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1. April 20: Rui Wang: On orbifold groupoids I

1.1. Definitions. Let me start with some motivation. Let M be equipped with
an equivalence relation. When you take the quotient, you may want to remember
more information, like how two elements are equivalent, by what path.

Definition 1.1. An abstract groupoid consists of a set G0 of objects and a set G1

of isomorphisms of G0, where (G0,G1) is a category.

We can associate to this category structure maps
source s ∶ G1 → G0

target t ∶ G1 → G0

(associative) composition m ∶ G1
t ×s G1 → G1

unit u ∶ G0 → G1

inverse i ∶ G1 → G1

So we call this G = ((G0,G1), (s, t,m,u, i)). It is natural that this gives us an
equivalence relation on G0, where x ∼ y if there is an arrow connecting x and y.
This is the coarse space ∣G∣ of this groupoid.

If there is a groupoid G whose coarse space is X then we say G is a groupoid
representation of X. This representation is not unique.

Next

Definition 1.2. (Lie groupoid)

(1) For the Lie groupoid we need some topology. This is a groupoid where G0

and G1 are both smooth manifolds and all structure maps are smooth. In
particular, s and t are submersions. Then G1

t × sG1 is a smooth manifold.
(2) We call a Lie groupoid proper if the map (s, t) ∶ G1 → G0×G0 is proper and

étale if dimG0 = dimG1 (which implies that every structure map is a local
diffeomorphism). We call a proper étale Lie groupoid an orbifold groupoid.
So for x ∈ G0 we can consider Gx = {α ∈ G1∣s(α) = t(α) = x} and for an
orbifold groupoid this is a finite set.

Example 1.1. (1) Take G0 a point and G1 = G a group. Then the source and
target map send everything to the point and the composition, inverse, and
unit are in the group. This is a point groupoid [⋅G]. If G is a Lie group
then this is a Lie groupoid; if G is finite then this is an orbifold groupoid.
∣[⋅G]∣ = ⋅.

(2) Suppose M is a manifold. Take M0 = M and M1 = M . The source,
target, and composition all fix x. This has ∣M ∣ =M and is also an orbifold
groupoid.
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(3) Let M be a manifold and {Uα} a locally finite open cover of M . Take
U0 = ∐αUα and U1 = ∐α,βUα ×M Uβ . The source of (xα, xβ) is xα and
target xβ . Then ∣U ∣ =M .

Later after I introduce an equivalence, I’ll prove

Lemma 1.1. The two representations of M , M and U , are Morita equiv-
alent.

(4) Let X be a manifold and K a Lie group acting on X. Then you can define
a Lie groupoid (XrltimesK)0 = X and (X ⋊K)1 = X ×K. The source
map takes (x, k)↦ x and the target map takes (x, k)↦ x ⋅ k. This is a Lie
groupoid. Here ρ ∶K →Diff(X) makes this a semidirect product.

The coarse space is X/K, which in general has no good structure, this is
no more than a topological space. If the K action is proper and free (this
gives you a K-principal bundle), then X/K is a manifold. If the action is
locally free, then X/K has an orbifold structure. This can be constructed
from the slice theorem, which says that the K-orbit of x ∈ X has a slice
which takes an action of K and then you get a neighborhood with a K
action. You can look at K ×Kx Wx, and then you can put these together
to get XK , which is an orbifold groupoid Morita equivalent to X ⋊K. I’ll
say more tomorrow about this.

(5) Let Mn be a manifold with g a Riemannian metric. Then take the O(n)-
frame bundle, then Fr(M) ⋊O(n) is also Morita equivalent to M .

Theorem 1.1. (Satake) An effective orbifold M is equivalent to U is equiv-
alent to Fr(M) ⋊O(n).

Can you do this for a general orbifold groupoid? I think no one has an
answer to this up to now.

Now let’s talk a little bit about equivalence.

1.2. Equivalence. If I have two objects G → H, abstract groupoids, a functor Φ
is a map G0 → G0 and G1 → G1 which commutes with every structure map. If G
and H are Lie groupoids, then this is a strict homomorphism if Φ0 and Φ1 are both
smooth maps.

Definition 1.3. G and H are strongly equivalent if there are functors Φ ∶ G → H
and Ψ ∶H → G, and then Φ ○Ψ ∼ id and Ψ ○Φ ∼ id.

In categorical language, you can also talk about weak equivalence, if Φ ∶ G → H
is

(1) essentially surjective (so y ∈H0 has an x ∈H0 such that x ∼ y in H), and
(2) full and faithful (arrows between x,x′ in Gg are in bijection with arrows

Φ(x),Φ(x′) in H).

Proposition 1.1. Strong and weak equivalences are the same.

In the smooth category, G0
Φ ×s H1 t○pr2ÐÐÐ→ H0 should be not just surjective but

also a submersion. The full and faithful condition says that G1 ≅ G0 ×G0
Φ,Φ ×s,tH1

is not just a bijection but a diffeomorphism.
Then strong and weak are no longer equivalent.

