relaxed the two relations independently.
I should introduce a guy for their interrelation. I should have d of that guy is the
seven term relation. You need to introduce a first homotopy for that relation. That
will fill your space. This is the number of operations you have.

If you have associative operad, you resolve to A∞, for commutative you resolve
to C∞. A C∞ algebra is an A∞ which vanishes on shuffles.

Now Koszul duality theory. Here’s a machine. What do you mean by it? If
you give me an operad, if I want simple models, I’m taking extra data. I assume it
comes equipped with a presentation with generators and relations. If R is quadratic
inside the free operad, meaning that there are at most two vertices, then you tell
me, I can’t apply Koszul duality theory to the BV operad. We can use Koszul
duality theory to resolve k[∆] and As but not BV. Koszul duality was extended
from homogeneous quadratic to linear and quadratic by me and my collaborators
for this purpose and then to constant linear and quadratic in Millès’ thesis.

We make something, a “cooperad” which has a cocomposition that is coassocia-
tive in a certain way. We have a candidate in a quadratic case for the syzygies P ¡.
Here we have trees in P ¡ and we apply the decomposition everpwhere we can. Your
d2 amounts to doing the sum over all vertices by splitting each vertex in two. This
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gives you a candidate. It also comes equipped with a morphism of dg morphisms
to P . You can check whether a certain complex is acyclic.

I’ve been talking for more or less an hour, do you want a break now or do you
want the BV case first?

How do we define morphisms? What is a BV∞ algebra structure? There is
what I call the Rosetta stone of operads. There are at least four equivalent ways
to say what a P∞ structure is. The first answer to describe P∞ algebra structures
on a chain complex. The first definition is HomdgOp((T (P ¡), d2), EndA). So what
is this? I have a map P ¡, End(A), but it should agree with the differential. If
I were taking maps from a coalgebra to an algebra this is a convolution algebra.
This is a differential graded preLie algebra. Just trust me, this is a dg Lie algebra.
What is your favorite equation in a dg Lie algebra? It should be the Maurer
Cartan equation. ∂α+ 1

2 [α, α] = 0. Guys which commute with the differential are
exactly Maurer Cartan elements of this Lie algebra. If you want, this the definition
and it gives a deformation theoretical interpretation. This is where you can see
deformation theory. I could prove homotopy transfer with this guy. I could give
this here, but let me do it in a third place. A third is, what is the Hom? What
does it mean that we’re looking for maps for any n that go P ¡(n)→ Hom(A⊗n, A),
which is the same as having maps P ¡(n)⊗k[Sn] A

⊗n → A. This is another data. I

should have a map α :
⊕
P ¡(n) ⊗Sn A

⊗n → A. This is the cofree P ¡ coalgebra on
A. Let me take As as an example? The dual is As (up to duality). So As¡(A) is
T̄ c(A). A morphism of dg operads is equivalent to this sequence of maps on the
cofree coalgebra Coder(P ¡(A)), and the compatibility is that it squares to zero. A
P∞ structure on A is the same as a square zero derivation on P ¡(A). So now a
morphism is a P ¡-algebra map commuting with the square zero derivations.

So we can look at maps. I can define an ∞-morphism to be a morphism of P ¡

algebras. The map is a morphism of coalgebras. It’s characterized by a certain
complicated condition.

[In a usual cochain complex, you can put chain maps, homotopies, et cetera, into
one category. Is this a defect?]

We have to try again to define homotopy, tensoring, building cylinders, and so
on.

[This doesn’t have a nice presentation. It doesn’t have a nice presentation.]
You have an exponential, infinitely many terms.
In non-symmetric operads you can take C∗[0, 1]. You get something nice and

cute. They could do this because they have a nice interval.
[I’m still objecting, it is difficult to find an explicit formula of when two mor-

phisms are equivalent. It was not even clear until recently that it forms a homotopy
category.]

There’s definitely work that needs to be done to prove this, Lefevre-Hasegawa
did this in his PhD thesis. It’s definitely not trivial.

