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1. September 8: Jeehoon Park

[The format of quantum Monday, we’ll start at roughly 6:40, the talk will start
from 7, and this is supposed to be an extremely informal seminar. Some people
may want the bread and cheese and wine and then leave, that’s fine. We don’t
know when it’s finished. No one is obliged to come. Today, Jeehoon N will start
by talking about group representations and homotopy algebra. You are welcome
to interrupt his talk. Let’s begin, the time when talk is over is not specified, you
can leave whenever you want.]

Please don’t—[Why? They can leave]—stay, I didn’t specify a verb.
This is about A∞ homotopy theory arising in representations. What I mean is

a linear representation of various stuff. It could be a group representation. So G
is a group and look at group homomorphisms to a vector space over k, ρ : G →
Autk(V ). Or an algebra representation. k is a field, this can be relaxed as a
commutative ring with unity but for simplicity I’ll assume it’s a field, then Λ is a
two-sided k-algebra, you can look at ring homomorphisms ρ : Λ→ Endk(V ).

The third example is Lie algebra representations, and then you can think about
Lie algebra representations ρ : g→ Endk(V ).

We can understand a group representation as a representation of the group ring
and a Lie algebra representation as a representation of the enveloping algebra, so
three and one are special cases of the second one.

The homotopy theory is so easy that it’s kind of a shame that we didn’t realize
this thing.

Here’s the setting, let’s concentrate on the second one, let Λ be a k-algebra with
unity. Let A be a two-sided Λ-module. I need one additional assumption, which
is that V itself is a ring. I’ll let A be V . So I have a map ρ : Λ → Endk(A). So
λ · a · u gives the composition ρ(λ) ◦multa ◦ ρ(µ).

We have the general theory of Hochschild homology and cohomology. So how
do we define Hochschild homology and cohomology? So the enveloping algebra of
Λ, called Λe, is Λ⊗k Λopp, where Λopp is the opposite algebra.

The Hochschild (homology) complex. We usually assume that Λ is k-projective.
Since k is a field, this is always true. A projective resolution X of Λ as a Λe-module.

Then HHn(Λ, A) is Torn(A,Λ), which we can compute as

Hn(A⊗k S̃(Λ), d)

Where

· · · → S2(Λ)→ S1(Λ)→ S0(Λ)→ Λ→ 0

Here Sn(Λ) := Λ⊗n+2.
1
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The bimodule structure is:

(µ⊗ γ∗)(λ0 ⊗ · · · ⊗ λn+1) = uλ0 ⊗ · · · ⊗ λn+1γ.

We see that Sn(Λ) = Λ⊗k S̃n ⊗k Λ where S̃n is Λ⊗n which is Λe ⊗k S̃n(Λ).
So for HH(Λ, A) we get the complex

A⊗Λe Λe ⊗k S̃n(Λ)

which is just A⊗k S̃n(Λ) = A⊗k T
n(Λ).

So dn : A⊗k T
n(Λ)→ A⊗k T

n+1(Λ) goes by

dn(a⊗λ1⊗· · ·⊗λn) = (a·λ1)⊗(λ2⊗· · ·⊗λn)+
∑

(−1)ia⊗· · ·⊗λiλi+1⊗· · ·⊗λn+(−1)n(λna)⊗(λ1⊗· · ·⊗λn−1)

As a proposition, dn−1 ◦ dn = 0, so d2 = 0.
Now A−n = A ⊗k T

n(Λ). That’s a degree inversion, d now increases by one.
Now consider A = (

⊕
An, d). I call that the dual Hochschild cochain complex. If

you don’t like that name, forget it.
So far everything is standard. Now assume that A is a Λ-algebra. It’s got

this additional structure. I’ll give the example of Heisenberg representations later.
There are so many examples. In your area you have some representation, you get
a homotopy algebra for free, and you can apply that to see the meaning.

Then I can define a k-algebra structure on A. We have A−n ×A−m → A−m−n.
I multiply in A and tensor the others.

(a⊗ (λ1 ⊗ · · · ⊗ λn))(a′ ⊗ (λ′1 ⊗ · · · ⊗ λ′m) = (aa′ ⊗ λ1 ⊗ · · · ⊗ λ′m)

So you have an algebra A with a product and a differential. This is a so-called
homotopy probability algebra.

What can we do? This is not a differential graded algebra in general. You could
ask if the product and the differential are compatible. You’ll see that we almost
never get a dga. So d is not a derivation of ·.

[Jeehoon doesn’t want to calculate this on the board but here it is:]

d(aa′ ⊗ λ1 ⊗ · · · ⊗ λ′m) = (aa′λ1 ⊗ λ2 ⊗ · · · ⊗ λ′m)+∑
(−1)i(aa′ ⊗ λ1 ⊗ · · ·λiλi+1 · · · ⊗ λ′m) + (−1)n(aa′ ⊗ λ1 ⊗ · · ·λnλ′1 ⊗ · · · ⊗ λ′m)+∑

(−1)i+n(aa′ ⊗ λ1 ⊗ · · ·λ′iλ′i+1 · · · ⊗ λ′m) + (−1)n+mλ′maa
′λ1 ⊗ · · · ⊗ λ′m−1.

On the other hand,

d(a⊗ λ1 ⊗ · · · ⊗ λn)(a′ ⊗ λ′1 ⊗ · · · ⊗ λ′m) = aλ1a
′ ⊗ λ2 ⊗ · · · ⊗ λ′m+∑

(−1)iaa′(λ1 ⊗ · · · ⊗ λiλi+1 ⊗ · · · ⊗ λ′m) + (−1)nλnaa
′ ⊗ λ1 ⊗ · · · ⊗ λ′m

whereas

(−1)n(a⊗ λ1 ⊗ · · · ⊗ λn)d(a′ ⊗ λ′1 ⊗ · · · ⊗ λ′m) = (−1)naλ′1a
′ ⊗ λ1 ⊗ · · · ⊗ λ′m+∑

(−1)n+iaa′(λ1 ⊗ · · · ⊗ λ′iλ′i+1 ⊗ · · · ⊗ λ′m) + (−1)n+mλ′maa
′ ⊗ λ1 ⊗ · · · ⊗ λ′m

So the desired difference is

((aa′λ1 − aλ1a
′)⊗ λ2 ⊗ · · · ⊗ λ′m) + (−1)n(aa′ ⊗ λ1 ⊗ · · ·λnλ′1 ⊗ · · · ⊗ λ′m)−

(−1)nλnaa
′ ⊗ λ1 ⊗ · · · ⊗ λ′m − (−1)naλ′1a

′ ⊗ λ1 ⊗ · · · ⊗ λ′m+

(−1)n+m(λ′maa
′ − aλ′ma′)λ1 ⊗ · · · ⊗ λ′m−1.



QUANTUM MONDAY 3

There is ambiguity in the notation above because (aλ)a′ is not necessarily equal to
a(λa′) but even that doesn’t resolve the difficulties.

By letting λi = 1 for all i, this simplifies to (−1)naa′⊗ 1⊗ · · · ⊗ 1 so this is only
0 if the product in A is identically zero. [End calculation.]

The reason is, once you have this cochain complex, you want to take the coho-
mology. You should get a new structure on the cohomology too. Then you need
this compatibility. We failed. What should we do? We should try again. Failure is
the model of success.

We have to observe the failure and see what’s wrong. We have to measure the
failure of this. I’ll provide you a systematic way of measuring the failure, by an A∞
algebra. This is just one example and there are other things here that you could
do, which I’ll explain.

This defines a functor from Λ-algebras to homotopy probability algebras. I’m
not really looking at the unity in A.

So functoriality, let me say. Now Malg
Λ is the category whose objects are two-

sided Λ-algebras but whose morphisms are Λ-module homomorphisms (not a Λ-
algebra homomorphism). Think of a group acting on a function space. There is a
multiplication there.

Now HPAk is the category whose objects are triples: a space V , a product
·, and a differential d. Here V is a graded vector space

⊕
V n and the product

is a graded associative ring. The degree of d is one and it squares to 0. There
is no compatibility assumed between d and ·. The morphisms are cochain maps
(degree zero and k-linear) from V to V ′. In particular, they are not necessarily
ring homomorphisms.

Theorem 1.1.
A 7→ A, ·, d

is a functor from Malg
Λ toHPAk.Here A is A⊗k T (V ).

I need to say what to do if you have a Λ-module homomorphism A → A′ and
that is, use that on the first factor of A ⊗ T (Λ) and the identity on the other.
Typically A′ will be trivial and then you can just take k.

It’s easy to check that (f ⊗ id) ◦d = d′ ◦ (f ⊗ id) so f ⊗ id is a cochain map. You
should also check composition but that’s obvious as well.

[Long argument about the functor, whether it is evil, whether these categories
deserve to be called categories. Break]

Let me move on to ∞-algebras. I’ll define another functor from HPAk to the
category of ∞-homotopy algebras. What we are aiming at is, the most well-known
homotopy algebras are A∞ or L∞ algebras. In particular, I will construct these A∞
algebras. This is Professor Park’s theory, the descendent functor. What I mean
is that I’ll give you another family of ∞ homotopy algebras. I want to go from a
power series to some other kind of homotopy algebra. But let me do A∞ first.

So I have (A, ·, d), and the point is that, d is not a derivation of ·. You compute
the failure of derivation and define

md
2(x, y) = d(x · y)− dx · y − (−1)|x|x · dy.

So md
1 = d. I want to define a sequence of maps md

n : TnA → A. The only
constraint should be that m1 = d and m2 is this deviation. Now there are many
ways to go to m3. Let me give you one way that will make this an A∞-algebra
structure on A.
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The key power series in the A∞ case is 1
1−x = 1 + x + x2 + · · · . In Chol-Eun’s

lecture, he used eb to talk about this. It’s not the exponential, of course. I’ll extend
this d a little bit. I’ll introduce an Artinian algebra. This is a cochain complex
so you can take the cohomology, right? This can be an infinite dimensional vector
space, of course. Hd(A) is

⊕
keα for an index. Then we can look at the dual space

Hd(A)∗ with its dual basis Homk(Hd(A),k) and call the dual basis tα.
So we’ll introduce Artinian k-algebras. Artk has in it this kind: k[|tα|]/(tα)N+1

where α ranges over some finite set and the variables don’t commute. I guess I
should call that k� tα �, some other notation. Call this one A.