Proposition 1.2. In the smooth category, strong is always weak but weak may not
be strong.
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Weak equivalence may not be symmetric in the Lie category which is why you
need Morita equivalence.

Definition 1.4. We say that G is Morita equivalent to H if there exists K1 which
is weakly equivalent to both G and H.

You can prove that this is an equivalence relation. The only thing you need to
check is why it is transitive. If you have a Lie groupoid G which is Morita equivalent
to H via K1 which is Morita equivalent to W via K2, then a tricky construction of
the fiber product K1 ×H K2 is a Morita equivalence from G to W.

Assume H is a Lie groupoid and we have ϕ ∶ G0 → H0 a smooth map. Assume
that G0

ϕ ×s H1 → H0 is a submersion. I define the pullback of H1, denoted ϕ∗H1,

as G0 ×G0
ϕ,ϕ ×s,t H1, which is a smooth manifold by our submersion property. You

pull back the groupoid structure of H over G0. Let me call this ϕ∗H.

Lemma 1.2. Iff t ○ pr2 is surjective, the pullback ϕ∗H is weakly equivalent to H.

In my previous example where U was given by charts, then G0 = U0, which maps
into M , the inclusion map from every component. You can easily check that this
is a submersion and surjective. Then it turns out that U = j∗M . With the same
thing you can prove all the equivalences that I listed before.

I will say a last example. Say you have a principal G bundle P over M , and let H
be a finite group with a homomorphism ρ ∶ G→ AutH. Then I can construct a new
groupoid G = P ×G [⋅H], and here I mean that G0 is P ×G ⋅ =M , and G1 = P ×G H,
and you get a natural group structure using this homomorphism.

It’s not obvious showing that this is Morita equivalent to a global quotient; it is
(G⋉ρH)⋉P ≅Morita G. That is an example I realized ery recently. Maybe I should
stop here.

2. April 21: Rui Wang: On orbifold groupoids II

Today I’ll focus on the effective case and talk about group actions on a groupoid.
Let’s start with some preparation. Suppose X is a connected smooth manifold and
G is a finite group. We say that G acts on X through ρ if ρ is a homomorphism from
G to the diffeomorphism group of X. Now I’ll say some very simple properties of
this kind of thing. We know this group is finite, which is closed, and this is smooth,
which is an open condition; then connectedness gives us some kind of rigidity for
the action.

So for x ∈ X, we have the isotropy group Gx = {g ∈ G∣gx = x}. We also have the
fixed points of g, Zg = {x ∈X ∣gx = x}. Let me give several lemmas. I’ll assume the
action is effective, that is, the kernel of ρ is trivial.

Lemma 2.1. (1) for all x ∈X there exists an arbitrarily small Ux such that if
g ∈ Gx then gUx = Ux and if g ∉ Gx then gUx ∩Ux = ∅.

(2) For U open and nonempty in X, if g1 and g2 in G have the same restriction
to U then g1 = g2.

(3) For open nonempty U ⊂ X, if there is f ∶ U → X with f(x) ∈ Gx for any
x ∈ U , then f is a group element acting, restricted to u

(4) If we have two finite groups acting on manifolds, if ∣f ∣ ∶ ∣X ∣ ∶= X/G → ∣Y ∣,
we say this has a smooth lifting if there is a map f ∶ X → Y such that the
diagram commutes. Say it is an embedded lifting if f is an embedding.

(5) If ∣X ∣→ ∣Y ∣ has an embedded lifting f , then
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(a) There is an injective group homomorphism ϕf ∶ G → H such that for
all g ∈ G, ϕf(g)(f(x)) = f(gx)

(b) Any two embedded liftings f1 and f2 differ by a group element h12 in
H, uniquely determined, such that f2 = h12 ○ f1.

Now let me introduce the meaning of an (effective) orbifold.

Definition 2.1. So let’s assume X is a topological space, and fix n ≥ 0 (the
dimension of X). Introduce an atlas for this topological space. If there is a smooth
atlas we’ll say this has an orbifold structure. So we want

(1) Ũα, an open connected manifold of dimension n equipped with a finite

group Gα acting (effectively). This gives an action groupoid Gα ⋊ Ũα. The
coarse space is Uα, and I’ll assume this is an open subset of X.

(2) ⋃αUα =X.
(3) (compatibility) If x ∈X and x ∈ Uα ∩Uβ , then there is a chart x ∈ Uγ which

is a subset of Uα∩Uβ which has an embedded lift to both Uα and Uβ . Then
λ̄γα ∶ Gγ → Gβ is an injective homomorphism and likewise for β.

We say that U is an orbifold representation of X.
We say that U ′ is a refinement of U if every chart of U ′ has an embedding into

U (with embedded liftings).
We say the two orbifold representations are equivalent if they have a common

refinement.

Now I want to construct some special coordinates. Assume (X,U) is an orbifold
representation and construct a new one OX , which I will explain.