I think I’ll use this later on but shall I define it now? I did the case of As but
what I should do is to do this for the algebra of dual numbers and get a notion of
∞-morphisms for those. Here D¡ is the cofree coalgebra on one generator δ, and
now, if I continue I can recast a D∞ module, it’s a square zero codifferential inside
the comodule T (δ)(A).

Let me explain to you two things.
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I’m going to do something operadically speaking, tell me if it corresponds to what
you did. We have quadratic and cubical, I can’t apply Koszul duality theory. You
add an extra generator, in this case the Lie bracket induced by the product and the
differential. You introduce an extra generator and you introduce a relation, which
is that the bracket is the default of the product and delta having compatibility.
Instead I get the Leibniz relation between the product and the bracket. So what is
a BV algebra? It’s a product and bracket and an operator, I have a Gerstenhaber
algebra and then get an operator. If you step back, you see that this is quadratic.
I’ll definitely put this BV ¡, and that’s how you cook it. I did this with Galvez-
Carrillo and Tonks.

Theorem 3.1.

(T (BV ¡), d1 + d2)→ BV

is a quasiisomorphism.

I’ve introduced an extra generator. I took three generators. I have a Lie bracket.
Now I had a ∆ operator, I have a commutative product, but I won’t have this by
hand, it will be in a big something, I have the Lie bracket and I’ll relax that. I’ll
have homotopies for the Leibniz relation.

This produces a notion of BV∞ algebra. What I’m explaining, what is the size?
It’s Gerstenhaber, δ Gerstenhaber, δ2 Gerstenhaber, and so on.

The idea we had with Gabriel, and he has the right to complain even more, is
this guy isn’t minimal, in Sullivan’s homotopy theory, here I have trees, I explode
into two and some places we do something internal. Instead of taking BV ¡ with a
differential, but with Gabriel, we take the homology and take the free operad on
that.

Theorem 3.2 (Getzler). H∗(BV
¡, dφ), well, it eats a δ and a commutative product

and gives you one bracket. All the homology dies except in some places. I need the
resolution of the circle action T c(δ). The rest, how does it organize? It’s nothing
but the cohomology of the open moduli space of curves H∗+1(M0,n+1).

Let me interpret this as BV . What is the rest of the statement?

Theorem 3.3 (Drummond-Cole-Vallette). T c(δ)⊕H•+1(M0,n+1), d) is a minimal
resolution of BV

What is a BV∞ algebra? You can split into two, three, four, and higher up.
Now what is a map to EndA? The first bit on the left hand side is δ1, δ2, and

higher up. This is a coalgebra. On this guy, you only have a d2. This is nothing
but a multicomplex. Inside a BV∞ algebra you have a multicomplex. Then you get
operations that are labelled by the cohomology of your open moduli space. Getzler
proved that this guy is the Koszul dual of H∗(M0,n+1). I considered this last week,
and this operad was encoding hypercommutative algebras. Moreover, this operad
is Koszul. If you take trees on this with d2, you get homotopy hypercommutative
algebra. This bit is homotopy hypercommutative, maybe? Not really. Why not
really? It has as many operations as one but, if I have no d3 and higher, it would
be so. Inside this combinatorics, you might be able to split into three, taking guys
from the left hand side. It satisfies some relations with the left hand side. Alone,
they are perfect, either one, but together they must mix.
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Let me give you one or two examples. What can we say? Let me make that
precise? If inside a BV -algebra, the T (δ) is zero, you get a hypercommutative
algebra up to homotopy. Let me write this on the other side.

Example 3.1. If all δi are zero, then this notion is equivalent to a hypercommu-
tative algebra up to homotopy. This amounts to the vanishing of the T c(δ) part.

What if everything vanishes except the product and the δi? The higher homo-
topies for µ are zero, it’s commutative associative. We get a multicomplex. It
strictly commutes with the product. That is, δn is order n with respect to the prod-
uct.

