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1. March 2: Ben Knudsen, raional homology of configuration spaces
via factorization homology

Throughout M will be an n-manifold and we’ll be talking about Confk the
configuration space {(x1, . . . , xk) ∈ Mk|xi ̸= xj} and we’ll mainly be interested in
the quotient by Σk, called Bk.

There are many reasons to be interested; one is that they are surprisingly good
invariants.

One is that B2(Rn) ∼= B2(Rm) if and only if n = m. Another is that B2(T
2\pt) ≇

B2(R2\S0). These spaces have different one-point compactifications, they are not
proper homotopy equivalent.

A third example is that B2(L7,1) ≇ B2(L7,2), these are compact manifolds of
the same dimension, homotopy equivalent, not homeomorphic, determined by the
configuration spaces.

Anything that knows about homeomorphism type of compact manifolds is com-
plicated. But if we work rationally this is much simpler.

One goal of this talk is to recover and remove hypotheses from classical results
about these spaces Bk(M) over the rational numbers. The second goal is to compute
some Betti numbers. As an algebraic topologist you see an interesting space and
you want to know its homology.

The first hour or so I’ll recall classical results and give you some approaches for
studying configuration spaces.

The fundamental calculation that is behind (implicitly or explicitly) ever re-
sult about configuration spaces is the computation of the homology of Confk(Rn).
If I single out two points, I get a map πij to Conf2(Rn). It’s easy to see that
Conf2(Rn) ∼= Sn−1. I can pull back the standard volume form on the n− 1 sphere
ωij = π∗

ij(V olSn−1).

Theorem 1.1. (Arnol’d (n = 2), Cohen) The cohomology with rational coefficients

H∗Confk(Rn) ∼= (
∧

1≤i<j≤n

ωij)/ωij ∧ ωjk + ωij ∧ ωik + ωik ∧ ωjk

As a corollary,

H∗(Bk(Rn),Q) ∼=
{

Q n odd
Q⊕Q[n− 1] n even

The proof is, well, the main point is to compute the rank, for this we use the Serre
spectral sequence for the inclusion of

Rn\{x1, . . . , xk−1} → Confk(Rn) → Confk−1(Rn).
1
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An analogous result is known over the integers.
Anyway, well, configuration spaces are “multi-local” on M , for example, Bk(U)

for U an open set in M homeomorphic to ⨿Rn is a basis for the toplogy of Bk(M).
So we can recover Bk(M) as a colimit.

Moreover, Bk(U ⊔V ) is just ⨿Bi(U)×Bj(V ). In principle, the computation for
Rn gives you everything, you just have to piece it together.

The configuration space of k points in Rn receives a map from the framed em-
bedding space Embfr(⨿k(Rn),Rn). Since this is a framed embedding, these are
blobs in Rn. The map is to remember where 0 went. The map is a homotopy
equivalence.

This embedding space maps to a different space, a mapping space, the pointed
maps of the n-sphere to itself of degree k. I view the same picture as instructions
for how to map things in [missed some explanation]

More generally, I have a map ConfX(Rn) → ΩnΣnX, where X is a pointed
space and ConfX is

⨿k≥0ConfkRn ×Σk
Xk/ ∼

where (p1, . . . , pk;x1, . . . , xk) ∼ (p1, . . . , pk−1;x1, . . . , xk−1)).
If X = S0 then ConfX is the disjoint union of BkRn.

Theorem 1.2. (May) This map is a homotopy equivalence if X is connected.

Let me give an example, like X = S0 and n = 1. Then ⨿Bk(R) is homotopy
equivalent to N, but ΩS1 is homotopy equivalent to Z. So more generally this is a
group completion, this is Segal’s group completion theorem.

I said this had something to do with globalizing local data to the manifold. What
is the global version of this result? There’s a theorem due to McDuff, there is a

map ConfX(M) → Γc(T̂M ∧M X), this is the fiberwise smash of the fiberwise one
point compactification of TM with X, and this map is a homotopy equivalence if
X is connected. We recover May’s theorem locally, the tangent bundle of Rn is
trivial, this becomes Rn × ΣnX, compactly supported maps from Rn into this is
maps from the sphere, so that’s really May’s theorem.

To prove this, one first has to show that both sides send handle attachments to
quasifibrations. The second point, use May as a base case for an induction.

I started by saying we were interested in configuration spaces, and I’ve done a
classic bait and switch.

The problem is that we care about the case X = S0, and S0 is not connected.
This is not a fatal problem, what’s the fix? Well ConfSn(M) is filtered by car-
dinality and the associated graded pieces are Thom spaces of bundles on Bk(M).
Then we should be able to get the things we want from the Thom isomorphism.

Now I can state some computations.

Theorem 1.3. (Bödigheimer–Cohen–Taylor) if n is odd and M is orientable then
H∗(Bk(M)) (from now on I’ll be rational) is Symk(H∗(M)), which is the simplest
guess you might make. In particular, the homology depends only on the homology
H∗(M).

Let me give you a couple of words about the proof. Handle attachments become
quasifibrations, so the Serre spectral sequence applies and because we chose n odd,
all the spectral sequences collapse, and the calculation of Cohen is a base case for
induction.
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The second computation is in the even dimensional case, due to Félix and
Thomas, we need stronger hypotheses,

Theorem 1.4. Let n be even and M be compact, orientable, and nilpotent as a
topological space. Then for any q > kn,

H∗Bk(M)[qk] ∼= H (SymH∗(M)[q + n]⊕H∗(M)[2q + 2n+ 1],∆) [qk, (q + n)k].

This is awful but it only depends on the cohomology of the background manifold.
This only depends on the ring H∗(M).

What we want to do is apply rational homotopy theory to the target of McDuff’s

map, which these compactly supported sections Γc(T̂M ∧M Sq). So Haefliger gives
the minimal model for this space, which is most of the battle. As the sphere
gets higher and higher dimensional, the groups start to spread out with velocity
proportional to their cardinality and become separate and you can read them off
by picking off some range of degrees.

We have this nasty consequence that we have to do infinitely many computations
to know all of the answers.

It would be lovely if we could just set q = 0.
I have one more classical result to put on the board before we take a break, and

that’s cut from a slightly different cloth from the stuff we’ve been seeing so far, and
that’s homological stability, the subject of splitting points apart.

If I have k points in any manifold, I can have k− 1 points by forgetting the last
one, so I can make all the choices at once, apply homology and sum up over all ways
of forgetting a point. This is no longer biased. Then I can add these, and the first
map, it’s not equivariant, the second map is equivariant, and gives a map between
homology of unordered configuration spaces. The reason this is a good map is the
following theorem of Tom Church, let me state it imprecisely

Theorem 1.5. This map is an isomorphism in a range of degrees that tends to ∞
with k.