So the maximal idal of A is (tα). Then I can define, or extend d and md
n to

A⊗A. The sign conventions are important so I’ll write them down:

md
n(r1⊗a1, . . . , rn⊗an) = (−1)|r1|+|r2|(1+|a1|)+···+|rn|(1+···+|an|)r1 · · · rn⊗md

n(a1, . . . , an).

This is just the Koszul sign when I define the md
n so that they all have degree 1.

This, one more thing, is an algebra structure: (r1⊗a1)(r2⊗a2) = (−1)|a1||r2|r1r2⊗
a1a2. Keep in mind this sign convention.

Then define md
n by the following formula, for x in (MA ⊗A)0 :

d(
1

1− x
) =

1

1− x
Md(x)

1

1− x
So expand this and they should both have the same t terms. Here Md(x) =∑
md
n(x, · · · , x).

Here x = r ⊗ x. You can write this out.
[What if you change your homotopy theory? What do you do with Md?]
You have some power series P (x) and you want to compute its derivative but it

doesn’t commute. You can look infinitesimally at P (x+ ε⊗ µ) and you get

a0 + a1(x+ εµ) + a2(x+ εµ) + · · ·

and you get

P (x) + a1εµ+ a2(xεµ+ εµx) + a3(x2εµ+ xεµx+ εµx2) + · · ·

So you can define this to be P (x) + P (x, εµ, x) and you can try to define d(P (x))

and this will be P̂ (x,Md(x), x). This will be aim
d
n(x, · · ·x), that’s what looks right

to me. This depends on P (x).

If P (x) is 1
1−x then P̂ (x) is 1

1−xµ
1

1−y .

Now you compare the tαn · · · tα1 terms. You get these md
n : Tn(A) → A. I

didn’t change any order. Miraculously, these form an A∞ algebra. Let me give you
a proof, which is straightforward.

The A∞ relation is that
∑
mn(x1 · · ·mk, · · ·xn) = 0

[Some interruptions, questions about the definition of P̂ .]
So let x = t1 ⊗ x1 + t2 ⊗ x2. Then let’s try to solve

d(1 + x+ x2 + · · · ) = (1 + x+ x2 + · · · )(dx+md
2(x, x) + · · · )(1 + x+ x2 + · · · )

So we expand this and the left side is, well, this is too hard. Let’s do x = ta, it’s
linear in t. But if we scale it should still work. So let’s count word length in t.
d1, dx, dx2, et cetera is the left side. So dx = dx is the first thing. On the right
side we have d(x2), m2(x, x) + x · dx+ dx · x, and this tells us m2 is the deviation
from d being a derivation of ·. Then for the dx3 we get m3(x, x, x) + xm2(x, x) +
m2(x, x)x+ dx · x2 + xdx · x+ x2 · dx.
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We get all of this with signs and so on. I spent lots of time to get the sign correct.
We have to prove that these mn form an A∞ algebra.
[Some discussion. What power series are good? What does rescaling mean?]
The definition, we need d2 = 0. So

0 = d(d(
1

1− x
)) = d(

1

1− x
Md 1

1− x
)

As a lemma, we can calculate

d(
1

1− x
µ

1

1− x
) = d(

1

1− x
)µ

1

1− x
+

1

1− x
Md
x

1

1− x
+

1

1− x
µd(

1

1− x
)

where Md
x = md

1 +md
2( , x) +md

2(x, ) + · · · Then we get

d(
1

1− x
)Md 1

1− x
+

1

1− x
Md
x (Md(x))

1

1− x
+ (−1)1 1

1− x
Md(x)d(

1

1− x
)

and the first and last terms cancel and you get, after multiplying by 1 − x before
and after, you get the quadratic relation you want Md

x (Md(x)).
Now morphisms. So for a map f : (A, ·, d)→ (A′, ·′, d′), a cochain map, I claim

you can find φf = φf1 , · · · , φfn : Tn(A) → A to be an A∞ morphism. Define it by

f( 1
1−x ) = 1

1−
∑
φfn(x,...,x)

= Φf (x).

Theorem 1.2. φf is an A∞ morphism.

We see that f(1 + x + · · · ) = 1 + Φf (x) + Φf (x)2 + · · · , so f(x) = φf1 (x),

f(x2) = φf2 (x, x) + f(x)f(x), so it’s measuring the failure of f from being a ring
homomorphism.

To prove it, we have f(d( 1
1−x )) = f( 1

1−xM
d(x) 1

1−x ) but it’s also d′f( 1
1−x ) =

d′( 1
1−Φf (x)

). Let’s expand that first thing. By a similar lemma,

f(
1

1− x
µ

1

1− x
) =

1

1− Φf (x)
Φfx(µ)

1

1− Phif (x)

where as before

Φfx(µ) = Φf (µ) + Φ2(µ, x) + Φ2(x, µ) + · · ·

If we apply this, we get

1

1− Φf (x)
ΦfX(Md(x))

1

1− Φf (x)

and applying the other lemma on the other side we get

1

1− Φf (x)
Md′(Φf (x))

1

1− Φf (x)

I think you get a better definition here of A∞ homotopy from this. Here we have
(A, ·, d), and then we have a natural notion of homotopy. The descendent functor
gives a natural definition of A∞ homotopy.
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2. September 30: Jeehoon Park

Let me briefly review the situation. There’s a starting point of the theory which
is this. k is a field and Λ is a k-algebra, not necessarily commutative. Then A is
a Λ-algebra. So this Λ-algebra structure, it’s a bimodule Λ × A → A ← A × Λ.
You can think of this action as a representation of Λ in Endk(V ). So λ 7→ ρ(λ).
I’d like to apply this theory to this particular example. Let ρ be a k-algebra
homomorphism. The representation space is in A. Then we can define a particular
Λ-module structure in this way. λ · a = ρ(λ) ◦ a and a · λ = a ◦ ρ(λ).

That’s the key example. Given this situation, we can consider the Hochschild
(co)homology theory of Λ with values in A, HHi(Λ, A) and HHi(Λ, A). The homol-
ogy is Hi(T (Λ)⊗kA, d). The cohomology is the Ext functor Hi(Hom(T (Λ), A), d).
Let me recall the differentials d.

In the cohomology,

dν(x1, . . . , xn+1) = x1·ν(x2, . . . , xn+1)+
∑

(−1)iν(x1, . . . , xixi+1, . . . , xn+1)+(−1)n+1ν(x1, . . . , xn)·xn+1.

For a⊗ (x1 ⊗ · · · ⊗ xn) ∈ A⊗ Tn(Λ), the differential takes this element to

a·x1⊗(x2⊗· · ·⊗xn)+
∑

(−1)ia⊗(x1⊗· · ·⊗xixi+1⊗· · ·⊗xn)+(−1)nxn·a⊗(x1⊗· · ·⊗xn−1)

So let me put a degree zero binary operator ∗ onHom(Tm(A), A)×Hom(Tn(A), A)→
Hom(Tm+nA,A). Define this as f∗g(x1, . . . , xm+n) = f(x1, . . . , xm)·g(xm+1 · · ·xm+n).

On the homology you can also define a product by

a1 ⊗ (x1 ⊗ · · · ⊗ xm) ∗ a2 ⊗ (y1 ⊗ · · · ⊗ yn)) = (a1a2)⊗ (x1 ⊗ · · · ⊗ yn)

The natural question is whether these are dgas. The answer is no in general. It’s
hard to find such an example. What people say is that the game is over, we don’t
study this.

In the example of A from earlier, the Hochschild cochains are a dga. If you start
from a Lie algebra it is still the case that these are dgas. The chains are not.

It turns out that there is a theorem that Hom(TΛ, A), dρ, ∗) governs defor-
mations of ρ. You can ask whether ρ + ρ̃ is a ring homomorphism from Λ to
A. If ρ̃ satisfies the Maurer-Cartan equation of a dga, Hom(TΛ, A, dρ, ∗), then
ρ+ ρ̃ ∈ Hom(Λ, A). This equation is dρ(ρ̃) + ρ̃ ∗ ρ̃ = 0.

As an example, let G be the Galois group Gal(Q̄/Q) which is the limit of finite
Galois groups K/Q, with k = Fp. Consider

ρ : G→ GLn(mathbbFp
n
) = AutFp(Fp

n
)

and you can ask whether you can lift:

GLn(a)

��
G

;;

// GLn(Fp)

where a is a local Artinian ring with residue field Fp. If you are not a number

theorist you can think about Fp[x]/(xn).
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The theorem says that you can study the lifting by looking at the cochain com-
plex, so you have

ρ : Fp[G]︸ ︷︷ ︸
Λ

→Mn(Fp)︸ ︷︷ ︸
A

.

In this setting, the tangent space is governed as follows. H1(G,Vad). This governs
the freedom. But Vad is basically Mn(Fp) with the group action that for γ in G
and m a matrix, m 7→ γ ·m · γ−1.

You have a Hochschild cohomology complex for the group cohomology. The only
difference is that we use γm −mγ. These should give the same answer. But you
look at this

H1(Hom(T (Fp[G]),Mn(Fp)), δ, ∗)
If you change things a little bit, this will be a differential.

I use δ here instead of dρ; let me write it down. dρ(a)(x), for instance, is x·a−a·x.
On the other hand, δ(a)(x) = a− ρ(x)aρ−1(x). They have the same homology, but
the first one is a dga and the second one is not.

Let me recall some constructions, though.
The descendant A∞ algebra is defined as

d(
1

1 + x
) =

1

x− 1
Md(x)

1

1− x
.