(1) for each x ∈ X, choose Ũx ⊂ Ũα, and let Gx be the isotopy group of Gα

restricted to x̃, where x̃ is a lift of x. You can choos this arbitrarily small
so that Gx acts on this Ũx, and every other element disjoints this set. So
the coarse spaces are the same regardless of the choice of lift.

(2) for any two points x, y ∈ X, we say x < y if x ∈ Uy. This is not a partial
order. I claim that the embedding data gives an embedding λxy from a

Gx-invariant subset Ũ
y
x of Ũx to Ũy.

I’ll call this data (Ux,Λx) and together they are OU,X .
Now I will relate this to what I talked about yesterday. From an orbifold

groupoid, how do you get an orbifold representation, and vice versa? I’ll assume G
is an orbifold groupoid and I want to give it a chart. For every point x ∈ G0, the
isotopy group Gx is g ∈ G1 such that gx = x, this is a finite set. I want to know how
this acts on a neighborhood of x. Pick g ∈ Gx, which, the source of g and the target
of g are x so you get a local diffeomorphism and a neighborhood of g in G1, call it
Vg, and a neighborhood of x, call it Ũx (this is bad notation) and a map Vg → Ũx,
and s and t are local diffeomorphisms onto their images. I can take the intersection
of all such neighborhoods over Gx. Now you can ask how Gx acts on this set. You
use this local diffeomorphism to send your patch from Ũx to Vg and then back via

s−1 and then t. Then Gx acts on the open set. Ũx. This essentially depends on the
proper étale property. For the embedding it is very similar. If x goes into another
chart, then x is connected to gx by an arrow. Then a similar argument tells you
that you have a family of arrows.
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So from G I can get UG and then OG . Now let me quickly say how you can come
back. When you have OG , for G0 I take

∐x∈X Ũx

and for G1 I take

G1 = Gx × (∐w<x,w<yŨx
w ∩ Ũp

w)Gy/ ∼

where you need an equivalence relation because this union is too big. [discussion
about equivalence].

You can prove that G1 is a smooth manifold and the structure maps are well-
defined. the source and target are not so hard. You must show thatm is well-defined
and associative, and this is tricky. It’s kind of amazing that you get this from the
effective condition. Equivalence and Morita equivalence are both connected by
these constructions.

You can easily define K acting on X for X a manifold. But for X a groupoid
that’s harder. With charts, you want a group action on a manifold, that’s already
a problem. If you break S1 into two charts, you’ll have to switch charts to act
by rotation. If you want K acting on G, you can’t expect k ∶ G → G is a strict
homomorphism. That’s not possible even in the smooth category. You need to
introduce subtle considerations.

[some discussion]
For the effective case, when you have K acting on the coarse space continuously,

I want that for (k, x) ∈ K ×X you can find a local lifting V x
k ⊂ K and Ũk

x ⊂ Ũx

and F ∣V x
k
×Uk

x
has a local lift into Ũkx, which I assume is compatible with the group

structure, the lifting ẽ(e,x) = idŨx
and ℓ̃k

(ℓk,x)
= ℓ̃(ℓ,kx) ○ k̃(k,x).

If I assume K is compact and a technical properness condition then I get a slice
theorem

Theorem 2.1. For any point x ∈X you can find a chart K ×Kx (Gx ⋊ W̃x) so that
the coarse space is Ukx, and for any x <K y, then we can construct λK

xy, and using
the general procedure we can get the new groupoid GK and show that it is Morita
equivalent to G and that the action of K on GK is strict.

3. April 25: Rui Wang: On orbifold groupoids III

Some references are Adem–Leida–Rua, orbifolds and stringy topology, Moerdijk–
Mrčun Lie groupoids, Chen–Hu, for the Abelian case, Hu–Wang for the non-Abelian
case, and Chen–Ruan as another reference. By the way, this Chen is not this Chen,
this Hu is not this Hu, and this Wang is not me.

Okay, so let G be a groupoid, then we can make a classifying space BG which
is the nerve. The cells Gn is (g1, . . . , gn) in the product of G1 × ⋯G1 where the
source of one is the target of the next. Then cross this with the standard simplex
∆n. Take the disjoint union over all n and then quotient by the face relations from
di ∶ Gn → Gn−1 where for d0 you forget g1, for dn you forget gn, and for di you
multiply gi and gi+1. For G1 you take G1 and for G0 you take G0 with maps given
by source and target.

Facts include, if ϕ is a strict homomorphism G → H, then you get a map
BG → BH and if ϕ is a weak equivalence then BG → BH is, so the homotopy
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groups coincide. If these are Morita equivalent, then the two homotopy groups are
isomorphic.

Definition 3.1. Let G be a Lie groupoid. Then πorb
n (G) is equal to πn(BG).