Homological stability results are an industry, there is some contention about who
proved what, I don’t want to take any sides, but Church used this map, so that’s
why I mention him.

I want to talk about a theorem

Theorem 1.6. (K.) Let M be smooth.
There is an isomporphism of bigraded coalgebras⊕

k≥0

H∗(Bk(M)) ∼= HLie
∗ H−∗

c (M,Lie(Qw[n− 1))

So let me start from the inside and work out. So Qw is the orientation sheaf of
my manifold in degree n − 1. The Lie is the free Lie algebra functor, which is a
complex of sheaves. Then I can take its compactly supported Lie algebra, and I
can take its Lie algebra homology.

There are a couple of things I haven’t explained. The first grading is degree. The
left hand side is also graded by cardinality; the right hand side is graded by what
I’ll call weight, which is defined by saying that the generator of the Lie algebra has
weight 1 and the bracket has weight 2 and so on and so forth.

I have not told you the coalgebra structure, I’ll tell you that later.
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Let’s remember a couple of things about Lie algebras and their homology. So
HLie

∗ (g) is just TorUg
∗ (Q,Q), which looks hard to compute, but you can look at the

Chevalley–Eilenberg complex H(Sym(g[1]), [, ]) (up to a sign on the bracket). The
free Lie algebra on one generator r is either Qr ⊕Q[r, r] if r is odd, or Q[r] if r is
even.

Let me unpack the isomorphism in low weights. In weight one, what does this
say? On the left I have H∗(M), the configurations of one point. This should be
H−∗

c (M,Qw)[n]. So that’s Poincaré duality.
In weight two, on the left I have H∗(B2(M)), and I’m saying this is

H[Sym2H∗(M)⊕H∗(M,Qw)[n− 1], •

where • is the intersection product. This is when n is even.
There’s the obvious inclusion Conf2(M) → M2, and the homotopy cofiber is

Th TM . In spectra or anything spectral, I can put this before Conf2(M) as
Σ−1Th TM . Then if I quotient by Σ2, I get a twisted version of Σn−1(M), the
desuspension of the Thom space, and that goes to B2(M) to Sym2M , and I can
imagine splitting this rationally, and that’s exactly the intersection product. It’s
something you might come up with thinking about basic topological things.

This is, I like to think of this computationally. Let’s do the example M = RP2.
Since n = 2, this Lie algebra Lie(Qw[1] isQw[1]⊕Q[2]. However,H−∗

c (RP2, Lie(Qw[1]),
this is an Abelian Lie algebra Q[−1]⊕Q[2]. You can just work this out. Since it’s
Abelian, there’s no differential in the Chevalley–Eilenberg complex, so the homol-
ogy H∗Bk(RP2) is the weight k piece of Q[x0]⊗∧[y3] where the weight of x is one
and the weight of y is two.

This says that H∗(Bk(RP2)) is isomorphic to Q⊕Q[3] as long as k > 1.
Another one you can do in the same way is to say that

dimHjBk(♯hRP2) =


(
h+i−2
h−2

)
i ∈ {0, 1, 2, k + 1}(

h+i−2
h−2

)
+
(
h+i−5
n−2

)
3 ≤ i ≤ k

0 otherwise

So we have some corollaries. The homology of H∗(Bk(M)) depends only on H∗(M)
if n is odd and on the cup product if n is even. We also recover the computations
of Bödigheimer–Cohen–Taylor and Félix–Thomas. As another corollary, we can
compute with twisted coefficients,

Corollary 1.1.

H∗(Bk(M),Qw)

depends only on H−∗
c (M),∪.

What about stability?

Theorem 1.7. Let M be connected and n > 1. Well 1 ∩ ( ) : H∗(Bk+1(M)) →
H∗(Bk(M)) is an isomorphism for ∗ < k if M is an orientable surface and ∗ ≤ k
otherwise.

This is basically the result of Church combined with that of Randal-Williams,
but this has the advantage (aside from a very slight improvement in the range)
of being very easy to prove. Well 1 ∩ (quad) is d

d[pt] in the Chevalley–Eilenberg

complex. Then the second thing to observe is that if wtα > |α| then [pt]|α. There
are ten proofs of stability but this is by far the easiest one.
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Let me revisit some of the concepts that we saw in the first half. So let’s re-
member that Confk(Rn) ∼= Embfr(⨿kRn,Rn) Call that embedding space En(k).
That collection En(k) is an operad, and the disjoint union Bk(Rn), let me just call
that B(Rn), that’s an En-algebra. Concretely this means I have maps that look
like En(k) × Bi1(Rn) × · · ·Bik(Rn) → Bi1+···+ik(Rn). What do these maps look
like? [pictures of configurations in little disks]. In fact, this En algebra B(Rn) is
equivalent to the free En-algebra generated by the space S0.

Let’s revisit globalization now under the name of factorization homology. Let
A be an En algebra in chain complexes over Q. The example to have in mind is
singular chains on B(Rn). What’s an En algebra? It takes the data of a framed
embedding of k copies of Rn into ℓ copies of Rn, and goes to a map A⊗k → A⊗ℓ.
That’s a symmetric monoidal functor from the category of natural numbers with
these embeddings to chain complexes with tensor product.

At this point I should probably say that one needs to, we should choose a ho-
motopy theoretic foundation, these categories are not just plain categories, they’re
enriched over simplicial sets or spaces. This is there in the background somewhere.
How do I want to think of this algebra? It prescribes the value of my invariant
on simple examples, that is, disjoint unions of Rn. This category of disks moves
into the category of manifolds, and there’s a homotopy way to prolong that, this is∫
( )

A and is the factorization homology with coefficients in A. In the example of

this En algebra, the factorization homology ofM with coefficients in this particular
En algebra is C∗B(M).

This is totally categorical, no reason to believe this knows about topology, but

Theorem 1.8. (Francis) The factorization homology can be calculated by induction
along a handle decomposition of M .

This is just more modern language for what has been happening since the fifties
and sixties.

Let me revisit one last thing. I did that first calculation of Arnol’d and Cohen.
Since Conf2(Rn) ∼= Sn−1, this is the arity two piece, which controls the binary
operations, an En algebra has two binary operations up to homotopy, one called
m0, which is a commutative multiplication up to homotopy, corresponding to the
zero cell, and an operation, a shifted Lie bracket, mn−1, of degree n− 1. One way
of making this precise is that

Theorem 1.9. (Cohen) H∗(En) is Poissn−1, the operad controlling shifted Poisson
algebras.

Another way to say this is

Theorem 1.10. (Fresse) There is an essentially unique map of operads from
Λ1−nL∞ → En, where this is the shifted version of the operad controlling homotopy
Lie algebras.