Here
∑
ti ⊗ xi = x ∈ (Ma ⊗A)0 and Md(x) =

∑
md
n(x, . . . , x) Depending on this

power series, there are different ways to measure this. So remember, the left side
is 1 + x+ x2 + · · ·

I want a to be k� t1, . . . , tn � and the maximal ideal is generated by the ti.
[Some discussion. Then a break.]

3. October 14, 2013
Calin Lazaroiu, Non-Markovian categories of open quantum systems

I want to talk about “open quantum systems” which are quantum physical sys-
tems which are in interaction with the environment. They are not isolated. We
need a mathematical model for this.

The most general mathematical description of a “quantum system” is a pair
(H, ρ) where H is a Hilbert space which I’ll take to be separable and ρ is a so-called
density operator on H. I’ll denote the convex set of density operators by B̄+

1 (H).
Everyone knows that a Hilbert space H (I will consider all Hilbert spaces to

be over the complex numbers) is a pair, a vector space over C endowed with a
Hermitian scalar product 〈, 〉, a bilinear map H × H → C, such that the norm is
complete, every Cauchy sequence converges.

There’s a well-developed theory of Hilbert spaces. In particular there’s a notion
of Hilbert dimension.

Proposition 3.1. Any Hilbert space admits an orthonormal basis, that is a family
(ei) of elements ei such that 〈ei, ej〉 is the Kronecker δ, and such that for any vector
x in H the sum

∑
|〈x, ei〉| <∞ and

∑
〈x, ei〉ei = x

Proposition 3.2. Any two Hilbert space bases have the same cardinality which is
denoted hdimH and called the Hilbert dimension.

Now I can explain what separable means.
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Definition 3.1. The Hilbert space H is called separable if hdimH ≤ ℵ0, that is, if
the dimension is finite or countable (these are mutually exclusive).

In the finite case, this is unitarilly isomorphic to Cn with the standard inner
product; in the countable case it’s `2, the space of square summable sequences.
The scalar product is

〈a, b〉 =

∞∑
n=0

anb̄n

which is absolutely convergent.
There are nonphysical Hilbert spaces that are not separable, but a space of states

is always separable.
So ρ is called a “mixed” state and the set of them is B̄+

1 . Let’s see this. So B(H)
is the set of bounded operators, ||Tx|| ≤ ||T ||||x|| for some unique ||T || ≥ 0. This is
equivalent to being continuous. This set of bounded operators is a Banach space.
B1(H) within B(H) is the set of trace class operators, those such that tr(|T |) <

∞. This is a Banach space. You can define Schatten classes, define Bp(H), bounded

operators such that tr(|T |)
1
p < ∞. The theorem is that Bp(H) is a Banach space

and Bp(H) ◦ Bq(H) ⊂ B pq
p+q

. There’s something a little wrong here, but I don’t

remember the actual details.
So B1(H) has a dual which is B∞(H), compact operators. Well, anyway, what’s

B+
1 (H) with the property that T ≥ 0. This means the spectrum of T is inside

the positive real line. Then B̄+
1 (H), well, these are the ρ such that the trace of ρ,

well, this is a self-adjoint operator, they have trace 1. The space, the set of such
is a convex set. It’s the set of all states. There’s a notion of pure states, which
project onto a one-dimensional space. So take V ⊂ H a closed subspace, consider
orthogonal projector PV onto V . Since V is closed this is bounded and trace class.
Take ρ to be 1

dim V PV . If the dimension of V is one, this is called pure. In general
by the spectral theorem, you can write any such ρ as a series λnPn +P0, where Pn
are projectors onto a subspace of H and

∑
λn = 1.

So a quantum system is (H, ρ). This describes the state ρ of the quantum system
with Hilbert space H. This is very rigorous and well-defined.

Now that’s the basis of the theory of closed quantum systems. So what’s an
open quantum system? The modern way to think about this is as a category. Make
a category of quantum systems. Here the story is not so simple. Most morphisms
are actions of unitary operators. Simplest: take U ∈ U(H1,H2), the set of unitary
operators. This is empty unless they have the same Hilbert dimension. Define a
category, sometimes called the category of pointed Hilbert spaces and unitary maps
Hilb•U , with objects pairs (H, ρ) (everything is separable) and morphisms unitary
operators U such that AdU (ρ) = ρ′. That is, UρU−1 = ρ′.

That’s a natural thing. Unfortunately, it’s rather useless. That describes only
physical processes involving isolated or closed quantum systems (I’m giving you the
physics language) in which quantum systems do not interact with anything else.

You have some box where you put a quantum system, with some hydrogen atoms
or whatever, and you say it’s perfectly isolated, no energy can flow into or out of
the system. In reality you can’t make a closed systems. This is an idealization.
You get a differential equation if you start with a one-parameter family U = eitH

and you get the so-called Von Neumann equation, which if you evaluate you get
the Schrödinger equation.
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Physics and logic and common sense say that there’s no such thing as an isolated
(closed) quantum system. So all quantum systems are actually open, non-isolated.
So that trivial category, there’s maybe interesting functional analysis but nothing
interesting categorically.

In modern languages, what replaces Hilb•U as a good category of open quantum
systems? This should match up well with the lab.

If you can stand to read those papers, which are not mathematical but not clear,
you have to be a physicist to read those papers, they’re not clean. They try to do
this thing. There’s an ideology, the current ideology has objects the same, (H, ρ).
But what are the morphisms? The morphisms maybe (they changed their minds)
are “completely positive” maps. This comes from Shudaishan. He also showed these
weren’t right. A positive map is a linear map B1(H) → B1(H′) which takes the
cone of positive trace class operators into the cone of positive trace class operators.
It’s completely positive if f remains positive after tensoring with the identity on
any finite dimensional Hilbert space.

Any unitary map U ∈ U(H1,H2) has the property that Ad U : B̄+
1 → B̄+

1 (H′)
is completely positive. Moreover Ad U has a completely positive inverse. Even
further, a completely positive map has a completely positive inverse if and only if
it is Ad U .

Every operator from a finite dimensional Hilbert space to itself is bounded, so
B1(H) is just the space of n× n matrices, and idB1(H)

∼= idMat(n,C).
For a map to be completely positive, it must be positive. For physical reasons

you think it should be positive. The complete positivity, it’s claimed that a nice
class of processes is described by completely positive maps. So we should use them
as morphisms. Then we can describe both unitary and non-unitary evolutions, and
you get some Markov evolution. This was done rigorously. That was done by a
Swedish mathematician. In this approach, unitary evolution is replaced by Mar-
kovian evolution while under good technical assumptions, von Neumann’s equation
is replaced by Lindblad’s master equation. There’s a paper in 1976 or something
and there are a couple of generalizations.

People recently found systems that don’t follow Lindblad’s equation. So the
mathematical assumptions are very weak, the only way out is to drop the completely
positive assumption. So you need to replace that with something else. That’s an
extra assumption, physically untenable.

This goes up to very recent papers discussing why this isn’t enough. If you
predict something that is disavowed by experiment, you go home and think again.
There’s a lot of activity.

It was in working in decoherence and quantum information theory that they
came upon this being not enough. After the break I’ll tell you how the answer
comes from homotopy theory.

[break]
How would we go beyond the completely positive maps? A linear map f is com-

pletely positive if and only if there is a completely positive map from B1(H) to
B1(HE) for some other Hilbert space HE so that you can couple with the environ-
ment (there is a partial trace map H ⊗ HE down to H), taking the lift, rotating
using a closed morphism, a unitary map, and then projecting back down.
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How would you generalize this map? One way to is to let the system interact
with the environment. So the mixed state might not be of tensor product form. It
could be ē(ρ), some ē.

The no-go theorem says there is no trace preserving psotive linear map ē which
is not just a tensor product id ⊗ e. There are no sections in linear positive maps.
You have to do something else. You could relax positivity or linearity of ē. Non-
linearity would produce many problems. Negativity would also be a problem. The
whole composite would preserve positivity, but that’s only on some subspace. It’s
physically untenable. That’s the current status.

Let me tell you how we think this could be answered. If you know a little bit
about algebraic homotopy theory. Instead of finding a lift, define the morphisms
to be such diagrams.

B̄+
1 (H⊗HE) //

trHE
��

B̄+
1 (H′ ⊗H′E)

trH′
E

��
B̄+

1 (H) B̄+
1 (H′)

So let me make a first definition of a category of open quantum systems.
The objects are pairs (H, ρ) with H a separable Hilbert space and ρ in B̄+

1 (H).
Morphisms are quadruples HE ,H′E , ρ̂, U where HE and HE′ are separable, U is

a unitary morphism H ⊗HE ,H′ ⊗ H′E , a ρ̂ ∈ B̄+
1 (H ⊗HE) such that the partial

trace over HE of ρ̂ is ρ and so that the partial trace over H′E of AdU ρ̂ is ρ′.
The identities are (C,C, ρ, idH⊗C). The composition is a complicated diagram.
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B̄
+ 1

(H
1
⊗
H
E
,1
⊗
H

2
⊗
H
′ E
,2

A
d
U
1
2
⊗
id

//

tr
H

2
⊗
H
′ E
′ 2

��

B̄
+ 1

(H
⊗

2
2
⊗
H
E
,2
⊗
H
′ E
,2 tr
H

2
⊗
H
E
,2

))

tr
H

2
⊗
H
′ E
,2

uu

A
d
2
3
⊗
id

// B̄
+ 1

(H
3
⊗
H
E
,3
⊗
H

2
⊗
H
E
,2

)

tr
H

2
⊗
H
E
,2

��
B̄

+ 1
(H

1
⊗
H
′ E
,1

)
A
d
1
2

//

��

B̄
+ 1

(H
2
⊗
H
E
,2

)

))

B̄
+ 1

(H
2
⊗
H
′ E
,2

)

uu

A
d
U
2
3
// B̄

+ 1
(H

3
⊗
H
′ E
,3

)

��
B̄

+ 1
(H

1
)

B̄
+ 1

(H
2
)

B̄
+ 1

(H
3
)
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Explicitly, the composition

H′E,2,HE,3, ρ̂′2, U23 ◦ HE,1,HE,2, ρ̂1, U12

is

HE1
⊗H2 ⊗H′E2

,HE3
⊗H2 ⊗HE2

, ρ̂1 ⊗ ρ̂′2, Ad(U23⊗id)◦(U12⊗id)

Proposition 3.3. This is in fact a category, in fact a bicategory with 2-morphisms
given by pairs w = (w1, w2) such that w1 and w2 are in W , a wide subcategory gen-
erated by AdU for U unitary and trHE (partial trace) so that the diagram commutes

B̄+
1 (H1 ⊗HE,1), ρ̂1

trHE,1vv
w1

��

AdU // B̄+
1 (H2 ⊗HE,2), ρ̂2

w2

��

((
B̄+

1 (H1), ρ1 B̄+
1 (H2), ρ2

B̄+
1 (H1 ⊗H′E,1), ρ̂′

trH′
E,1

hh

AdU′
// B̄+

1 (H2 ⊗H′E,2, ρ̂2

66

So to do the right thing with these, you should take final one-morphisms, Kan
extensions in the bicategory sense. This has a physical interpretation. So the
important thing is that this is related to making renormalizing group flow into a
functor. Usually this is defined via an approximation scheme. We can define this
as a functor and think this is the correct definition for a number of reasons.