I wanted to conclude with something nice.
We can prove a nice theorem. Let me half-prove the conjecture I mentioned

the other time. If you take fD2/S
1 ∼= M̄0,n. Let me prove this with the model.

We did this over the rationals. Resolve the whole picture. Over the rationals, the
homology of the framed little disks is the operad BV , so I take BV∞/D∞. If I take
this quotient, we get T (H•+1(M0,n+1)) which is H∗(M0,n+1). You can prove this
on a topological level, you’ll have to ask Gabriel in the Journal of Topology, right?

I keep saying from the beginning that the motivation is the homotopy transfer
theorem. The motivation is the homotopy transfer theorem.

Theorem 3.4 (Drummond-Cole–Vallette). Starting with a BV∞ algebra and a
deformation retract, for any such structure on A, there exists an equivalent BV∞
structure on H such that I can rectify to produce a strict BV algebra, perhaps not
precisely the one I began with but an equivalent one.

We encode good invariance. I’ll use that later on. In the particular case, when we
transfer we get the structure on the right hand side, if δi are zero on the right hand
side we get homotopy hypercommutative on the right hand side. If the transferred
δi are zero, the structure is a Hypercomm∞ algebra. I’ll give you several examples
of that, like the de Rham cohomology of a Poisson manifold. When is this transfer
zero is the question of homotopy trivialization of the circle, but how do you detect
that? I’ll give you conditions for that and if we have time I’ll talk about the Givental
action.

Under which conditions do you have, let’s say you start from a BV structure.
You have a ∆ and a product. What kind of structure on A could make the ∆ vanish
on homology? We have three examples of that. One is the d−∆ condition.

kerd ∩ ker∆ ∩ (Imd+ Im∆)

This is Deligne–Griffiths–Morgan–Sullivan. This means that A ∼= H⊕S⊕∆S+dS+
∆dS, and ∆ and d are isomorphisms on this S square. This proves that ∆ = 0. All
these conditions imply that δ1 = 0. All of these imply that δ1 = 0 and actually that
δ2 = 0 et cetera. But what is the implication for the BV algebra structure? When
you transfer the δ1 is killed. This example was treated by Barannikov–Kontsevich
and treated in Manin’s book. On H(A, d) they have an action of H∗(M0,n+1).
There is another condition that Jae-Suk coined which is called semi-classical. So
for this any element in H(A, d) admits a representative in Ker ∆. Then you can
get formality of A as a Lie algebra with d. The d∆ lemma implies it. The third
condition, implied by all of these, is that δi = 0, and then you get H carries a
Hypercomm∞ structure with trivial differential.

So from the weakest condition we get the strongest result.
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With the strongest result I can reconstruct the BV .
[Some discussion.] This allows you to understand the mixture. Now let me look

at the conditions on ∆ to see when these things vanish. We have this general frame-
work for P∞ structures. I’ll restrict to mixed complexes, D-algebras and D∞, mul-
ticomplexes. What is the Lie algebra which controls D-algebra structures? I have
maps T̄ c(δ), Hom(A,A)). I have δ, δ2, δ3, and this is isomorphic to zEnd(A)[[z]].
So z has degree −2. Here you know the Lie structure. What is the differential?
The differential of riz

i is ∂(ri)z
i. I have a Lie algebra. My multicomplex are just

Maurer-Cartan guys. This is MC(≫∆,A). If I have some α, the classical deforma-
tion theory for dg algebras, I have λ ∈≫0 induces dλ[λ,—] in Γ(MC(≫)). We
say two structures are gauge equivalent if we have γ with γ̇(t) = dλ+[λ, γ(t)] along
with γ(0) = α and γ(1) = β.

So the trick is to take ≫ ⊕kd̃, a new Lie algebra with dd̃ = 0 and [d̃, α] = dα.

Now take α to d̃ + α and the Maurer Cartan equation becomes [α̃, α̃] = 0. This I
can solve. If we have λ ∈≫+

0 =≫0, we can solve γ̇(t) = [λ, γ(t)] = adλ(γ(t)). We
know how to solve that. The solution is easy. It’s γ(t) = exp(t adλ)(α) (provided
things are sufficiently nilpotent).