As a corollary, I get an adjunction between Lie algebras on the one hand and
En algebras, the left adjoint I’ll call the n-enveloping algebra, and the thing we’re
interested in, by the way adjoints work, we have that C∗(B(Rn)) ∼= UnLie(Q[n−1]).
So we’re going to apply factorization homology to both sides. I already asserted that
the factorization on the left hand side is chains on configurations inM . A theorem of
Francis and Gaitsgory says that the right hand side is CLie

∗ (Ω−∗
c (M,Lie(Q[n−1])).

There’s a big glaring flaw which is that this is only for framed manifolds.
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We can fix the definition of factorization homology quite easily. We can replace
En algebras with n − disk, this is an En algebra with a compatible action of
the orthogonal group. I erased framed and I have a perfectly good definition.
Everything works except to get the equivalence of free with universal enveloping I
used Fresse’s map of operads. Since I’m running a little low on time and patience,
I’ll abbreviate a little bit and say that the way to fix this is

Theorem 1.11. (K.) C∗(B(Rn)) carries an n − disk algebra structure which is
equivalent to

CLie
∗ (Ω−∗

c (Rn, Lie(Qdet[n− 1]))).

The main ingredient here is to recognize that the shift by n was not always a
shift by n, it was a tensoring with C̃∗(Sn). This is just Q in degree n if there is
no O(n) action. But I get a shift with a sign action if there is an O(n) action. So

C̃∗(S
n) ∼= Qdet[n] as O(n) modules.

The final step is to use the fact that Ω−∗
c (M,Lie(Qw[n− 1]])) is formal so I can

replace it with its cohomology.

2. September 7, 2015: Hwajong Yoo, Galois Symmetry I

My motivational problem is the well-known thing, Fermat’s last theorem, which
says that for any integer n ≥ 3, the equation

xn + yn = zn x, y, z ̸= 0

has no rational solutions. This was finally proven by Wiles and Wyles–Taylor in
1994. I’ll talk about how this proof goes in detail.

So first short-term goals,

(1) I’ll talk about constructing Galois representations from elliptic curves and
modular forms.

(2) Then I’ll explain about Serre’s modularity conjectures.
(3) Then I’ll talk about the R ∼= T theorem, which is Wiles and Taylor–Wiles,

and implies Fermat’s las’t theorem. This implication is Frey, Serre, Ribet.
(4) It’s enough for us to talk about R ∼= T in the semistable case
(5) If time permits, I want to talk about a generalization of such modularity

conjectures, for example Skinner–Wiles and Calegari–Emerton and then
recently Erickson–Wake.

I’ll be talking about two dimensional irreducible representations and their theory.
So let me start with some background for Galois representations. Let K ′/K be

a normal and separable extension, not necessarily finite, of fields. Then the Galois
group of K ′/K, by definition, is {σ ∈ Aut(K ′)|σ|K = idK}. This has the natural
topology, the profinite topology, which I’ll explain later. If you give a discrete
topology in a finite set and then take the inverse limit, you get that topology.
A finite index subgroup is an open subgroup. This makes this group compact
and Hausdorff. This is a totally disconnected space. If the group is finite then
everything is clear. The inverse limit of such a thing gives the profinite topology.

Fix a separable closure of K, then GK := Gal(K̄/K). A Galois representation
is a continuous homomorphism ρ : GK → GLn(L) for L a topological field. The
nature of the representation is totally dependent on L. What we’ll use is most likely
L = C or the p-adic numbers or finite fields. If L is Fpr , a finite field, or F̄p, it has



CGP QUANTUM MONDAY 7

the discrete topology. For L = C we take the usual topology on C. For L = Qp or
Q̄p there is the natural p-adic topology.

In each representation, there is a name. We say ρ : GQ → GLn(L) is called an
Artin representation if L = C. It is called a mod p representation if L = F̄p or Fpr .
It’s called p-adic if L = Q̄p or K/Qp.

An example or exercise. If you know the profinite topology, so if you have open
V in Gal(K ′/K), the index is finite. The exercise says Im ρ is finite if ρ is Artin
or mod ℓ. The Artin case is a little difficult but not hard. For the mod ℓ case this
is obvious because of the discrete topology on L which means that id in the image
is open and closed, because the field has a discrete topology. Then the kernel of ρ
is open in GQ. So it is finite index but it’s a normal subgroup, and the quotient is
finite.

For L = C, you have to use that GLn(C), the image of ρ, the image is a group,
and the group is compact, so the image is compact. A compact subgroup of GLn(C)
contains the identity. There are no small subgroups in GLn(C) containing the
identity. This implies that a small neighborhood contains nothing else.

If you restrict ρ to some pro-p group, then the image is finite if ρ is ℓ-adic and
ℓ ̸= p. These are all kind of finiteness statements. So it looks like there is usually
finite image. But it’s not in the ℓ-adic case. So Im ρ might be infinite. The example
is the ℓ-adic cyclotomic character. Because many of you haven’t seen such Galois
representations, I’ll explain this a bit carefully.

First of all, you have some primitive ℓth root of unity. The Galois group is
naturally isomorphic to (Z/ℓZ)×, which is F×

ℓ . SO by σ you can map to χ(σ)

which is ζℓ 7→ ζ
χ(σ)
ℓ . [explanation]

Then ζℓ2 such that (ζℓ2)
ℓ = ζℓ, is a primitive (ℓ2)th root of unity. This is in fact

isomorphic to (Z/ℓ2Z) ∼= F×
ℓ × Z/ℓZ.

Then

Gal(Q(ζℓ∞)/Q) = Gal(∪Q(ζℓn)/Q) = limGal(Q(ζℓn)/Q) ∼= limF×
ℓ × Z/ℓn−1Z.

Here we have ℓ > 2, I should say, 2 is not a prime.

So you get a 1-dimensional representation χ by GQ → Gal(Q[ζℓ∞ ]/Q)
∼=−→ Z×

ℓ ↪→
Q×

ℓ . By going from Z×
ℓ to F×

ℓ = GL1(FL) I get this construction, the mod ℓ
cyclotomic character.

Let E/Q be an elliptic curve over Q. So for instance you can write this as
y2 = x3 + ax+ b ∪∞, where ∞ will be the identity element,and the curve defined
over Q means that a and b mean that they can be chosen in Q. [picture].

So you can make a map ℓ : E → E where p 7→ ℓp, and then E[ℓ] := {p ∈
E(Q̄)|ℓp = 0} which is isomorphic to Z/ℓZ× Z/ℓZ. SO the torus is isomorphic to
a fundamental parallelogram.