If G = G ⋊X then BG is homotopy equivalent to EG ×G X for a contractible
principal G-bundle EG over BG So we get a long exact sequence of homotopy
groups

⋯πn(X)→ πn(EG ×G X)→ πn(BG)→ ⋯
so in particular we have π2(BG)→ π1(X)→ πorb

1 (G)→ π1(BG)→ π0(X)
If G is finite, andX is connected, then π0(X) = 1 and π1(BG) ≅ G and π2(BG) =

1, so we get a surjective map πorb
1 (G) → G and this tells us that certain orbifold

groupoids cannot be global quotients. For instance,

Example 3.1. The weighted projective space WP(a0, . . . , an) is not Morita equiv-
alent to a manifold quotiented by a finite group unless a0 = . . . = an = 1.

We see this by seeing tha πorb
1 (WP(a⃗)) = π1(B(S1 ⋊ S2n+1)) = π1(ES1 ×S1

S2n+1) = 0.

Next let’s talk about homologies. By using the classifying space, considerH∗orb(G,R),
defined as H∗(BG,R). If this has no torsion, this ring, then this is the same as
H∗(∣G∣,R). With Z coefficients, for BG, for a global quotient this is equivariant
cohomology. In particular, if X is just a point, then this is H∗G(⋅,Z) =H∗(G,Z).

Before I go to Chen–Ruan cohomology, let me look at S2 with k orbifold points.
The orders of the k orbifold points are given by (m1, . . . ,mk) which is {λ1, . . . λk ∣λmi

i =
1 and λ1 . . . λk = 1}. You can consider πorb

1 (G, x) as the deck transformations of a

universial groupoid G̃ over G.
For example, if Σ is a Riemann surface with orbifold points of order m⃗. Then Σ̃

is a smooth Riemann surface if and only if either g ≥ 1 or g = 0 and k ≥ 3 or g = 0
and k = 2 and m1 =m2.

So let’s go to Chen–Ruan cohomology. Assume G is an orbifold groupoid. Let
Sk
G be k elements in G1 where all elements have the same source and target. This

has a projection to G0, let me denote it by p. Then you can get the semidirect
product of G with Sk

G , where it acts via p. For any point in Sk
G , then G maps it.

So h acts on g1, . . . , gk as hg1h
−1, . . . , hgkh

−1. By this way we get a new groupoid,
Gk = G ⋊ Sk

G , and the objects is Sk
G and the morphisms are the fiber product with

G1 over G0. Then ∣Gk ∣ = {(x, (g1, . . . , gk)Gx)}. If G = G ⋊X then S1
G = ⊔{g} ×Xg.

Then GK is the disjoint union over g⃗, conjugacy classes—
[couldn’t follow.]

4. June 1: Juhyun Lee, On the classification of tight contact
structures I

My abstract was too ambitious, I think.
In these talks I will only concentrate on the classification theory of surface bun-

dles over the interval or the circle S1, especially the trivial torus bundle T 2 × I
with a boundary condition, or T 3

A, a torus bundle with monodromy A ∈ SL2Z, or a
higher genus surface bundle.

There are multiple ways to classify tight contact structures on T 2×I. In the first
lecture I’ll talk about Giroux’s method and in the second I’ll talk about Honda’s
method for the thickened torus and the torus bundle with monodromy with trace



CGP POSTDOC SERIES 7

greater than 2. In the third lecture I’ll consider the higher geneus bundles with
pseudoAnosov monodromy. About ten years ago Honda classified these (which
satisfy an extremal condition). At the end I’ll briefly explain the ideas of proving
this without the extremal condition.

I’ll give references for these kinds of topics. For Giroux’s method, unfortunately,
the good reference is Giroux’s paper, which is written in French. The first one is
Structure de contact en dimension trois et bifurcations des feuilletages de surfaces.
For Honda’s methods there are two series, On the classification of tight contact
structures, both I and II. Also for the last type, On the classification of tight contact
structures of hyperbolic 3-manifolds.

So for now I’ll always assume that M or V is a 3-manifold, possibly with bound-
ary, and I’ll assume that everybody knows the definition of a contact structure. So
(M,ξ) is a coorientable contact structure. An embedded disk D ⊂ (M,ξ) is called
overtwisted if TpD and ξp coincide. The intersection of TD and ξp is called the
characteristic foliation of the disk. If there is no such disk then (M,ξ) is called
tight.

Almost thirty years ago, Eliashberg classified all overtwisted contact structures.
They are in one to one correspondence with homotopy classes of [missed]. The
known results for classifications for tight contact structures I’ll introduce at the
last part along with open problems.

From now on I’ll start to introduce some properties of the characteristic foliation.
It is the intersection of the contact structure and the tangent bundle of an embedded
surface.

I want to talk about some properties of this characteristic foliation. For a C∞

generic closed orientable surface Σ ⊂ (M,ξ) we can say this characteristic foliation
is of Morse–Smale type, meaning that it has the following properties:

(1) There are finitely many singularities and closed orbits, which are nonde-
generate in the sense that the Poincaré-Witten map is not the identity.

(2) The α and ω limit set of each flow line is a singular point or closed orbit.
(3) There are no saddle saddle connections.

The α-limit is to flow in the positive direction, the α limit, to flow in backward
time gives the ω limit. So saddle-saddle connection means there is no flow line from
a saddle into another saddle.