I could definitely make a ≫+, but instead I’ll look in the counital version,
Hom(T c(δ), End(A)) = End(A)[[z]]. Then δ̄ · 1 7→ ∂A. Here I have a differential
graded associative algebra A∆,A. So now working there, my equation is easy to
solve. I have exp(rtλ − `tλ) where rtλ takes x to x · tλ. But these two operators
commute and I’m done, I get e−tλαetλ. I should have been putting tildes on things.
The gauge action is now exactly that formula. So d̄+ β = e−λ(d̄+ α)eλ.

Let’s call a guy gauge trivial if there is a λ such that. . .

Theorem 3.5 (Dotsenko–Shadrin–Vallette). α is gauge trivial if and only if it is
homotopy trivial.

A multicomplex is homotopy trivial if and only if it’s gauge trivial. So if I want
to do the proof, this equation is the equation for morphisms of multicomplex. So
eλ(d̄+ β) = (d̄+ α)eλ. So eλ is a map which is the identity on the first level.

Let me do the proof. If α is gauge trivial, then it satisfies this equation. There
is a morphism between the trivial structure and α. Then you can see that α is
zero on homology very easily. You have a gauge interpretation and a homotopy
interpretation and they agree very well.

Now let me tell you, if you take the de Rham cohomology of a symplectic manifold
which satisfies the hard Lefschetz condition, then you get a dg BV algebra structure
with this sort of degeneration on the de Rham cohomology. You have [ιω, ddR] and
this is BV . This is a theorem by Merkulov and Olivia Mathieu. Then you use
Barannikov-Kontsevich-Manin and get the hypercommutative structure.

Let me take something simpler. You just need Poisson. Remove the hard Lef-
schetz condition and you still get this, and we have much more, you get hypercom-
mutative up to homotopy. The proof is now one line. I need to prove that α is
gauge trivial. Here, I take A = ΩM and do Cartan calculus. I have a structure α
it’s a series in z, it’s ddR + ∆z, that’s it.

Now let me put that in here. I want to find a λ so that eλ◦ddR ◦e−λ = ddR+∆z.
I’ll take λ = iωz and I claim that’s enough. So this is, using the same trick as before,
eadiωzddR which is ddR + [iω, dDR]z + [iω, [iω, ddR]]z2 + · · · but all terms after the
first vanish since i[ω, ω] = 0. If you consider Jordan manifolds, which include

contact manifolds, you get a bivector field w ∈ Γ(∧2TM) and E ⊂ Γ(TM), you
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cook up a ∆2 which is order three. So this is a homotopy BV algebra. The contact
manifold’s forms have a homotopy BV algebra structure. This is in my paper, it’s
very readable. You can prove the same result. Then you can refine.

I hope you like this because I like this very much. This was, I’m inside this
big world of homotopy BV algebras. We are T (T̄ c(δ) ⊕ H•+1(M0,n+1)) I’d like
an interpretation with a dg Lie algebra. It was enough for Hom(T̄ c(δ), End(A))
to look at zEnd(A,A)[[z]]. So we should have two pieces, ≫∆,A, and another
part, Hom(H•+1(M0,n+1), End(A)). These are both Koszul duals. This is again a
convolution algebra and Maurer-Cartan guys correspond precisely to hypercom∞
structures an A. If I have a cooperad up to homotopy, this endomorphism thing is
an L∞ algebra.

The most accurate way to say this mathematically is the following, T̄ c(δ) ⊂
T̄ c(δ)⊕H•+1M0,n+1 → H•+1M0,n+1. When I go higher, I get the following exact
sequence �∆,A↪→ `BV,A →≫hypercomm,A. We looked before when T̄ c(δ) vanishes.
Now we’ll get Givental, when it doesn’t.