The theory tells us that they are isomorphic as groups. If you want the structure
here, you can find the torsion points. You can do the same thing for ℓ2. The good
thing is that this ℓ2-torsion point, each ℓ-torsion point is stable by the Galois action.
So you get an infinite sequence of finite modules which have Galois action, and each
transition map is compatible, which is very important. Therefore you can glue them
together.

You get the inverse limit of E[ℓn] for the ℓ-adic Tate module.
Naturally this one has a GQ-action, and it’s isomorphic for ℓ to Zℓ × Zℓ. If you

tensor with Qℓ you get ρ : E, ℓ : GQ → Aut(V ℓE) → GL2(Q).
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The properties I want to prove is that this is irreducible (use the Hasse bound
that |ap| ≤ 2

√
p). I also want to state that this is unramifield outside of ℓNE . A

prime not dividing ℓNE gives Frobp, and each structure has some conjugacy class,
a Frobenius element [unintelligible].

These three properties determine the representation ρE,ℓ uniquely, by the Brauer–
Nesbitt theoremplus the Chebotarev density theorem.

The construction for modular forms, these are some function, complex valued
function on the upper half plane satisfying some properties, there’s an action from
SL2(Z) and there’s Γ1(N) which is unipotent matrices modulo N . This f is roughly
a function on the quotient space Γ1(N)\H. That’s a modular form. There are Hecke
operators acting on modular forms. Say f is a new form of weight k ≥ 2 and level
N and character ϵ. This means a normalized eigenform with respect to some Hecke
operators. If you have this modular form then you can associate an ℓ-adic Galois
representation, K/Qℓ a finite extension, ρf,ℓ : GQ → GL2(K). This has properties

(1) It’s irreducible (Ribet). In the even case you can use the same bound, the
Ramanujan–Peterssen bound.

(2) It’s unramified outside of ℓNf

(3) If p does not divide ℓNf , then the characteristic polynomial of ρf ·ℓ(Frobp)
is X2 − ap(f)X + ϵ(p)pk−1.

So a fourier expansion of f is
∑
an(f)q

n, that gives you ap. The group Γ1(N)

has the element

(
1 1
0 1

)
. Furthermore we know that an is the eigenvalue of the

nth Hecke operator.
ϵ is some character (Z/NfZ)× → K×.
So let’s match these two pictures. The image is GL2(Qℓ) and on the other side to

K. Then all Fourier coefficients must lie in Z. So all Fourier coefficients, eigenvalues
for Hecke operators are integral. The levels should be equal Nf = NE . Then ap
must be equal between the two. The ϵ should be a trivial character and k = 2.
Then the two representations look equal.

There is no evidence that equality holds, but if you compute this, list elliptic
curves with respect to the conductor and construct the ℓ-adic representation, and
you can ask if there’s a modular form of weight two and the same level, the trivial
character and coefficients lying in Z, and then ask about ap, that’s the question by
Taniyama–Shimura–Weil, that E/Q is modular. The meaning is that there exists
ℓ and f such that ρE,ℓ = ρf,ℓ over Qℓ.

There are several different equivalent conditions. You could also say that there’s
a condition, there’s an f such that ρE,ℓ = ρf,ℓ for all ℓ.

You can also associate an L function to elliptic curves and to modular functions,
you could say L(E, s) = L(f, s), that’s equivalent. This is an infinite sum that only
converges for the real part of s greater than 3

2 for the L(E, s) case. The same is true
for L(f, s), but there’s a natural symmetry, an inversion action and you can flip this
region and extend the function to the whole plane by analytic continuation. If you
associate an L-function to a variety, you want to be able to, this is the Hasse–Weil
conjecture, to analytically continue the L(E, s) function.

Theorem 2.1. If E/Q is semistable, E is modular. So for us we can say semistablity
is that NE is squarefree.
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Theorem 2.2. (Frey, Serre, Ribet) This theorem plus some earlier work for n ≤ 11
implies Fermat’s last theorem.

Finally, the modularity conjecture was fully proved by

Theorem 2.3. (Breuil, Conrad, Diamond,Taylor, 2001) E/Q is modular in gen-
eral.

It’s a good time to stop. Any questions?

3. October 12, 2015: Hwajong Yoo, Galois Symmetry V

Let me talk about representations coming from modular forms. For the first
part, I’ll talk about how to construct Galois representations from modular forms.
People always just assume you have this, to f you have ρf . Today I want to focus
on the ideas of how to associate this Galois representation.

For simplicity, let’s assume that f is a newform of weight 2 for Γ0(N). This is
a Hecke eigenform not from previous levels, and the Fourier expansion

∑
anq

n has
a1 = 1 and Tpf = apf .

The idea is that we want to associate some Galois representation GQ → GL2(Kλ)
to some ℓ-adic field.

I’ll show you how to do this in this situation. In weight 2 we can use geometry.
If the weight is bigger than 2 we need étale cohomology. In weight 1 we need
a congruence argument. The representation always exists for the classical Hecke
eigenform (for integral weight).

This is the construction of Eichler–Shimura. First, consider, letKf beQ(. . . , an, . . .)/Q.
This is a number field; the degree is finite. This is well-known theory of modular
forms. Then, last time I defined the Hecke ring T = Z[. . . , Tn, . . .) ⊂ End(J0(N))
where J0(N) = Pic0(X0(N)) where X0(N) = Γ0(N)\H∗.

So there is a natural map λf : T ⊗ Q → Kf where Tn maps to an. We can
then imagine the kernel of λf , an idea of T ⊗ Q. This, we want to consider the
intersection with T. The ideal is generated (formally) by things like Tn − an, well,
if an is in T⊗Q.

Now If · J0(N) ⊂ J0(N). You can write this as the union of γx where γ ∈ If
and x ∈ J0(N). We can write an Abelian variety Af := J0(N)/IfJ0(N). The
wonderful theorem of Shimura is that this is an Abelian variety (easy) of dimension
[Kf : Q] = d (nontrivial.)

Note that T acts on Af and this factors through If . So as a module over T/If
this is roughly of order 2. But (T/If ) ⊗ Q is isomorphic to Kf which maps to
End(Af )⊗Q.

The idea is that this Abelian variety, if you have one like this, then you can
imagine any ℓ-torsion of Af is isomorphic to (Z/ℓZ)2d

This is also a Kf -module. [example]. Take the inverse limit Af [ℓ
n] for all n and

you get the so-called ℓ-adic Tate module. It is roughly Z(ℓ)2d.
Then tensoring with Qℓ over Zℓ you get (Qℓ)

2d.
This is the wrong dimension, we want something 2-dimensional.
[some discussion]

Theorem 3.1. (1) This ρ is unramified if p ∤ Nℓ. The characterstic polynomi-
ial of ρ(Frobp) is x

2 − apX + p.
(2) the determinant det p = ϵℓ is the ℓ-adic cyclotomic character. Here ϵℓ(Frobp)

is p if ℓ ̸= p. This is where the Frobenius element is taking the pth power.
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(3) ρ is absolutely irreducible (Ribet)
(4) N(ρ), the conductor of ρ,

∏
p ̸=ℓ p

mp(ρ), is roughly 2 − dim ρIp . This is
exactly the prime to ℓ part of N .