I’ll define a convex surface. An embedded surface Σ in (M,ξ) is called a convex
surface if there is a contact vector field near Σ which is always transverse to Σ. The
flow of this vector field preserves the contact structure. By a Hamiltonian function,
we can extend to a globally defined vector field. If a surface is convex, there is an
R-invariant neighborhood in which the contact structure ξ is rewritten as fdt + β
where f ∶ Σ → R and β is a one-form on Σ and this does not depend on t. You
should check this by yourself by putting αt = ftdt+βt. Among solutions that satisfy
the contact condition you can find one that has the form I said.

I told you, I mentioned the Morse–Smale type vector fields. Near the surface Σ
we can find a contact vector field that is not everywhere transverse, then we can
smoothly isotope to [missed] and we find a Morse Smale type vector field, then we
can construct fdt + β.

Let me list these properties again. We defined a convex surface, and this always
has a dividing set which consists of ΓΣ, the set of points in Σ in which the conctact
vector field V (x) is in ξx. This dividing set has the following properties:
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● The characteristic foliation ξ ∩ TΣ is generated by kerβ and
● Γ = f−1(0).

Then

(1) Γ is a disjoint union of closed 1-dimensional curves (Σ is closed) with df > 0,
and

(2) Γ ⋔ ξΣ, and β ∧ df > 0
(3) Γ does not depend on the contact vector field up to isotopy,
(4) Σ/Γ = Σ+ ⊔Σ− where f > 0 or f < 0.
(5) This is an ample set, never empty.

The characteristic foliation determined the isotopy class of the contact structure,
but we can say:

Theorem 4.1 (Giroux’s flexibility theorem). Given (M,ξ), supposed the charac-
teristic foliation ξΣ for a convex surface is given and there is another (singular)
foliation of Morse–Smale type F on Σ which is divided by (transverse to) the same
dividing set ΓΣ. Then there is a contact structure ξ′ near Σ so that ξ′Σ = F then
there is an isotopy φs for s ∈ [0,1] such that

(1) φ0 is the identity and φs∣ΓΣ
is also the identity.

(2) φs(Σ) ⋔ V for all s, and
(3) ξ(φ1(Σ)) agrees with F under pushforward.

We classify the thickened torus with some boundary condition up to isotopy
relative to the boundary. The boundary conditions are specific fixed characteristic
foliations. For the torus case, we assume the boundary is convex and the contact
structure is transverse to the boundary. If you assume transversality, then there
are two kinds of foliations. One is a linearized foliation. The other has two closed
orbits that are spiralled to. We want both to have the same type.

Honda’s method, the focus is on the dividing set and using bypasses. But
Giroux’s method is to flow along the foliation.

There are two types of structure. In a rotative structure, ξ(T 2 × {t}) [missed].
Two structures have the same amplitude which is nonzero, then we can find a

boundary isotopy among these. This is the classification theory of rotative struc-
tures.

The second kind is called elementary. For this case, there are some finite times
in [0,1] so that between ti−1 and ti the structure is rotative. The fiber remains
convex except at the endpoints. This is called normal form. We can show that for
tight contact structures with fixed boundary, this is isotopic to normal form.

I’ll stop here.

5. June 2: Juhyun Lee, On the classification of tight contact
structures II

So I’m starting from giving a precise description of the the foliation coming
from a dividing set. We have F a singular foliation of Morse-Smale type on Σ.
Then there is a contact form ξ near Σ such that ξΣ = F . Two ξ and ξ′ which
satisfy ξΣ = ξ′Σ are topologically equivalent, then they are isotopic, so this contact
structure is essentially unique. If Γ is isotopic to ΓΣ,ξ then we say that Γ divides
F .

Now I’ll explain about bypass theory. For this we have to start from the standard
form of a Legendrian knot embedded in a contact manifold (M,ξ). That means that
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if we choose an arbitrarily small neighborhood of the Legendrian knot, there is a
normal form in the neighborhood of the knot, which looks like (x, y, z)∣x2+y2 ≤ ϵ and
L = (0,0, z) and z ∈ [0,1] with 0 and 1 identified. Then (U, ξ∣U) is contactomorphic
to (U,ker(sin(2nπz)dx + cos(2nπz)dy)). [picture]

Transversally meeting convex surfaces on Legendrian boundary, then we actu-
ally see a local small neighbrhood of the Legendrian boundary. There’s a collared
neighborhood, one given by y = 0 and 0 ≤ x ≤ ϵ and the other given by x = 0 and
0 ≤ y ≤ ϵ. The convex surface should have a dividing set with 2n arcs meeting the
intersection.

A bypass is a technique to find another convex surface in a manifold. The
blackboard is a given convex surface. There is a dividing set in it. If we can attach
to it half of a convex disk with dividing set a single arc meeting the flat half, called
the attachment arc. It should meet ΓΣ at three points. [missed some, pictures].