How do you relate this back? Let ρ = e−H for H a Hamiltonian. Then H =
Heff ⊗HE . Then trHE (ρ) = e−Heff . That’s the rough idea.

Of course, there’s much more than this. This really should be done more gener-
ally. This can be done for C∗ algebras and for von Neumann algebras. The most
general version is in terms of C∗ algebras and states on those.

There is another way to define a bicategory of quantum systems. A bicategory
of open quantum systems and completely positive maps. How does it relate to this?
We think it embeds into our bicategory. All of this story, of course, has a connection
to homotopy theory. This does behave a bit like a calculus of fractions. Then you
can ask an awful lot of mathematical questions. Does this extend to non-separable
Hilbert spaces? What about C∗ algebras? But now there’s a category.

[Some discussion of renormalization group flow.]

4. Kim Dohyeong, Introduction to descent

I’ll begin by discussing what I mean by descent. This is not a rigorously defined
term. Instead it’s a set of techniques to attack diophantine problems. I’ll explain
what those are. It’s especially for those using arithmetic or geometric symmetries.
I’d rather view it as a theme on which you can play many variations. I’ll introduce
several explicit realizations of this method and this will bring the idea of descent.
This is for non-number theorists, so I want to avoid all the technicalities as much
as possible.

Let Z be the ring of integers and Q the field of rationals. If N is a nonzero
integer, then you can think about the localization of Z at N , the ring of fractions
Z[ 1

N ] = { a
Nr } for r ∈ Z and a ∈ Z. We’ll always let R be one of these; we have

inclusions Z ⊂ Z[ 1
N ] ⊂ Q but the second gap is much bigger than the first.
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Let X be a variety of finite type over R We can safely assume that X is a curve
because it’s already hard enough. But if you like you can enlarge into stacks or
schemes or something.

A Diophantine question is like whether X(R) is empty or whether it’s finite or
you want to ask for an algorithm to produce X(R) without knowing its finiteness.
These are basic questions. Is there a solution? Are there only finitely many? Can
we compute them explicitly? You can ask all of these questions varying X. You
want to consider X having a certain property and you want to know whether some
property is true or not. When R is Z this is a famous problem of Hilbert; I forgot
the number. This question, whether X(Z) = ∅, is as hard as the halting problem,
to determine whether a particular code stops or not. This implies in particular that
there is no algorithm for this.

For X in some special class of varieties we can probably answer this.
For R = Q, we don’t know how difficult this problem is. I think that it’s in

the realm of logic that, they predict that this can be solved by an algorithm, but
I don’t know the current state of the art. People also illustrate this situation by
saying that Z ⊂ Q is perhaps not definable in first order logic. It suggests that Q
and Z should behave very differently in terms of solving equations. You want to
write down a finite set of conditions to define Z in Q. We expect that this doesn’t
exist.

We do, though, have some knowledge about curves and I can tell you some of
what we know about them. Projective smooth curves are classified by genus.

I’ll exclude the case when g = 0. The case when g = 1 is elliptic and g > 1 is
called hyperbolic.

finite over Z algorithm finite over Q
elliptic\{p}

√
not known not known

elliptic
√

modulo BSD conjecture modulo BSD conjecture
hyperbolic

√
not known

√

Already for curves the situation is unstable. These questions, the algorithms, are
the effective Mordell conjecture. Why is it called that? His conjecture was the
following statement early in the twentieth century. So X/Z, let’s have it be either
an elliptic curve minus a point or P1 minus three points or hyperbolic (often any
of these is called hyperbolic) then X/Z is finite. He did not ask for an algorithm.
That’s much stronger than knowing the finiteness. An algorithm is more or less
equivalent to a bound on P which is more or less the same as the exact number of
Z-solutions.

Let me give a set of examples. I’ll write down equations.

x2 + y2 = p

x2 + ny2 = p

x2 − ny2 = 1

a1x
2
1 + a2x

2
2 + · · ·+ anx

2
n = 0

y2 = x3 + ax+ b(with no multiple roots)

y2 = f(x)(hyperbolic if deg(f) ≥ 5

x2 + y2 = 1

axn + bym = 1

for p a prime and n, a, b in Z or Q.
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This is the end of section zero.

4.1. Local methods. Our problem is that X(Q) or X(Z) is not structured. It’s
not their fault but it’s the limitation of our current knowledge. We get an algebraic
variety or topological space over C but that’s not what we have for Z. Consider
Q ⊂ Qv whecre Qv is either R or the p-adic completion of Q.

There are many constructions of real numbers but one is using metrics and
completion. We give a metric on Q and complete it. We consider a p-adic metric.
A funny thing is that if you complete Z inside Q you get Z again (p-adically). But
we’ll talk about it. Given a ∈ Z, we can write

a = a0 + a1p+ · · ·+ anp
n + · · ·

This expansion will stop. The p-adic numbers we allow infinite sequences. If k is
the minimum of i such that ai 6= 04 then define |a|p to be p−k. This defines the
absolute value. As a proposition, you get infinite formal power series considering Z
with | · |p. The completion of that is

∑
aip

i. Call this Zp If you allow finitely many
terms with negative exponent, you get the so-called Qp.

Let’s solve an equation over R. Is X(R) empty? The mean value theorem and
some inequalities implies the answer. If you are given ten polynomial equations
in twenty variables it might not be trivial. If there was a solution. Then you can
refine your inequalities by dividing your intervals. You’ll be able to get a solution
in that small interval.

What about over Qp or Zp? The role played by the mean value theorem is
replaced by Hensel’s lemma. I’m assuming the curve is smooth, even the special
fiber is smooth. Suppose you have a point P in Xp(Fp) where Xp is a special
fiber of X/Zp and P is a smooth point. Then there is a Q ∈ X(Zp) such that Q
mod p = P . If you found a solution in a special fiber (and there are only finitely
many candidates) then it must come from a point over Zp.

The problem is, suppose we have proved X(Qv) = ∅ for some v. Then X(R)
is empty for R = Z,Z[ 1

N ],Q. The difficult part is the converse. Suppose you

know X(Qv) is nonempty for every v? Can you say anything over Z,Z[ 1
n ],Q?

This is called the Hasse principle but it’s only true in one case I know of, so I
wouldn’t call it a principle. For a quadratic hypersurface X(Qv) 6= 0 for all v
implies X(Q) = X(Z) 6= 0. You may ask whether this gives an algorithm, but
it doesn’t since X(Qv) takes infinitely many operations. As stated this is not
algorithmic.

The problem becomes interesting when X(Qv) is non-empty. Identifying X(Q)
inside it is of analytic or topological flavor. In the next part I’ll talk about a
variation that is of algebraic flavor. These are defined by analytic data so you
don’t expect to recover solutions over Q by algebraic means.

That was a remark. The second remark is, approximation of transcendentals in
R by rationals helps to solve diophantine equations. There are only two examples
where you can deduce results out of approximation theory.

x2 − dy2 = 1

is related to approximation of
√
d by rationals.

y2 = x3 + ax+ b

is related to something similar by Siegel and Thue.
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I think that I don’t want to talk about this more but this partially justifies
the first remark. I’ll give the third remark and then take a break. There are
similar quadratics, we can apply Hasse’s principle, let’s look at x2 + ny2 = p. This
problem is of historical importance. Amazingly, class field theory gives an algorithm
to classify solutions, to determine if X(Z) = ∅. If n = 1 then p must be 1 mod 4.
To do it for all n you need to go to class field theory and that gives you the answer.
I’ll begin section two later.

4.2. étale descent (1980s). Grothiendieck suggested this. Everything up to now
has been from the nineteenth century. It’s a matter of taste but I’d take this as the
theme for descent. The ideas are most transparent, it’s simplest, it’s strongest. So
X is a curve over Q. I’ll work there because I’m more comfortable there. Assume
that X(Q) is nonempty. This may be a problem for some equations. Further,
fix b ∈ X(Q). Also fix Q, an algebraic closure of Q. Most of the problem lies
in understanding the algebraic closure, because whatever you do it boils down to
properties of the closure. Then we have an exact sequence

1→ π1(X̄, b̄)→ π1(X, b)→ Gal(Q/Q)→ 1.