Now I have to work with classical deformation theory in any L∞ algebra. I
want to do deformation theory there. I consider the Maurer-Cartan equation dα+
1
2`2(α, α) + 1

6`3(α, α, α) + · · · . Like this it would not exist but applied to one α it
works because of local nilpotence. The gauge action is a bit more subtle. Let me
take λ ∈ `0, then I can look at dλ+ `2(λ, α) + 1

2`3(λ, λ, α) + · · · ∈ TαMC∞(`).
This defines a vector field at point α. Now we can try to integrate. Let’s hide

that under the carpet. Now we can conclude. So [c’est bon, ça]. So let my take a
hypercommutative structure α. That’s a Maurer-Cartan guy here. Let me take for
λ in the D∞ side the riz

i. I said this acts on hypercommutative algebras.

Theorem 3.6 (Dotsenko-Shadrin-Vallette). r̂(z).α ∈ Tα{hypercom algebras}, let
me draw for you, here’s the set of all BV∞ structures. [picture of plane]. Among
those I have homotopy hypercommutative algebras [line in the plane].

First, `α1 (r(z)) ∈ TαMC(≫) is tangent to this. So they are in the same space

and can be compared, and r̂(z).α, the Givental action of r(z) on α, is exactly the
same as `α1 (r(z)).

Here the model we proved, we used no intersection at all. He did some compu-
tations, combinatorics of trees plus homotopical algebra.

On the one hand you have a formula from intersection theory. On the other
homotopical algebra.

Now I can maybe tell the sad story. We thought we found something nice, we
submitted to Inventiones. The referee said, well, Kontsevich gave a talk on this ten
years ago, saying that the Givental action should be a change of trivialization of the
circle action. This is not that, this is the infinitessimal action. I have to integrate
if I want that result. If I integrate, let me integrate to t = 1 and get Givental. So
here I have Givental action. So how can I explain that side? I integrate that to
t = 1, it’s finite, no problem. Okay, what’s the formula, it’s the gauge action, so the
formula is an exponential as before. So you have something like er(z)αe−r(z), this
is the infinity isotopy of a multicomplex. These are trivializations of the S1 action.
So now I can make this completely precise. The Givental action is precisely the
same as the action of the trivialization of S1. I have an operadic picture, maybe
for Gabriel.

Maybe I want to tell you the action operadically.
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[some questions about stabilizers, some comments from Jae-Suk]
Here is an interpretation. A Givental action amounts to an automorphism of

operads. I’ll act on Hypercom∞ ∨ T (D̄¡) with no suspension. This is trivialization
of ∆-actions.

4. March 31: M5 branes, holography, and knots

Let M be a three manifold such as S3. Let A be a connection on a principal G
bundle over M . Then [DA] is summed over all possible connections weighted by
the Chern Simons functional of A.∫

[DA]e−
1
2~CS[A]

The connection can be written as a ≫-valued 1-form on M , where ≫ is the Lie
algebra of the gauge group G.

This connection is defined up to gauge equivalence A ∼ g−1Ag + g−1dg.
Finally the Chern Simons CS(A) is

∫
M
Tr(A ∧ dA + 2

3A ∧ A ∧ A). So this is
Z[M,G, ~].

This kind of invariants were first introduced by Witten more than twenty years
ago. This should include the Jones polynomial. We will consider more structure
and define a more complicated invariant, adding a knot K on this three-manifold
and a representation R of the gauge group, a homomorphism G→ GL(m). Here m
is the dimension of the representation. So apply the representation to the holonomy
of A along the knot and then take the trace.

We would call the representation a charge.
[Some discussion]
Witten found that these quantum invariants are related to knot invariants.

Jm(K, q) is one of these, it’s Z(S3, SU(2), ~,K,Rm)/Z(S3, SU(2), ~) where q = e~.
Here Rm is the unique irreducible m-dimensional representation of SU(2).

Before we turn, we can calculate the colored Jones polynomial by resolving cross-
ings. There is no three-dimensional definition of the Jones polynomial until this.