I’ll use the bypass technique to look at T 2 × [0,1] with convex boundary. We
start from s0, the slope of T0 and s1 the slope of T1. I’ll assume that s0 and s1
are different. Because of the same reason yesterday, these s0 and s1, the angle is
decreased. There are three types. We can have minimal or nonminal twisting. If
we fix the slope of the boundary, then the slop eof any fiber is in the middle, always
we move the clockwise direction. If not, we call this non-minimal twisting. Minimal
twisting is divided into the nonrotative and rotative cases. Nonrotative means that
s0 and s1 are equal. Because of time we’ll concentrate on proving the the rotative
case.

By acting by SL2(Z), we can put s0 as 0 and s1 as −1. This is basically from
layering of very simple structures.

Proposition 5.1. The number of isotopy classes of minimal tight contact structures
between 0 and 1 is 2.

We call these basic slices. On T 3 the tight contact structures were classified by
different means. So there is a twisting structure ker(sin 2πdx + cos 2πdy) Then ξ1
and ξ2. The upper bound comes from, well, we assume that the slope of T0 is 0 and
T1 is −1 [pictures]. So we can choose our foliations as vertical lines and cut along
them. The line is Legendrian. We can take the annulus γ × I, [pictures].

6. June 5: Juhyun Lee, On the classification of tight contact
structures III

Definition 6.1. We call ξ a minimal twisting if every boundary-parallel convex
torus T has a slope s of ΓT contained within [s0, s1].

There were two questions about this definition. In the last talk I explained about
the two basic classes. One is the kernel of sin 2πzdx + cos 2πzdy, with z ∈ [0, 1

4
].

The boundary slopes are 0 and −1. In the middle, every torus, the fiber becomes
convex, actually. This can be seen by observing that ⟨ ∂

∂z
, cos 2πz ∂

∂x
− sin 2πz ∂

∂y
⟩.

In between the slopes are in between. Any other convex torus is C0-approximated
by these [pictures].

In the nonminimally twisted case, there is a convex torus with a slope s not
contained between s0 and s1.

I have to give a rough idea for classifying the other boundary. Last talk I showed
you the isotopy number of tight contact structure, the basic slices with boundary
slopes 0 and −1, there are two of these. The actual picture for this, we realize these
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by embedding the standard contact structure on T 3 and taking [0, 1
4
] and [ 1

2
, 3
4
is

another basic slice.
[some pictures and discussion, mainly related to the Farney tesselation.]
So known results include Σg-bundles over S1 with some monodromy (g > 1).

Then it’s also known that in the toroidal case there are infinitely many tight struc-
tures. The atoroidal case was known to be finite and there were conditions on
the Thurston–Bennequin inequality that guaranteed a certain count. I wanted to
remove these. I did it in the case where there is a convex fiber with #ΓΣ is 1 or 2.

A longstanding problem is the existence problem. If the Betti number is greater
than 0, the tight contact structure can be obtained by perturbing something. But a
rational homology sphere which is atoroidal and not Seifert fibered, we don’t know.

7. September 9, 2015: Dohyeong Kim, Moduli of certain K3 surfaces
via GIT I

I will not talk about moduli of K3 until Friday. Today I’ll talk about my mo-
tivation. In the second talk I’ll talk about moduli spaces of certain K3 surfaces
with Picard number 18. In the third talk I’ll talk about those with Picard number
(possibly) 16. I’m not sure. This is work in progress so some of these I only have
a sketch for.

This is roughly the plan for the first, second, and third lecture.
Let me explain the diophantine equations that led me to the geometry of K3

surfaces. This is elementary but often causes some confusion, so let me be precise.
I’ll work with a ring R, which is a Z-algebra which is finite (dimension over Q after
tensoring with Q is finite) and flat. Typically I think of Z[ 1

p1
, . . . , 1

pr
], where pi are

primes or R ⊂ F is a finite field extension.
So projective and affine equations, given f1, . . . , fn in R[x1, . . . , xm], with fi a

homogeneous degree di > 1 polynomial, then fi = 0 defines a variety V (f) in Pm−1

and I want to consider its complement, which is affine if n = 1. with equation
“fiti = 1” heuristically. So for instance if n = 1 and f1 = xm then the complement
is Am−1, with coordinates xi

xm
.

When n = 1 and f1 is generic of degree ≥ 2, then Pm−1 − V (f) is affine. You can
prove this, say, by Veronese embedding. This becomes a hyperplane section in a
bigger projective variety. But it doesn’t have “nice” affine coordinates.

So Y = Pm−1 −V (f), I want to point out that even though this is affine it’s prof-

itable to keep the projective coordinate system. So Y = {(a1, . . . , am) ∈ Rm∣for somei, fi(a1, . . . , am) ∈
R×}/ ∼ where (a1, . . . , am) ∼ (λa1, . . . , λam) for λ ∈ R×.

This is a point of confusion. This is NOT that fi(a1, . . . , am) ≠ 0 as an element
of R. People think of this automatically but this is not correct.