Here b̄ is in X(Q), it’s the base change of b to consider it as living in Q.
I’ll give a topological picture for this. Let me draw a picture. I have a base,

which I view as a surface. This is not a basepoint. Its base is Spec Q. You’ve fixed a
section b. I’ll draw a section above it. Fixing Q amounts to fixing a universal cover
of the base. If you think of étale sites, pull back the bundle, you have the same
thing, a bundle over Spec Q and can pull back b to b̄. Resolve the fiber as well to
get something simply connected. You can resolve fiber by fiber continuously. This
is not possible if you don’t have a preferred choice of base. Fixing the basepoint
amounts to fixing a universal cover. Then you can patch together universal covers
as you move around. So we often say that the kernel is the algebraic fundamental
group and that the cokernel is the arithmetic part. An element of the Galois group
is a loop in the base. Suppose you have a path in the base, you can lift it to a path
in the universal cover. Then you can lift that picture to the resolved fibers. Above
the original base you get instead an automorphism of the fiber instead, which is an
element of the appropriate group.

So explicitly, GQ := Gal(Q/Q) acts on π1(XQ, b̄)

The idea is to use this action to study X(Q).

Theorem 4.1. (Belyi, Ihara, others) Let X be P1−{0, 1,∞}. Then the GQ-action
is faithful.

This is striking in the sense that this is the simplest hyperbolic curve you can
think of. But still the action is a faithful embedding. Other hyperbolic surfaces
it’ll be almost faithful at least. Up to finite error it will be for hyperbolic curves.
This gives you hope that this action might be useful.

Proposition 4.1. There is a canonical map from X(Q) ↪→ H1(GQ, π1(XQ, b̄)).

This takes c 7→ π1(XQ; b, c) and I’ll explain what that is.
If you have b and c in your base, then you can identify the fibers above b and

above c. You can only do this up to the ambiguity of the fundamental group.

Conjecture 4.1. Grothiendieck’s anabelian section conjecture
Suppose X is hyperbolic. Let me name the inclusion κ (for Kummer). Then κ is
bijective.
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I want to view this conjecture from several viewpoints. Suppose you have some
understanding of GQ. You have an explicit presentation for the fundamental group.
You consider inverse limits of topological coverings. It’s the profinite completion
of the free group on two generators. Then in principle we expect to compute the
right hand side in an algorithmic way. Then this will give an algorithm to compute
X(Q). So eventually this may produce an algorithm.

I don’t know how to compute the right hand side, but for elliptic curve it’s
computable.

Maybe some people know but I don’t know how to compute the right hand side.
But I don’t. Instead, I’ll look for computable variants of πet1 (XQ, b̄). Of course, κ
will not be bijective any more.

The most naive variant is a small quotient of the fundamental group. In some
sense this isn’t helpful because we know so little about Q. So we reduce the difficulty
to GQ but that’s hard.

The first variant has X an elliptic curve. In this case π1(XQ, b̄) = Ẑ × Ẑ where

Ẑ is the profinite completion of Z. If X(C) is C/L, this is a covering of the elliptic
curve, sending x + τy to mx + nτy. For every pair (m,n) you have this map and
they are all finite coverings. So passing to the projective limit you get this product
of profinite completions. Let’s consider the smallest quotient, not in a strict sense,
consider z 7→ 2z. This is a degree four covering. This corresponds to a quotient of
π1 which is isomorphic to Z/2Z×Z/2Z which is the group of deck transformations.
This is 1

2L/L which is X[2] which is {p ∈ X such that 2P = b} viewing b as the
origin. The notation [2] means the order two points.

This descends to the quotient as multiplication by 2 is defined over Q. So GQ
acts on X[2] which is π1(XQ)/2π1(XQ).

Now I want to explain what people do with this. It goes back to Euler who
realized that using the action of GQ on X[2] can tell you something about elliptic
curves.

Here I have a map that goes from E(Q) to H1(GQ, E[2]). I need to change from
X to E, it’s too demanding. The right hand side is killed by 2, so there’s no hope
of having this be injective. So quotient by 2E(Q) and it is injective. So κ is not
surjective any more but the right hand side can be computed explicitly.

Mordell proved for Q (and Weil generally) that E(Q) is Zg times a finite Abelian
group that can be computed algorithmically. The rest is determining the number
g. So we hope to recover some information about g, maybe an exact formula, out
of this inclusion.

Here come the local computations. There are obviously classes in H1(GQ, E[2])
which cannot be in the image of κ. Obvious means local here. So let me draw a
diagram.

E(Q)/2E(Q)
κ //

� _

��

H1(GQ, E[2])

locv

��
E(Qv)/2E(Qv) κ

// H1(GQv , E[2](Qv)

You need your solution to land in the bottom right, so you only want to look at
the intersections of the preimages as v varies. This is called the Selmer group
Sel(Q, E[2]).
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Definition 4.1.

X(E/Q) := Ker(H1(GQ, E))→
⊕
v

H1(Qv, E)

It’s hard to compute the right hand side. But when you replace E with E[2]
it’s possible. Let me make a proposition which is that the following is an exact
sequence:

Proposition 4.2.

0→ E(Q)/2E(Q)
κ→ Sel(Q, E[2])

E(2)↪→E→ X(E/Q)[2]→ 0

If X was known to be finite, we could recover this easily.
[some discussion]
If r ≤ 1, the analytic rank (in this case r = g), then X is known to be finite; we

understand some part of it, the p-primary part one at a time. Only sometimes is
it successful. We don’t have a single example when the rank is at least two. The
analytic rank is the order of the L function of E at s = 1. This is the definition of
r. We know nothing if r > 1. It’s been that way for twenty years.

I’ll tell you what I do to compute the Selmer group.
[What’s descent?] It’s computing the Selmer group to get the points on the

elliptic curve. From the information out of the group action we’ll get some points.
This is a toy version of the anabelian section conjecture. It’s descent because
of Euler’s terminology “infinite descent” or maybe Fermat, he wanted to prove a
solution didn’t exist. He looked for a hypothetical point, you should have 1

2p. By
proving that such a cohomology class doesn’t exist, you see that p doesn’t exist.
Going from p to 1

2p, that’s descent. So you might have to go to some power of two,
infinite descent. Now we can do descent over any finite cover. It’s all the same line
of thought.

[What’s Minhyong doing?] He’s using another realization of the etale fundamen-
tal group. He’s using unipotent sheaves, which is like extensions of constant sheaves.
It’s a successive extension of constant sheaves, but maybe nontrivial extensions.

This is computing the Selmer group. I’ll give the simplest example. This is
y2 = x(x − a)(x − b), where a and b are rational. I gave this in affine coordi-
nates. Something you can prove easily is that E[2] is {(a, 0), (b, 0), (0, 0),∞}. Then
H1(GQ, E[2]) is HomGp(GQ,Z/2 × Z/2) = {F/Q|Gal(F/Q) ⊂ Z/2 × Z/2}. Con-
sider the kernel of a homomorphism, extend this, and this is isomorphic to the image
of what you started with, which is in the target group Z/2×Z/2. Anyway, this last
is the same as Q×/(Q×)2×Q×/(Q×)2. The correspondence is N1, N2 → Q(N1, N2).

So we need the local condition from before, being in the intersection of the
preimages of locv. This implies that F is unramified at v, for which E mod v is
smooth. You have to look in the bad places too, with non-smooth reduction, but
there are finitely many of these and in these places it’s algorithmically computable
what is going on there.

So we first classify F/Q which is unramified for every good place v and verify local
conditions for bad places one by one. This is reduce to classifying Abelian extensions
satisfying certain local conditons, and that’s exactly what class field theory does
for you. It lets you compute Abelian extensions of number fields with proscribed
ramifications. Given K classify F/K with Gal(F/K) abelian and ramification
conditions. If you can compute the unramified ones, you can get the rest of them
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fairly easily. But this can be computationally intensive. We can’t possibly compute
degree 5, we can probably do degree 3.

Say a = 1 and b = −1. Then F is Q(
√
−1),Q(

√
−2),Q(

√
2). Two is the only

bad prime. These are all the extensions of Q in which 2 ramifies. I might need
Q(µ8), an eighth root of unity. Maybe not. So I have three candidates. For these
three I know what the cohomology class is. I go down and verify whether these are
in the image of κv. So v is good if it is not 2 or ∞. It’s bad if it’s 2 or ∞.

The next thing is how this fails when X has large genus.

5. Kim Dohyeong, Introduction to descent,II (October 28)

I’ll start with my plan. I realized that last week I did not give a table of contents,
I apologize for that. My plan is, I’ll begin by reviewing what I did last week, but
not all of it. I’ll recall 2-descent and the étale fundamental group exact sequence.
Then I will talk about moving from 2-descent to `-descent (here ` is a prime) and
`∞ descent, some more slight generalization of the 2-descent that I’ll review. So
then I’ll move to standard conjectures. I will view these as computing `∞ descent
using L-functions.

This forces us to think about motives and automorphic representations. So prob-
ably I should have this be section three, motives and automorphic representations.
This is reciprocities, et cetera. From the conjectures in section two I’ll motivate why
we think about motives and why we have to move to automorphic representations.
We’re forced to work with these.

Lastly, I’ll talk about p-adic deformations which will lead us to Iwasawa theory,
and in the fifth place talk about nonabelian descent and nonabelian Iwasawa theory.

0. Reviewing 2-descent
1. From 2-descent to `-descent
2. Standard conjectures
3. Motives and automorphic representations
4. p-adic deformations and Iwasawa theory
5. nonabelian descent and nonabelian Iwasawa theory

Maybe at the end I’ll talk about some speculations.

6. Review

Let X/Q be a smooth algebraic curve and suppose it’s non-empty. Fix a base-
point b in X/Q. Fix also an algebraic closure Q of Q. Then GQ, the absolute Galois

group, is the Galois group of Q over Q. Then we have an exact sequence, where as
X(Q) sits inside X(Q), so b goes to b̄:

1→ π1(X, b̄)→ π1(X, b)→ GQ → 1

GQ acts on π1(X, b̄). and we have the map κ : X(Q) → H1(GQ, π1XQ, b̄). We’d
like to compute the left side but in descent we will compute the right side instead.

Suppose E is an elliptic curve. What is the universal cover of (E,O)? These are
pointed covers. This factors through the multiplication by n map. In a special case,
where n = 2, then π1(EQ, b̄) surjects on π1(EQ, b̄) ⊗Ẑ Ẑ/2Ẑ. Here the hat denotes
profinite completion.