(5) If p ̸= ℓ but p||N , then ρ|Gp is isomorphic as a Gp representation to(
χϵℓ ∗
0 χ

)
where χ is an unramified quadratic character and χ(Frob(p)) =

Q(p).
(6) If ℓ ∤ 2n, then take p = ℓ. There are two cases, the “ordinary” and “super-

singular” corresponding to #E[ℓ](F̄ℓ) being ℓ or 1. So ρ|Gℓ
is ordinary if

and only if aℓ is n ℓ-adic unit.

[Too hard for me to follow]

4. October 19: Hee-Joong Chung Chern–Simons theory and its
relation to 3-dimensional N = 2 supersymmetric conformal field

theory

Thank you for the introduction. So as you heard I will talk about the Chern–
Simons theory and its relation to N = 2 supersymmetric conformal field theory.

I thought it would be better to give an overview of Chern–Simons theory. Today
I’ll talk about several aspects of Chern–Simons theory with compact gauge group
G = SU(2). I will mainly review the paper of Witten about the Jones polynomial
and Chern–Simons theory.

There are many other references, which include several papers by Witten, there is
a review paper by Kohno, “Conformal field theory and topology” and then Axelrod,
Pietra, Witten.

This is a broad subject and I decided to give an overview rather than going into
details.

This will be the first part. Today I will talk mostly about what is Chern–
Simons theory. I’ll talk about the Chern–Simons action and Wilson loops. Then
I’ll talk about perturbation theory and framings of three-manifolds. Then I will
move onto quantization. For the last part I’ll review how skein relations and the
Jones polynomial arise from Chern–Simons theory. This is the contents of today.

Let’s talk about the Chern–Simons action. Briefly speaking, what Witten did,
before Witten the story of knot theory was done in a two-dimensional context. But
he did Chern–Simons theory in the presence of a Wilson loop operator, identifying
this theory with a conformal field theory. I won’t talk about the conformal field
theory today and will just quote results about them. For the second talk I’ll talk
more about Chern–Simons theory and talk about some relevant issues. In the third
talk maybe I’ll talk about my own work, about the relation between Chern–Simons
theory and [unintelligible].

So the Chern–Simons action is given by

SCS =
k

4π

∫
Tr(A ∧ dA+

2

3
A ∧A ∧A)

where A is the connection 1-form of a G-bundle on M3.
Here k is called the Chern–Simons level. For G equal to SU(N), it should be an

integer.
We have a gauge group and we say “large gauge transformations” are those not

in the component of the identity. So SCS → SCS − 4πykw(g).
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Here y is the Dynkin index, which is 1
2 for the fundamental representation of

SU(n) and

w(g) =
1

48π2y

∫
M

Tr(g−1dg ∧ g−1dg ∧ g−1dg)

the winding number.
The path integral is

Z =

∫
DAexp(i

∫
CS

).

Physics should be invariant under large gauge transformations, and that implies
that k should be an integer.

If something is independent of the choice of metric we usually call it topolog-
ical. So we have the Wilson loop. So WR(γ), for γ a loop in M , is defined as

TrRP exp
(∮

γ
Aidx

i
)
.

In nature we live in Minkowski space. In this theory we usually consider the
Euclidean signature. Maybe you’re not familiar with the notation P . This is the
path-ordered product. It’s something like

TrP

(
1 +

∞∑
n=1

1

n!
(

∮
γ

Ai(x)dx
i)n

)
which is

Tr(1 +

∮
γ

Ai(x)dx
i +

1

2

∮
γ

(

∫ x

0

Aj(x
′)dx′j)Ai(x)dx

i · · · )

This is the Wilson loop operator. The Wilson loop operator is independent of the
choice of metric.

There is the so-called expectation value. The expectation of the Wilson loop
observable can be written

⟨
∏
j

WRj (γj)⟩ =
∫
DA

∏
j

WRj (γj)exp(i

∫
CS

)

where in general

⟨O⟩ =
∫
DΦOeiS

So we can sometimes write k
4π as 1

ℏ .

Write the action in terms of the Lagrangian, S =
∫
d3xL and then you can

write the equations of motion in terms of the Lagrangian. So Y = dA + A ∧ A,
the field strength, is 0. So the classical motion of Chern–Simons theory is via flat
connections, and those are described by the holonomy of the theory.

That’s ρ : π1(M) → G modulo gauge transformation ∼ conjugation.
Mostly we are interested in cases where the number of homomorphisms is finite.

From these, the “vacua” of the theory, we expand the field. Roughly, the partition
function is

Z =
∑
α

Z(A(α))

and in this case, when we evaluate the partition function, we expand out the gauge
field for our vacua,

Ai = A
(α)
i +Bi



12 GABRIEL C. DRUMMOND-COLE

getting something like this

Z(a) ∼ eiπη(0)/2 = ei(k+c2(G)/2)SCS(Aα) × Tα.

I should have said, we always make a gauge choice. For this choice one needs to
choose the metric.

Here Tα is the Ray–Stinger torsion, which
Here c2(G) is the quadratic Casimir operator of the adjoint representation. One

introduces the gravitational Chern–Simons term

I(g)grav =
1

4π

∫
M

tr(w ∧ dmw ∧ w ∧ w)

There is some dependence of the framing of the manifolds.
Chern–Simons theory is supposed to be topological. We added in this geometric

contribution, which we want to cancel.
Instead of having a topological theory, we have one that depends on the framing.

Under chainging the framing the partition function changes something like

Z → Z exp(2πiS
c

4
)

where c = kd
k+w̃ where d4 is the dimension of G.

Using the expectation of the Wilson line, [missed some], you can define a linking
number

ϕ(γa, γb) =
1

4π

∫
γa

dxi
∫
γb

dyjϵijk
(x− y)k

(|x− y|3)
.

The self-linking number is only well-defined if you choose a framing of the knot.
Under the change of framing ⟨W ⟩ becomes, well, if hR is the [unintelligible](for

example G = U(N), hR is cR
2(k+N) and cR are quadratic Casimir for R).

[too hard to understand]

5. November 23: Jae-Suk Park: Lectures on Homotopy Theory of
Quantum Fields I

I’m going to give a series of lectures, maybe five lectures. Hopefully it will be
very elementary.