I’ll explain why this is correct by giving an example. Look at P1 with x1 and x2,
let f(x1, x2) = x1(x1 − x2)x2. Here Y = P1 − {0,1,∞}. Then Y (Z) = ∅. You might
think that removing 3 points from infinitely many gives you infinitely many. But
Y (F2) = ∅ where Fp = Z/pZ because P1(F2) = {0,1,∞}.

So a second explanation. Schemes over Z is a fibred (not in a technical sense)
space over SpecZ. So if you have an equation Y /Z, a scheme, then one has this
picture. SpecZ is a line with primes 2, 3, 5, and so on. Over each of them you have
Y2, Y3, Y5, and so on. Here Yp = Y ×SpecZ SpecFp. So Z-points are sections. Then a
point σ is a section. So if you have infinitely many sections and you removed three.
But for some reason, if you only had three sections. It doesn’t have to be three.
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Suppose Y2 → SpecF2 has r sections and all of them come from global sections
σ1, . . . , σr. Then Y − ∪ Imσi has no Z-points.

If X is proper then X(R) and X(Frac R) coincide.
In the case Y = P1 − V (f) and V (f) has at least three distinct C-valued points,

then Y (R) is finite (Siegel theorem). For our example, in Y (Z[ 1
2
]), this conisists

of 2,−1, 1
2
.

In terms of our previous description of Y (R), we have {f(a, b) ∈ R×} is finite.
Or when R = Z[p−11 , . . . , p−1r ], then R× = {±1} ×Zr, which is {±∏peii ∣ei ∈ Z}, then

{(a, b) ∈ R∣f(a, b) = ±pe11 ⋯p
er
r }/ ∼

is finite. This is called a “polynomial exponential equation.”
What happens in higher dimensions? In terms of the last description, in concrete

terms, we want to solve (solve may mean many different things)

{(x1, x2, x3) ∈ R3∣f(x1, x2, x3) = ±pe11 ⋯p
er
r }/ ∼

for the same R = Z[ 1
p1
, . . . , 1

pr
]. But there are some problems.

We need to find analogues for the statement that f(x1, x2) = 0 has finitely many
C-valued points and for “Y (R) is finite.” This is answered, people wanted to
generalize Siegel’s theorem in the 80s and got different formulations, so answered
by Lang, Vojta, Bombieri–Lang. The answer is roughly as follows.

Y (R) can be infinite (this is imprecise now) only for copies of Gm, a multiplica-
tive group in Y . If Gm injects into F then Gm(R) = ∞ implies Y (R) = ∞. This
is the only reason that finiteness can fail. One should be slightly careful, working
with affine Y . In general you should replace this with an arbitrary algebraic group.

More precisely,

Conjecture 7.1. Let Y0 ⊂ Y be

(Y0 = ⋃
σ∶Gm↪Y

Im(σ))
−

(the closure), then Y (R) − Y (R0) is finite.

I spent already 57 minutes but that’s not so bad, I wanted to make sure that
everyone understands clearly.

So f = x1x2x3(x1+x2−x3). You have the projective plane P2 and the coordinate
lines x1 and x2 and a line at ∞ defined by x3 = 0. If you let x3 = 1 then you have
the line x1 + x2 = 1 and these other lines [picture] are copies of P1 minus two
points (Gm lying inside). For R = Z[ 1

p1
, . . . , 1

pr
], you want (a, b, c) ∈ R such that

abc(a+ b− c) ∈ R×, in or]ther words a, b, c ∈ R× such that a+ b− c ∈ R×. So the set of
triples of units such that a+ b ≠ 0, a− c ≠ 0, and b− c ≠ 0 and a+ b− c ∈ R× is a unit.

This is another illustration that Y (R) − Y0(R) is not the same as (Y − Y0)(R).
I’ll stop.

8. September 11, 2015: Dohyeong Kim, Moduli of certain K3 surfaces
via GIT II

Remember that we were talking about R = Z[ 1
p1
, . . . , 1

pr
], and Y /R is an affine

variety

Y0 = ( ⋃
σ∶Gm↪Y

Im(σ))
−
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The conjecture is

Conjecture 8.1.

#(Y (R) − Y0(R)) <∞

This is a conjecture of a lot of people, Bombieri–Lang, Vojta, Lang.
I spent a long time talking about how Y (R) − Y0(R) is not the same as (Y −

Y0)(R).
Now let’s talk about moduli of K3 surfaces. Let k be a field. A proper projective

surface X/k is called a K3 surface if

(1) Ω2
X/k = OX , that is, it has a nowhere vanishing 2-form.

(2) H1(X,OX) = 0.
This definition works for any field.

The moduli of complex analytic K3 surfaces is dimension 20. The moduli of
algebraic K3 surfaces is a countable union of 19-dimensional components. When I
say the moduli space of K3-surfaces by GIT, I mean a description of one of these
components in terms of geometric invariant theory.

A polarized K3 surface over k is a pair (X,L) where X/k is K3 and L is an
ample line bundle.