Then E(Q) ⊗Z Z/2Z embeds in H1(GQ, E[2]). This factor through a group
called Selmer group. So Sel(E[2],Q) sits inside H1(GQ, E[2]), and it is effectivly
computable. Also, unxer the assumption of finiteness of the the Tate-Shaferovitch
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group, we can compute E(Q)/2E(Q) and so in particular we compute g with is the
dimenison of EQ) and has another Q in there.

6.1. To `-descent. Going from 2 to the power `k is hard. We have the same
diagram.

Shall I recall the definition of the Selmer group? We have a diagram [Missed
some]

Lemma 6.1. Q`/Z` =
⋃
`−nZ/Z.

From the lemma we have

[0→ E(Q)⊗Q`/Z` → Sel(E[`∞])→=

In fact, this Selmer set is related directly to special values of L-functions. I want
to add that L-functions can be computed very esaily. They’re comuptationally of
low cost.

7. Standard conjectures

We have the Hasse-Weil L-function associated to an elliptic curve. If E is the
curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ Z. Assume Ei is minimal, so that the discriminant is the smallest
with absolute value (or divisibility) among all discriminants of this equation under
change of coordinates preserving this form. This is the Weierstrass minimal model.
Over Z most minimal models coincide. In genus two curves, choosing a model at
all isn’t an easy problem. Elliptic curves over Q, there is some ambiguity if you
want something defined over Z. If you want a mod p fiber you need something over
Z. You can’t always choose a canonical model.

Define ap to be p minus the number of points of some chosen minimal model Ẽp
modulo p over Fp.

Define L(E, s) =
∏
p-∆(1−apps+p−2s+1)−1×prodp÷∆(similar). You can define

this for a complex number s whose real part is greater than 3
2 .

Theorem 7.1. (Wiles, others) L(E, s) has analytic continuation over the complex
plane.

So we identify L(E, s) with an L-function associated to a modular form. This is
a special type of automorphic form. By identifying this L-function in this way, we
can use the theory of modular forms to analytically continue. This remark is the
contents of the theorem, it’s also essentially the Taniyama-Shimura-Weil theorem
(which is necessary for the Birch and Swnnerton-Dyer conjecture or whatever).

For y2 = x3−x, well, the Dedekind η function is q
1
24

∏
(1− qn) where q = e2πiz.

Then the L-function of that elliptic curve is η(11z)
η(z) . This isn’t quite right, there is

a factor. It should be of weight two.
Define rE to be the order at s = 1 of L(E, s). We had a geometric rank gE , and

the Birch and Swinnerton-Dyer conjecture is that rE = gE .
In order to find a modular form f we need to compute S2(Γ0(N)) which is a

finite dimensional vector space over C and N is the conductor of E. This last was
the Weil wight two 2-cusp modular forms for Γ0(N) which are two by two matrices
of determinant one such that c ≡ 0 mod N .
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Suppose f is in this space, and is a Hecke eifenform. Then Tpf = apf . Your Tp
operator is explicitly given and has an eigenvalue, and so you can do an explicit
calculation. So f = a1q + a2q

2, et cetera.
The formula for the Hecke operator, which may not help, is

(Tpf)z = f(pz) +

p−1∑
i=1

f(
z + i

p
)

[some discussion]
Let me tell you what the conductor is. The conductor C(E) is∏

p÷∆pfp

for p > 3 with fp equal to 1 or two as p is a double point or cusp. For p = 2, 3 it’s
more difficult.

A stronger version of the Birch and Swinnerton Dyer conjecture, a more precise
version, would be that L(E, s) = L(s− 1)rE + · · · with L over Ω, the period of

2x

2y + a1x+ a3

is

the regulator×#X(E)× some fuzzy factors︸ ︷︷ ︸
Tamagawa numbers

where I haven’t defined the regulator. I want to emphasize that this tells you the
order of the Tate Shaferovich group.

As a remark, E(Q) has a positive definite quadratic form called the Neron Tate
height function, and the regulator is the covolume of E(Q).

[some discussion and a break]
Let’s talk about Tate modules and Galois representations. I formulated E[`∞]-

descent, which makes use of a discrete Galois module E[`∞] which is isomorphic to
(Q`/Z`)⊕2. A Tate module is essentially the same data, and the data of the Galois
action is everything you need to define descent. So

T`E := Hom(E[`∞],Q`/Z`)
these are continuous homomorphisms of Abelian groups, not respecting any Galois
action. Then

V`E := T`E ⊗Z` Q`
which is a two dimensional Q` vector space with a continuous action of GQ. Both of
these are called Tate modules. The V` is a vector space while the other is compact
and discrete. Passing to V` you get something that is not dependent on isogeny
class.

From V`E we can recover L(E, s). That is, we can recover ap for all p. So GQ
has a Frobenius element defined up to conjugacy; let ρ` be the homomorphism
GQ → AutQ`V`E. Then the trace of ρ` is ap for p not dividing ` · NE . For these
special bad primes you can do better and recover ap but I won’t go into that.

Let me make some remarks. The number ap does not depend on ` because you
do a construction on one side but on the other side there is no reliance. Also ap is
an integer. There is no a priori reason for this.

We also do not need all {V`E}`. That is,

Tr(ρ`(Frobp), V`(E)) = Tr(ρ`′(Frobp), V`′(E)
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This is the end of section two.

7.1. Motives and automorphic representations. Some viewpoints on motives.
I’m not competent to talk about every viewpoint, but let me point out what are
there.

(1) A motive is a system of realizations. Given E you have families of realiza-
tions {V`E} for ` a prime, and H1

dR(E/Q) (algebraic de Rham cohomology),
you also have H1

Betti(E(C),Q). You have a comparison theory that gives
you the Hodge structure, and you have compatible Galois representations.
So ap should be independent of `. This is what I do in practice, e.g., a
modular form gives all of them.

Remark: There is no V over Q such that V ⊗QQ` = V` for certain given
triples {V`}, VBetti, VdR.

(2) (numerical) You make the morphisms of motives Hom(X,Y ) to be the Q-
space generated by correspondences X ← Z → Y modulo (what is called
numerical) equivalence. This gives rise to a mathematically well-defined
category, but you can’t prove that they satisfy certain axioms. The numer-
ical equivalence, it’s like the Hodge conjecture and Tate conjecture, it’s kind
of homological equivalence. We want to identify maps that are equivalent
in any cohomology. Multiplication by n is not an isomorphism in varieties
but it is in every cohomology theory.

(3) (simplicial schemes) This is Voevodsky, a triangulated category.

Similarly, we can define an L-function L(M, s) to a motive M . We can define Ω
as well, provided that M is critical, some technical condition, and if that’s the case
then L(m, 0)/Ω is rational, conjecturally. If M is the motive associated to the first

cohomology h1(E)(−1) then L(m,0)
Ω is actually in Q. This is Deligne’s conjecture.

The criticality is a condition that I won’t define. By the motive associated to
h1(E), well, let me explain. Varieties over Q, motives, Hodge structures, and Q`-
representations have functors.
X gives hi(X), which gives the representation Hi(X,Q`). This is a hypothetical

motive, it should satisfy this. The functors from motives to representations and
Hodge structures are faithful. The faithfulness is the Tate conjecture. It says a
single piece of the Tate module will remember everything.

We can generalize Birch and Swinnerton-Dyer over other motives. Let’s talk
about analytic continuation. You can work with one motive even if the category
hasn’t been constructed. We want to analytically continue L(M, s). So if you want
to define the conjecture originally, 1 is outside the radius of convergence. We need
(often we don’t know how, we would like) to identify L(M, s) with L(π, s), where π
is an automorphic representation and L(π, s) is the automorphic L-function of π.

So GLn is the linear group of rank n. Then A is the ring of adeles, so that’s

∗∏
Qv = {(xv) ∈

∏
Qv|xp ∈ Zp for all but finitely many p}.

Inside GLn(A) sits GLn(Q). We study the space L2(GLn(Q)\GLn(A)). This is
using the Haar measure.

Let G = GLn. So G(A) acts on L2(G(Q)\G(A)). This decomposes into the
direct sum of a discrete part and a direct integral. So the π giving rise to the
analytic continuation for the L-function of a motive is in the discrete part. If the
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dimension of M is n then we hope to find π in L2(G(Q)\G(A)). We let π go to
L(π, s) by Godemont-Jacquet. This isn’t easy, but it’s standard.

8. Kim Dohyeong, Introduction to descent

My plan is to start with a big picture summarizing what we had discussed,
then discuss Iwasawa theory and the p-adic zeta function. I’ll finish with some
speculation.

Let me start with some examples. Take y2 = x3 − x. I could not recall the
modular form associated to this. So the Dedekind eta function is η(τ) = q

1
24

∏
(1−

qn) where τ = x+ iy, with y > 0.
It turns out that E corresponds to η2(4τ)η2(8τ).

We had looked at E[`] = Ker(E
`→ E) and that led us into periods and motives.

We started with varieties over Q and that was our motivation. Then E our
variety leads us to h1(E) in motives, and that leads us to `-adic representations
V/Q̄` with action of the absolute Galois group GQ. We have to consider de Rham
and Betti cohomology, and comparison of these two gives you periods. So Ω =∫∞

1
dx√
x3−x . For elliptic curves, the period is Ω.

From here, we were able to consider L-functions. Call a generic motive M .
Then L(M, s) for a sufficiently large real curve, well, we did not know whether this
analytically continues or not. Here algebraic automorphic forms and representa-
tions contain modular forms as a small subset. This contains, for instance, the η
function, call it fE . Hypothetically, there is an arrow to automorphic forms and
representations. This should share the L-function at least. This belongs to general
automorphic forms and their representations, and this leads to an L-function, and
those should agree.

Let me write just L(r)(E.1)
Ω , and this is related to X(E). This is expected to

compute descent for us.