Our main interest is for G a non-compact group, some PGL(N) = SU(N)C. So
PGL(2) = SL(2). We complexify our gauge group. The reason people are inter-
ested is because it has application to the volume conjecture (Kashaev, Murakami,
Murakami)

Conjecture 4.1.

lim
m→∞

1

m
log |Jm(K, q = e

2πi
m )| = 1

2π
vol(S3\K).

So S3\K is a knot complement, removing a solid torus from S3.
Let me explain the physical origin of this conjecture. For this, such a field theory

interpretation is crucial. The charged particles are charged by m. We’re considering
m going to the infinite limit. The knot becomes very heavy and will deform the
geometry. So S3 becomes S3\K, the knot becomes a black hole. This is a very
naive physical argument. This improves to more general cases. Here we’re taking
m, doing analytic continuation, and give it complex values. We let SU(2) become
its analytic continuation PGL(2). This m should be the same as the Chern Simons
theory on PGL(2). This is not rigorous but please believe it.

The asymptotic limit Jm(K, q) for m → ∞ and q → 1 with qm fixed becomes
governed by SL(2,C) Chern Simons theory on S3\K.
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I’ll expand how the hyperbolic volume appeared here.
So what we’ll do is perturbatively expand, for PGL(2,C) Chern Simons on

S3\K. We’ll take the limit as ~→ 0. We’ll use a method:∫
lim
~→0

d~ze
1
~ f(~z) = (

2π

~
)dim

∑
α

e
1
~ f0+~0f1+···

The first term, ∂f∂~z (~z(α)) = 0

f
(α)
0 = f(~z(α))

f
(α)
1 = −1

2
log det(− ∂2f

∂zi∂zj
(~zα)).

The [missed] point of the Chern Simons functional are flat manifolds, dA+A∧A =
0. We have ∂M = T 2 if we are dealing with knot complements. We can pick
eigenvalues for the holonomy along spanning pairs for this torus, those holonomies
should be eu and e−u. You get a finite number once you impose these restrictions.

The leading order is given by − 1
2~CS(Aα). This is the expansion e

1
~Sα0 +Sα1 +~S(α)

1 .
One natural θ point, there is one natural hyperbolic metric, this is the definition

of the hyperbolic manifold. Using this metric we’ll give flat connections and then
get the volume. We’ll obtain a one-form so that ds2 =

∑
eα ⊗ eα. So we construct

Ageom = −(w + ie)
[getting tired, missing things.]
The second term of our expansion is the so-called rational torsion. We started

from a poorly defined path integral, but the perturbative expansion has this well-
defined form. The same will be true of the higher order terms.

So the volume conjecture is the first order part of this equation. This is Gukov,
ten years ago. We’ll extend this to the SU(N) case, with PGL(N). Here we’ll use
m which labels the representation, but here we need (m1, . . . ,mN−1) and K and
q = e~. So we have J(m1,...,mN−1)(K, q = e~). In the limit as ~→ 0, with mi~ = 2πi,

we should get 1
~S

(geom)
0 (M = S3\K,N) + ~0S

(geom)
1 (M,N) + ~1S

(geom)
2 (M,N) · · ·

The S0, for N = 2 comes from Sgeom0 (A) = CS(Ageom). That’s hyperbolic volume.
In general it’s 1

6N(N2 − 1)vol(M).

The definition of S0 is maxIm(CS(A)flat), ranging over all flat connections.
For S1 you get 1

2 log T [M,Ageom], where Ageom maximizes for S0.
We say, use RN [AgeomN=2 ] = AgeomN . That’s our guess for Ageom. You could use it

as a definition.
It’s nontrivial to check that Sgeom1 limits to −vol(M)

6π N3 + O(N2). This is only
valid asymptotically. This is another conjecture, we proved this with Chern Simons
methods and Muller proved it in 2010.

Our conjecture is that the second order part Im[S2[N,M ]]6π
N→∞→ −V ol(M)

24π2 N3.

We expect that the n ≥ 3 leading term 1
N3 (Sn≥3)→ 0.