I always try to understand quantum field theory mathematically. The biggest
obstacle there is that the physicists’ main tool, the path integral, is not defined.

There are many reasons it’s not defined. It’s an integral, so it should be attached
to a measure. But the measure is not really defined. I want to get rid of the measure
from the business, get rid of the integral, entirely.

Today I’ll give some toy model that will be a background or something like that.
The cartoon of the idea is the following. Suppose I have a complicated looking

jug and there is water inside, I want to figure out the volume. We could take a
beaker with obvious units, some marks, and put the water into the beaker. Then
the volume of this thing would be, say, 5.2, you measure. I want to realize this
kind of procedure. So the integral is a linear map. So assume A is some algebra
of integrands. This is unital, associative, and while I don’t need it in general, let
me assume that it’s commutative, over a ground field k, which I’ll assume to be
characteristic 0.

So x is an element here, and an integral associates a number ι(x) ∈ k. This is a
linear map, ι : A→ k is k-linear, and I’ll normalize it so that ι(1A) = 1.
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Now we consider a bunch of functions {x1, . . . , xk}, such that xi ∈ A. Then let
me introduce dual variables {t1, . . . , tk}. Then I’ll introduce

Z(t) := ι(e
∑

tixi ,

this is a generating function, so this will be

1 +
∞∑

n=1

1

n!

∑
j1,...,jn

tj1 · · · tjnι(xj1 · · ·xjn)

where 1 ≤ j1, . . . , jn ≤ k.
For example, if I have x and y, then I want to know ι(xnym). This is just a

convenient device.
Let me try to introduce terminology. I’ll call an element of this algebra a random

variable, then this is a set of random variables, and we want to figure out all of
these expressions ι(xj1 · · ·xjn).

It is convenient to consider a different quantity that I’ll call eF (t) where F (t) is
a formal logarithm of Z(t). So I’ll write this as

e
∑∞

n=1
1
n!

∑
j1,...jn

tj1 ···tjnκj1,...jn

where kj1,...jn ∈ k.
Now I want to sketch a procedure to find out κ. If we know one we know the

other. It’s more convenient for whatever reason to think in terms of κ.
Then I want to consider an equivalence relation. The set of random variables

{x1, . . . , xk} is equivalent to {y1, . . . yk} if e
∑

tixi − e
∑

tiyi is in the kernel of ι. I
want to stretch this definition more.

I’ve fixed k, let me consider the following thing, let me consider the set {XI , XI1I2 , XI1I2I3 , . . .}
where I goes from 1, . . . , k. So here XI1,...,In ∈ A.

What we considered originally is a special example. Let me do it a different way.
Let V be a vector space of dimension k. I can choose a basis {ei} and then choose

a map V → A, which is completely specified by sending ei to Xi. This is just a
linear map. Now we think of this as a map from a finite dimensional vector space
to A. I can also consider symmetric powers, SV → A, where SV is the reduced
symmetric power V ⊕ S2V + · · ·

If I specify these maps φ1, φ2, . . . where φn : SnV → A. Now you think that
{XI , XI1I2 , . . .} are the images of this thing in A.

You can assume we have a similar set {YI , YI1I2 , . . .}, we’ll say it’s equivalent to
our given one if

e
∑∞

n=1
1
n!

∑
tj1 ...tjnxj1,...jn − e

∑∞
n=1

1
n!

∑
tj1 ...tjnyj1,...jn

is in the kernel of ι.
The claim is that the set {x1, . . . xk}, this is {XI , 0, 0, . . .}, this is equivalent to

{KI1A,KI1,I21A, . . .}.
This is a tautology, but it’s a very important claim. You’ve just proved that

these two sets of integrals are equal. This tells you

e
∑

tixi − e
∑∞

n=1
1
n!

∑
tj1 ···tjnκj1,...jn1A .

There’s nothing to integrate on the right, this is

e
∑∞

n=1
1
n!

∑
tj1 ···tjnκj1,...jn .

This is a theorem.
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Later, I defined a map SV
φ
−→ A. If φn : SnV → A, V was a finite dimensional

vector space, then φn(ej1 , . . . , ejn) in A determines all of the map. So if I have
another φ′ : SV → A, I am giving an equivalence relation φ ∼ φ′. I’ll make this
less tautological by writing these as L∞ morphisms and homotopies. Then this
integration we’re doing is invariant of the homotopy type of the L∞ morphism.

Now today, let me call A an algebra of random variables, an element of A is
a random variable, and this is a set of random variables. Then ι(Xj1 · · ·Xjn))
is called a joint moment, Z(t) is called the moment generating function, and in
non-commutative probability theory, the moment generating function gives you the
distribution of your random variables.

Then I’m claiming that the distributions are an invariant of L∞ homotopy type.
The second issue is symmetry of the expectation. We’re always doing the situa-

tion A→ k and ι(1A) = 1, but what is a symmetry? Let me consider a Lie algebra
version first. A symmetry of the expectation is a Lie algebra g together with a
representation ρ : g → End(A) such that ι ◦ ρ = 0. I mean ι(ρ(g)(x)) for g ∈ g and
x ∈ A is zero.

Then I have

A
ι //

π

��

k

A/g.A = Ag

ιg

99

An easy theorem is that there exists a symmetry such that Ag is isomorphic to k
as a vector space.

You may think it’s hard to find a symmetry in a general situation but that is
not true. Let me define ρ ∈ End(A) by the formula ρ(x) = x − ι(x)1A. This is
obviously a linear map. What is ι(ρ(x))? It’s ι(x)− ι(x) = 0. This is the image of
a 1-dimensional Lie algebra.

The coinvariants are clearly 1-dimensional.
Now you see that this would not be useful in practice, but it gives us an important

lesson, which is that you can characterize ι completely in terms of its symmetry. So
we want to characterize ι in terms of its symmetries. To write down this particular
representation explicitly you’d need to know all the integrals. But in practice,
this symmetry is not useful. So let me consider another thing. Let me consider a
subalgebra called Diffk(A), a subalgebra of Endk(A).

These are linear differential operators on A. If I have ρ ∈ Endk(A), then I want
to define a sequence ℓρ1, ℓ

ρ
2, . . ., where ℓ

ρ
n : SnA→ A is defined as

ℓρn(x1, . . . , xn) = [[· · · [[ρ, Lx1 ], Lx2 ] · · · ], Lxn ](1A)

where Lx is left multiplication by x, Lx(a) = x.a.

Definition 5.1. The map ρ is an order n differential operator on A if ℓρn+1 = 0
and ℓρn = 0. For example, well, I won’t do it. So order n differential operators
satisfy this relation.