8.1. Iwasawa theory. So Iwasawa theory is p-adically deforming Mp, the p-adic
representation arising from a motive. The number immediately above should vary
p-adically as well. We want to match the deformed one with p-adic variation of
L(M, 1)/Ω(M). So let’s say M varies with a parameter t in a p-adic family, then
we need to prove that this number varies p-adically. I’ll give an example of the
Riemann zeta function case.

This is simple because Ω is one if we consider some half-plane. In terms of Hodge
structure, we are looking at the (2πi)1−k for k even and positive. This is defined as∑∞
n=1 frac1n

s. This should correspond to M(1 − k). Then ζ(M(1 − k), s)/ζ(s +
(1− k)).

Theorem 8.1. ζ(1− k) = −Bk
k where Bk is the Bernoulli number.

The parameter space for p-adic deformations is the ring of p-adic integers. This
ring contains Z which contains points of the form (1 − k) for k positive and even.
These are called classial points. But we have Mp(t) for all t in Zp, [missed] but for
the others we have motives.

So the question is, how does ζ(1− k) vary?

Theorem 8.2. (Kuhota-LEopoldt, Kummer) There exists a p-adic analytic func-
tion ζp : Zp → Zp, ζp(s) =

∑
ars

r, ar ∈ Zp, |ar|p → 0, such that ζp(1 −
k) = (1 − pk−1)(−Bkk ) for all positive even k. The final quotient is equal to
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ζ(1 − k)/Ω(M(1 − k)) and the other term in the product is the Euler factor at
p.

The goal of Iwasawa theory is to match the set of p-adic L-functions to the
Selmer group for M(t). The Selmer group appeared in descent. This is the main
conjecture of Iwasawa theory.

How do you parameterize the Selmer group? Let Γ be a group isomorphic to Zp.
Let Λ be Zp[Γ]. Take the usual group ring but then take the profinite completion.
Then we view as t ∈ Zp which is our parameter space can be identified with Λ→ Qp,
the space of algebra homomorphisms. Here t is the character.

So Sel(Mp) is defined as a certain subgroup of H1(GQ,M
∗
p ). Let me say a bit

about parameterizing in families. Look at Sel(Mp⊗Λ) which is in H1(GQ, H1⊗N∗).
On the right hand side we get a Λ-action.

Now I will talk about the non-commutative generalization, which is just changing
the parameter space to a non-commutative one. As in the lecture this afternoon, I
have to say what I mean by non-commutative. I’ll fix a non-commutative group G
with a surjection onto it from GQ and consider the space of all Q̄p-representations
of G.

Let’s do a non-commutative example. Let m ∈ Z, not 0 or ±1. Let Fn :=

Q(µpn ,m
1
pn ). Let F∞ = ∪Fn. Then F∞ sits over Q(µp∞) which sits over Q with

Galois groups respectively Zp and Z×p , so that the total group is Zp o Z×p . This is

G and we look at the set of representations of G over Q̄p.
Call this set XG. Let Λ = Λ(G) = Ẑp[G]. Then the space of functions on XG is

K1(Λ(G)S) for a suitable S ⊂ Λ(G).
[A good amount of discussion that goes over my head.]
Let’s talk about motivation. Why non-commutative geometry and why K1? If

E is an elliptic curve, we want to understand E(F∞). This is the space of solutions
over F∞ and has an action of G. Suppose we have an irreducible representation ρ
over Q̄p. Then one can consider this space: E(F∞)⊗Z Q̄p)ρ. If ρ is trivial, you get
E(Q). The main conjecture will imply, if we call this thing V ρ, that the dimension
of V ρ is zero if L(E, ρ, 1) 6= 0. If we have the main conjecture, it will imply as an
immediate corollary that if the L-function does not vanish, that this cohomology,
space of solutions, is small or zero.

Secondly, let me explain why K1. At least I do not know any better definition.
The second reason is that it fits well with the formalism of Iwasawa theory.

There is a map K1(ΛS) → K0(Λ; ΛS) and [Sel(Mp ⊗ Λ)] ∈ K0(Λ; ΛS). Then
conjecturally if L is the p-adic L-function then ∂L is the class of this Selmer group.

Assume that 1 → H → G → Γ → 1 is a short exact sequence. Let the Galois
group of F∞ over Qcyc be H and over Q be G. Then S is the set of f ∈ Λ(G) such
that Λ(G)/Λ(G).f is finitely generated over Λ(H). When G = Γ then Λ(G) ∼= Zp[T ]
and S is f such that p does not divide f . I know this seems arbitrary.

[Missed some]
[Coates-Fukaya-Kato-Sujatha-Venjakob] ρ : G→ GLn(Q̄p) leads to

K1(Λ(G)S)
ρ̂ //

ρ

��

Q̄p ∪ {∞}

K1(Mn(Q̄p))
∼= // K1(Q̄p) = Q̄×p

⊂

OO
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Definition 8.1. L is a p-adic L-function for E and G if ρ̂(L) = (L(E, ρ, 1)/Ω(E, ρ))
times Euler factors.

[some discussion]
We look at the map

ΘG : K1(Λ(G))→
∏
P≤G

K1(Λ(P ab))

Then you want to analyze the kernel and the image. The kernel is small, it’s
SK1(Λ(G)) = Ker(K1(Λ(G)))→ K1(Λ(G)[ 1

p ]).

This is pretty much what I wanted to say.
In the remaining ten minutes I’ll talk about why this business is not sufficient

and why we want to do some better theory. Let’s say X has genus at least two and
is smooth and projective. All of these conjectures won’t tell you how to computer
X(Q). This is because all the theory factors through the Jacobian ofX, for example.
And JX(Q) may be infinite. We know X(Q) is finite by the order conjecture proved
by Haltings. With a basepoint there’s a map to JX(Q) but no characterization of
the subset coming from the image. That’s why we need a better theory. I’ll really
briefly indicate the direction. So it’s not my theory but Minhyong’s program. If
you look in terms of Galois theory, then everything comes from automorphisms of
the fiber functor. If you think about these theories then the source of the fiber
functor, you are thinking about constant sheaves.

His program is to consider unipotent sheaves instead of constant sheaves. This
means it’s a successive extension of constant sheaves, just moving one step further.
I erased the Selmer group. So here the Galois group is acting on a unipotent group
instead of an Abelian group. I think this is really, there are new difficulties arising
from working with non-commutative coefficients. Still, one can compute H1(GQR)
where R is a unipotent group. This has an arithmetic origin, like as the torsion
points of elliptic curves. This is a one-line summary. He’s looking to compute the
analog of the Selmer group in terms of p-adic L-functions.

9. December 9, 2013: Jae-Suk Park, What is homotopy probability
space?

I will be quite brief today because I’m not in a good condition. We also have
nothing to eat today because we’ll eat that thing on Wednesday. I didn’t drink
coffee for three weeks now, I feel very stupid, maybe I’ll recover. I have a very
thick manuscript here but very disorganized. We’ll have a party on Wednesday.
Everyone is welcome. We’ll do games. Darts. You know. Wine and darts. The
regions will be marked, you hit that region, you get that wine. You can have four
tries. You can have maximum four glasses. This is held by the donation of IBS
members and staff. And yours, we’ll have the bread for that on Wednesday.

The title is “what is homotopy probability theory” or something like that,
“space” maybe. This is the title. You could say this is a strange combination
of two words. Homotopy and probability in the same sentence. So probability
theory was not regarded as mathematical for a long time. This became part of
mathematics because of Kolmogorov, something like that. He defined this as mea-
sure theory plus a notion of independence. I will mainly focus on the notion of
independence. The troublesome part for me is the measure theory. I hate mea-
sure theory because integration, that should be based on measure theory. We have
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something called Feynmann’s path integral in quantum field theory. No one knows
how to define the path integral measure. Maybe measure theory may be developed
further, but so far there is no measure. So in measure theory, we want to some kind
of integral without this measure theory. So for me the most important part is the
notion of independence.

Let me recall the notion of an algebraic probability theory. This can be defined
as an algebraic probability space plus independence. Let me explain what is an
algebraic probability space. There may be a non-commutative version but I’ll do
the commutative version. The commutative version starts with A and a map c to
the ground field k, which is fixed. I’ll assume the characteristic is zero. You can
regard it as C or R or Q, whatever. Then A is a commutative and associative unital
k-algebra and c is a k-linear map so that c(1) = 1. This is an algebraic probability
space.

There is some kind of dictionary, an element X in A is called a random variable.
The value of c(X) is called the expectation value of X. You can regard the map
as an integral, the algebra of integrands. If you start with an ordinary probability
space, so random variables and expectation value, it’s the algebra of measurable
functions with integration.

Usually the probability theory is defined over C. Then A has an involution
related to complex conjugation. Then there is some condition related to that. You
can associate a topology and place other conditions. So this is the bare minimum.

Let’s record the notion of covariance. Random variables X and Y , you can look
at c(X)c(Y ) and we can compare this to c(XY ), and call the difference

κ2(X,Y ) = c(XY )− c(X)c(Y ).

This is the covariance.
Now in a certain sense, expectation value of each random variable itself may not

be terribly important. Perhaps we are more interested in the interaction between
them. Let me define the notion of joint moment. Consider a set of random variables
{x1, . . . , xr}, and we’ll define the joint moments of the set as the expectation of the
product of the random variables:

µn(xj1 , . . . , kjn) := c(xj1 · · ·xjn
as the ji range. Then we can make a moment generating function

Z(t) = 1 +

∞∑
n=1

1

n!

∑
j1,...,jn

tj1 · · · tjnµn(xj1 , . . . , xjn)

which is formally equal to c(e
∑
tixi).

We just want to analyze this thing. We can introduce one more version called
the cumulant generating function, which is the formal logarithm of that:

F (t) = logZ(t)

This means that Z(t) = eF (t) where F (t) can be written as∑ 1

n!

∑
j1,...,jn

tj1 · · · tjnκn(xj1 , . . . , xjn)

If you look at what these are, you can see that κ1(x) = c(x) = µ1(x), the mo-
ment/expectation. Then κ2(x, y) = c(xy)− c(x)c(y). Let me write one more down:

κ3(x, y, z) = c(xyz)−κ1(x)κ2(y, z)−κ2(x, y)κ1(z)−κ1(y)κ2(x, z)−κ1(x)κ1(y)κ1(z).
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These are higher cumulants. You can write these in the following way:

c(x1, . . . , xn) =
∑

π∈P (n)

κ(xB1
) · · ·κ(xB|π|)

So here n is the set with n elements and π is a decomposition of n into |π| disjoint
blocks. There are many equivalent partitions. Each blocks are ordered by the
induced order, and the set of blocks by the maximum in the block.

So the partitions of 1 are {1}. The partitions of 3 are {1, 2, 3} and {1} t {2, 3}
and {1, 2}t{3} and {2}t{1, 3} and {1}t{2}t{3}. I skipped 2 which has {1, 2} and
{1} t {2}. Then κ(XB) is defined to be κr(Xj1 , . . . , Xjr ) where B = {j1, . . . , jr}.

So we define the joint cumulants of {X1, . . . , Xr} as the set of cumulants of all
sets of elements (with repetition allowed) from the random variables.

The notion of classical independence is that two random variables X and Y are
algebraically independent if κn(X + Y, . . . ,X + Y ) = κn(X, . . . ,X) + κn(Y, . . . , Y )
for all n ≥ 1.

So this notion is all from Voiculescu in the non-commutative case. First of
all, ordinary probability theory starts from a measure space with a probability
measure. Then independence is about the diagram. If I have two events together.
If the measure is additive then that’s independent. Instead of considering the space
I consider the functions. Then measurable functions may form an algebra. In the
nice cases some class of functions form an algebra. In the classical sense it’s a
commutative associative unital algebra. In that case we can translate the notion
of independence to the notion I’ve given. Actual probability theorists don’t really
like this. They say that they don’t form an algebra in general.

If you allow this version, we can just replace A with a non-commutative asso-
ciative algebra. You can get a non-commutative theory this way. He was greatly
inspired by Connes.

This is the end of my brief remark about probability theory, algebraic probability
theory. You can google lectures on non-commutative probability theory or consult
the book of Terence Tao. He has lecture notes on his homepage. It’s beautifully
written. I think the best source would be Terence Tao.

So I’m using this dictionary: independent meaning not correlated. If two ran-
dom variables are not correlated, that means the expectation of the product is the
product of their expectation. You can also check that if κn vanishes, then all the
higher κn+1 and so on vanish. If you change the sign, we have three people that
interact with each other. κ2(X,Y ) is the secret shared by X and Y . So κ3 is
regarded as like a totality.

Let me have a viewpoint for attacking the integral. Pick some good represen-
tatives of the variables, some X1 through Xr. I don’t know c(Xj). I don’t know
it. But I want, I don’t know µ1(Xj). Maybe I’ll never know this unless I define
the measure and the integral. Let’s assume though that if you could figure out all
the joint moments from this value, then it’s good enough. All those complicated
correlations of these can be written in terms of the expectation of each random
variable, that’s good enough. That’s a very practical goal, to understand these
things.

I want to determine correlation up to finite ambiguity.
Note that c is not an algebra map. In that case there is no correlation. No one

would be interested in this problem. The higher cumulant is a higher failure of the
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algebra homomorphism. You can say that κn+1(x1, . . . , xn+1) can be written as

κn(X1, . . . , Xn−1, XnXn+1)−
∑

π∈P (n+1),|π|=2,n�n+1

κ(XB1
)κ(XB2

).

What you can do immediately is the following. A commutative probability space
can be written down in a category. The objects are unital commutative and asso-
ciative algebras over k and the morphisms are unit-preserving k-linear maps. These
form a category. Then we note that k is the initial object in the category.

The objects are algebras but the morphisms don’t respect the structure. A
homotopy probability space is just a diagram ending with the initial object. Let me
introduce another category, the objects of L are k-vector spaces with a distinguished
element 1 and whose morphisms are φ1, . . . , φn where φn : SnV → W for all n,
k-multilinear, such that φ1(1) = 1 and φn(X1, . . . , Xn−1, 1) = 0 for n ≥ 2.

Then we have V and W and U and we have two maps, we need to define com-
position. Then ψ • φ(x1, . . . , xn) =

∑
π∈P (n) ψ|π|(φ(XB1

), . . . , φ(XB|π|).

I’ll define a functor from the first category to the second. You forget the product
while f(X1, . . . , Xn) =

∑
π∈P (n) φ

f (XB1
) · · ·φf (XBn).

Call this descendent. Then you can prove that this is a functor. The descendent
of composition is composition of descendents.

If you apply this to a diagram that stops at the initial object you get exactly
the cumulants. So you can say that the classical algebraic probability space is the
study of the stupid category with a functor to this other stupid category.

In algebraic homotopy theory, we have some algebra and there the algebra struc-
ture is enhanced by a structure of a cochain complex. The algebra map, it’s only a
map up to homotopy, and the failure of that homotopy induces another homotopy.
If f(xy)−f(x)f(y) ∼ 0, then f(xyz), what’s that? Then determining this has some
ambiguity and induces higher homotopy.

Let me make a definition. A homotopy probability space is a tuple (A, ·, 1,K)
with a map c to the ground field. This A is a unital Z-graded supercommutative
associative algebra over k. What is k? It’s a differential that increases the degree
by 1, it squares to zero, it annihilates the unit. Then c is a k-linear map, unit
preserving, and cK = 0. If A is concentrated in degree zero then this is nothing
but a probability space.

We have to think categorically. The objects are now unital graded associative
algebras with a differential. The morphisms are cochain maps, unit-preserving.

If I write the tuple Ac, then Ac → Bc is a degree zero k-linear map f with
f(1) = 1 and fK = Kf . One example for K is ~∆ + Q. It’s obvious that k is
the initial object in this category. What is a homotopy probability space? It’s a
diagram which ends at the initial object.

So K is not a derivation of the product. We want to measure the failure. If
you think just a little bit you can convince yourself that the morphism does not
preserve algebra structure, the differential is not a derivation of product are closely
related notions.

[Some physics discussion about whether it is motivated to consider this with a
commutative product]

We set up a category whose objects are unital L∞ algebras over k and whose
morphisms are unital L∞ morphisms. Then we try to define the same descendent
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structure.

Ac
f //

��

Bc

��
AL

φf // BL

One way to write down what φf should be is the following. Consider Ac. Define
`Kn recursively as [· · · [K,Lx1

], Lx2
· · · , Lxn ](1)

Then `K1 (x) = K(x). We can check `X2 (x, y) = K(xy)−K(x)y − (−1)|x|xK(y).
You can write down a formula for `Kn . So `2 measures the failure of `1 being a
derivation of the product. So AL is nothing but A along with 1A and the descendent
structure `k. We use the same formula with the Koszul sign for φf .

Claim: this is a functor. If you measure the failure of being a derivation of
the product, you get an L∞ algebra and the failure of being a function is an L∞
morphism.

If f and f ′ are homotopic, are these φf homotopic as L∞ morphisms? Yes, so
this is a homotopy functor.

What is the corresponding notion of random variable? Calin objected to the
product, but here, the random variables are elements in A with KX = 0. Not
everything is a random variable. If the degree is zero, then everything is a random
variable. We say that X and X ′ are homologous if X ′ = X+Kλ. It’s obvious that
c(X) = c(X ′). Then c is defined up to homotopy. We say c ∼ c′ if c′ = c + γK.
Then c(X) = c′(X). Expectation values should be the same whenever you have
things in the same homotopy class, that’s what we expect.

Now say we have x and y with Kx = Ky = 0. Then we have a well-defined
expectation, but what about c(xy)? This isn’t well-defined. K(xy) is in general
nonzero. A second problem is that even if K(xy) = 0, if I choose x′ and y′ which
are homologous to x and y, then xy homologous to x′y′? The answer is generally
no. If so, then the product of random variables would only depend on the homology
classes. But this isn’t guaranteed. Unfortunately, to understand correlations, we
don’t have c(xy) that we can write in terms of cohomology. This is stupid. It’s the
wrong product.

In the end, let’s return to the cumulant. The notions of the cumulant and
moment were related to this world, and were defined up to homotopy. Anything
meaningful we can observe must be homotopy invariant. We’ll make something
homotopy invariant. We now use the following thing. We need a “homotopical set
of random variables.”

We’ll define this not as a subset of the vector space A but the image of some
morphism. This is a finite dimensional graded vector space, which I regard as
having zero L∞ structure. Then we have Ac, and the descendent AL which has
`K , and we have c to the ground field, and κc which is a descendent. We consider
an L∞ morphism ψ1, . . . , ψn. This is an L∞ morphism. What I’m trying to say
is to define a homotopy set of random variables as an L∞ map from a trivial L∞
algebra to AL.

Introduce a basis eα of V and the dual basis tα and consider θψ which is defined
to be ∑ 1

n!

∑
α

tα1 · · · tαnψn(eα1 , . . . , eαn)
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Remember that ψ1(eα) ∈ A. Since this is an L∞ morphism, we know thatK(ψ1(eα)) =

0. So this is our xα. Then we consider Ωψ = eθ
ψ

which lives in (k[[tα]]⊗A)0.
Then Ω can be written as Ω0 + Ω1 + · · · . Then Ω0 = 1 and Ω1 =

∑
tαψ1(eα).

It’s a little interesting, Ω2 = tαtβ(ψ1(eα)ψ1(eβ) + ψ2(eα, eβ)).

Theorem 9.1. We have KΩψ) = 0 and ψ ∼ ψ′ implies Ωψ
′−Ωψ = K of something.

So Z = c(eθ
ψ

) is invariant of homotopy type. Of course, the corresponding
moment generating function can be written. You can get cumulants by composing
from (V, 0) to k and the cumulants are well-defined.