Definition 5.2. An infinitessimal symmetry of ι : A → k is a map g → Diffk(A)
such that ι ◦ ρ = 0.

I want to do one very easy example. Let A = R[s]. I’ll define

ι(x) =

∫ ∞

−∞
xe−

1
2 s

2

ds/

∫ ∞

−∞
e−

1
2 s

2

ds
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where x is a polynomial in s.
I want to consider a representation of the one-dimensional Lie algebra where

ρ = − d
ds +Ls. This is an example because ι ◦ ρ = 0, because this is basically doing

a total derivative. So ιρ(o) ∝
∫∞
−∞

d
ds (oe

− s2

2 )ds which is 0 for o ∈ A.

So if I do a computation, then ρ(1) = s and ρ(sn) = −nsn−1 + sn+1, so o ∼ o′

if o′ − o is in the image of ρ.
So ι(s) = 0, and then s2 ∼ 1. If you work this out inductively, you find that

s2k+1 ∼ 0 because it will be equivalent to something times s, which is 0, and s2k is
equivalent to (2k − 1)!!1A. So basically this implies that

ι(sn) =

{
0 n odd
(n− 1)!! n even

Okay, so no computation involved.

Our answer is the following, Z(t) = ι(ets)=e
1
2
t2

.
Let me just give some remark. Later I’ll do some homological algebra to deal with

this symmetry in a fancier way, but the first part is like ∆, the BV operator, and
the Ls is the BRST operator. You do Batalin–Vilkoviski quantization, physicists
are assuming that they are working with a translation-invariant measure twisted
by the exponential of the action functional. But in an infinite dimensional case,
you don’t have a translation invariant measure. You may say this is trivial, but
you can solve Kontsevich’s matrix models this way.

There is another way to solve this, where you consider a family of symmetries
twisted by the partition function, and this gives you a differential equation to solve.

If you think in terms of homotopy you have a linear term in t, you have a family
of maps ρ, where the first one is φ1, 0, . . . , with φ1(e) = s. The second one, φ′ is
0, φ′

2, 0, . . . where φ
′
2(e, e) = 1. This implies that these two are homotopic.

That’s what I want to say for today. Any questions?

6. December 21: Jae-Suk Park: Lectures on Homotopy Theory of
Quantum Fields IV

The main goal for today is to introduce correlation algebras and affinely flat
structure.

I will explain the context. So basically, our basic setting was the following.
Somehow, a category, a certain category with objects AbC are tuples (A, 1A, ·,K)
where (A, 1A, ·) is a Z-graded supercommutative associative unital algebra and
(A, 1A,K) is a pointed cochain complex. I gave a motivation for why we are
considering this guy.

If I have two such objects AbC and A′
bC then morphisms between them are

pointed cochain maps f , so fK = K ′f and f(1A) = 1A′ . I told you about a
functor from this category to the category of homotopy Lie algebras, which takes
AbC to AL and f to ϕf . This is a functor Des to sL∞-algebras. I told you this
functor can be extended as a homotopy functor, where homotopies in the domain
are cochain homotopies and in the codomain are L∞ homotopies.

In the first category, the ground field is an initial object, kbC is k as a k-algebra,
with no differential. Then if I have AbC , I consider morphisms to the initial object
in the category. This guy, or more precisely something defined at the level of
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homotopy categories

Abc
[c]−→ kbc

is some model of a path integral. The degree of c is 0, so it’s a zero map on Ai for
i ̸= 0, and c(1A) = 1, and c ◦K = 0. This is defined up to pointed homotopy, c ∼ c̃
if c̃ = r ◦K + c where r : A→ k has degree −1.

Then we define a homological random variable as an element X ∈ A such that
KX = 0. We say that two homological random variables are equivalent if they are
in the same homology class. We call c(x) the expectation of x, and this depends
only on the homotopy class of x and c. To define correlations of random variables,
we need to be able to compute something like c(xn). We have some problems. The
first is that Kxn is nonzero in general, since K is not necessarily a derivation of
the product. Then c(xn) may depend on the representative of c. Another thing is
that if x ∼ x̃, this does not imply that xn ∼ x̃n, even if Kxn = 0. We have this
problem around here. So there’s a problem in defining correlations. This problem
first occurs in BV quantization. In the Batalin–Vilkoviski quantization scheme,
K may be regarded as the BV-BRST operator, which has a classical part and a
quantum part, −ℏ∆+Q, where Q is a derivation but ∆ is a second order operator.
An element annihilated by K is called a quantum observable. The path integral
should assign an expectation value to each quantum observable, depending only on
the K-homotopy class.

But the product of two quantum observables will not necessarily be a quantum
observable. If I let ℏ go to zero, then on the BRST cohomology, you have no
problem with the homology ring. But we don’t have this at the BV-BRST level.

We’d like to overcome this difficulty. How to change, deal with this situation?
The idea is very simple. Basically we consider etX , a formal expression

1 + tA+
t2

2
X2 + · · · ∈ A[[t]].

We see that to define the moments of the random variable, we need the equation
that KetX = 0, then KXn = 0 for all n. Then the condition Kx = 0 is not enough.

That kind of deals with the first problem. What about the second problem? For
illustration, consider the case that Kxn = 0 for all n, and consider x̃ = x + kλ.
Then etx̃, we want to compare this to etx.

etx̃ = etx+tKλ.

Let’s even assume that K(etx̃) = 0, which isn’t necessarily true. Then still c(etX̃)−
c(etX) may not be zero.

We want to define our random variables, or observables, as a map from (V, 0),
an sL∞-algebra with zero sL∞ structure (this is just a vector space) together with
an L∞ morphism φ to AL (which itself has the descendent morphism ϕc to k). We
want φ to be something like this in a fixed homotopy type.

Then we can compose this to get a map κV = ϕcφ to k.

Then, everything is well-defined in the homotopy category, meaning that κV

depends only on the two homotopy classes of φ and c.

Let me also define µV , also a map from Sn(V ) → k, so that µV
n (α1, . . . , αn)

is defined by
∑

π∈P (n) κ
V (αB1) · · ·κV (αB|π ). We talked about the notation for

partitions before.
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The product is living in k. So µV
1 is κV1 and µV

2 (α1, α2) = κV2 (α1, α2) +
κV1 (α1)κ

V
2 (α2).

We consider an L∞ morphism(V, 0)
φ
−→ AL

ϕc

−→ k.
So let {ei} be a basis of V , assumed finite dimensional to make things easy.
So consider Γφ defined as

∞∑
n=1

1

n!
∑

i1,...in
ti1 · · · tinφn(ei1 · · · ein)

which is ∑
i

tiφ1(ei) +
1

2

∑
i,j

titjφ2(ei, ej).

A lemma you can compute is that KeΓ
φ

= 0.

Then eΓ
φ − eΓ

φ̃

= KΣ if φ and φ̃ are related by L∞ homotopy.
Then we consider ZV = c(eΓ

φ

), and this guy, the whole thing belongs to the
kernel of K, so this only depends on the homotopy type of c. Now the differences
will be K of something. Then it’s not hard to show that this is

1 +
∞∑

n=1

1

n!

∑
i1,...in

ti1 · · · tinµν
n(ei1 , . . . eim)

It’s long and complicated but straightforward to prove the lemmas. But the relation
between κ and µ tells you this exponent is

∞∑
n=1

1

n!

∑
i1,...,in

ti1 · · · tinKV
n (ei1 , . . . , ein).

Now consider maps. You can always make a map ψ from (V, 0) to AL where

ψm :== κVn · 1A.
Then it could be that φ ∼ ψ. In general this is not true, but that’s the answer

of our problem, which is homotopic to our question.
So if the dimension of V is 1, say {e} and φ has only φ1, so x = φ1(e) ∈ A.

Then say we have another φ̃ which is of the same form, with φ̃1 = φ1 +Kλ1, then
it is not necessarily true that φ ∼ φ̃ even though φ1 and φ̃1 are homotopic.

Let me return to our favorite example, the Gaussian, A = R[s, η], with the degree
of s equal to 0 and the degree of η equal to −1, and since η is anticommuting, we
have η2 = 0, and ηs = sη. Then this is R[s]η ⊕ R[s], which is A−1 ⊕A0. This is a
graded unital commutative associative algebra.

Define K as −σ2 ∂2

∂s∂η + s ∂
∂η where σ2 ∈ R+. Call s ∂

∂η as Q and ∂2

∂s∂η by ∆ and

then maybe σ2 = ℏ.
Then we can calculate thatK2 = 0 and ℓK2 (s, s) = 0, ℓK2 (η, η) = 0, and ℓK2 (η, s) =

−ℓK2 (s, η) = −σ2. Extend this as a derivation of the product in both variables.
Then it turns out AL = (A, 1,K, ℓK2 ), and that’s where it stops.
What is c now? From A to R it’s the Gaussian integral, define

c(p(s)) =

∫∞
−∞ p(s)e−

s2

2σ2 ds∫∞
−∞ e−

s2

2σ2 ds

or something very close to that. You can compute that the unit goes to the unit.
You can easily see that c ◦K is 0. You only need to check what happens to A0. An
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arbitrary element Λ in A−1 can be written as λ(s)η then KΛ is −σ2 dλ
ds + sλ, and

if you put this here, it’s a total derivative, so it vanishes in the numerator.
Now you consider a 1-dimensional vector space V with basis e, and consider a

map φ1 : V → A, this is an ungraded vector space and a degree 0 map, so we
need to specify φ1(e) = X. Then φ = φ1, 0, 0, . . . is an sL∞ morphism. Why?
Because A is concentrated in nonpositive degrees, and so any such map is an sL∞
morphism.

So eΓ
φ

is just ets. So our question is what is c(ets)? It’s just proportional to∫
e

s2

−2σ2 +ts
ds

but let me do this integral in a strange way. Well, φ1 is cochain homotopic to
zero, which tells you that c(s) = 0. We know, then s = Kη. We deform the
action functional by a BRST-exact term. Then this ts term, this gives a non-zero

contribution, this is e
t2

2 σ. This is why I emphasize that even if you have an L∞
morphism which is a chain map chain homotopic to zero, that doesn’t make it L∞
homotopic to zero.

So for instance, φ1, 0, 0, . . . is L∞ homotopic to (0, φ̃2, 0, . . .), where φ̃(e, e) =

σ21A. This shows that c(e
ts) = e

t2

2 σ2

.
So when can we compute this without computing anything? If the dimension

of the cohomology is 1, you can always do that. What is that class? It’s the class
of 1. The unit will never be exact. Then if I have a 1-dimensional cohomology, I
know everything is homotopic to some coefficient times 1. I told you, you can go
to different K with different features, to deal with these situations.

Let me talk about complete space of random variables. If I start with AbC

and go to AL via Des, then I always get a smooth formal L∞ algebra, always
quasi-isomorphic to a zero L∞ structure. Then the ultimate space, let me call
it (S, 0) → AL, this guy is a quasi-isomorphism φS . Then we can do the same

game, map to k via ϕc, and then we can define κS and µS , and those things

go from S(S) → k. We know S ∼= H(AL,K). Remember that µS(h1, . . . , hn)
is
∑

π∈P (n) ±κS(hB1) · · ·κS(hB|π|), which tells you that (H, 0) → AL is a quasi-

isomorphism, but we know that there will be many homotopy types of such quasi-
isomorphism. This space of homotopy types of sL∞ quasi-isomorphisms, this mod-
uli space is the same as the solution space of Maurer–Cartan equations, KΓ +
1
2ℓ

K
2 (Γ,Γ)+ · · · where Γ =

∑
i tiγi+ · · · . This may not make sense if H is not finite

dimensional, but if it is then these maps correspond to Maurer–Cartan elements
and homotopy corresponds to gauge equivalence.

Now it is possible to define MS which starts MS
1 , . . ., where M

S
1 is the identity,

and MS
n : Sn(S) → S. We want that µS

1 ◦ MS
n = µS

n . Remember the original
formula had originally, µn(x1, . . . xn) was ι(x1 · · ·xn). What I’m doing, I’m forced
to have a product structure on H, and that’s the structure M .

What properties does this have? It’s symmetric, and MS
n+1(h1, . . . , hn, 1) =

MS
n (h1, . . . , hn). Note thatM

S
n (h1, h2, h3) is not the iterated productMS

2 (h1,M
S
2 (h2, h3)).

Define h1 · h2 = HS
2 (h1, h2), then this is commutative. If M3 is given by this

iterated product, then the product is associative as well as graded commutative.
This kind of thing I call correlation algebra. Maybe this is strange, but I’m running
out of time. What can I say?
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Okay. I’ll return to this more systematically. What I’ll say is that a complete
space of random variables, there’s this moduli space of these, and the basic idea is
that M is some formal supermanifold and using this gadget, you can give this an
affinely flat structure, some torsion free flat connection on the tangent space of that
manifold. Then this is the same as a torsion-free flat connection, and then there
are formal flat coordinates which encode all the information about correlations.

Now we start with some algebra, but end up with some flat structure here.
Something is wrong, because the cohomology has a different structure. But in the
special case, the cohomology is just an algebra. So we should restart, assuming
that the space forms something much more general.