If L is an ample line bundle on X, then the self-intersection number L2 is 2d for
d ∈ Z > 0. So M2d is the moduli of (X,L) with L2 = 2d. For each d this is a 19
dimensional, probably, algebraic stack.

I’ll give very classic examples to describeM2d for small d in terms of geometric
invariant theory.

So suppose you have P2 and a curve of degree 6, smooth, let’s say D is defined
by the vanishing of f . Then this defines a surface in weighted projective space
{w2 = f ⊂ P3(1,1,1,3)}. A nice thing is that the canonical class KX is trivial
and thus, switching to, well, we see (KX −D) ⋅D = χ(D) (Noether’s formula) so
D2 = −χ(D) if D is a smooth curve.

Let’s use this to compute a natural polarization here. Call this surface Xf . Then
π ∶Xf → P2, and π−1 of a hyperplane section is a curve of genus two. A hyperplane
has 6 intersection points, so the double cover has genus two. Then D ∶= π−1(H)
and D2 = −χ(D) = 2g − 2 = 2.

Then say (X,Df) is in M2. This pair defines a K3 surface with degree 2

polarization. The space of degree 6 polynomials in {x, y, z} has dimension (( 3
6
)),

you can choos three times with repetition, this is (3+6−1
6
) = (8

6
) = 28. The dimension

of GL3 is 9, so this has dimension 28− 9 = 19. I haven’t checked whether this is an
isomorphism or something finite, but you have this map P6(x, y, z)//GL3.

Smooth quartics in P3 are examples of K3 surfaces, with Xf ⊂ P3, if you take a
hyperplane section then the genus is 3 because this is a quartic curve. Then Xf ,D
is in M4. If you count the dimension it’s also 19-dimensional. There are more
examples.

This is a slight restatement of the original theorem.

Theorem 8.1. (Y. André) Let Y =M2d. ThenM2d(R) is finite.

Any map Gm →M2d is constant.
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Let X/Q be a K3 surface. We say that X has a good reduction at a prime
p if X has a model X of Zp = lim←

n
Z/pnZ, the ring of p-adic integers, sech that

X ⊗Zp Fp/Fp is a smooth Fp-variety.
So X /Zp is a model for X /Q if X ×SpecZp Qp ≅X×SpecQSpecQp. A nice category

of models needs you to fix an isomorphism but it doesn’t matter at this point.

Theorem 8.2. (Y. André, reformulation) The set of (X,D) over Q such that X
has a good reduction at all p outside of {p1, . . . , pr}, up to isomorphism, for some
fixed degree d, is finite.

So this is isomorphism classes of degree 2d K3 surfaces. If you have good reduc-
tions at every prime, then this is finite.

So can we reduce the conjecture to this version of the theorem? We need to prove
some set is finite. We know this finiteness theorem. Naively you can ask whether
one finiteness can be reduced to the other. Yes, this is possible if Y =M2d.

I don’t know where this is written, that Gm →M2d is finite. The first has C as
universal cover. If you can prove that M2d has a period domain with hyperbolic
metric, well, some certain hyperbolicity, then there is only a constant map from C.
You can check this using purely analytic differential geometry methods. Then we
get the conjecture.

Let me go back to the example Y = P2 − {xyz(x + y + z) = 0}. [picture]
So Y (R) can be described as (a, b, c) in R with abc(a + b + c) ∈ R× or as (a, b, c)

in R× with a + b + c in R×.
Suppose we have the following construction, a hypothetical construction which

I’ll give next time, for any t in (Y −Y )(Q) = Y (Q)−Y0(Q) (these agree because Q
is a field) we have a K3 surface (with some data) Xt such that Xt/Q has a good
reduction at a prime p whenever t (mod p) does not belong to {xyz(x+ y + z) = 0}
and a fixed X/Q appears only finitely many times as Xt. Then the conjecture holds
for Y .

That is, if a finite map f ∶ Y − Y0 →M∗ such that f(t) =Xt has good reduction
whenever t mod p is in Y (Fp).

9. September 15, 2015: Dohyeong Kim, Moduli of certain K3 surfaces
via GIT III

I’ll begin my last lecture. Today I’ll give a construction of a certain K3 surface
and compute its Picard group. In fact, I’ll compute the Picard group with its
intersection pairing. This is today’s goal. I’ll try to finish this. So my Y was
P2 − {xyz(x + y + z) = 0}, the complement of this hypersurface, but I view Y ∋ y as
a 5-tuple (ℓ1, . . . , ℓ4, t) of four lines and a point. Taking the projective dual you get
(ℓ∗1, . . . , ℓ∗4, t∗), which is four points and a line.

I’ll tell you how to construct a K3 surface. This can be described in maybe three
ways. I think the most efficient one is the following. Given a line. Maybe this is
not the best way to draw. [picture]

There are two conics, B1 and B2, passing through the four points and tangent
to the line. The conic is smooth if y ∉ {(x + y)(y + z)(z + x) = 0}.

Let me draw this picture again. We had three lines in the projective plane, and
there were three copies of Gm defined by (x + y)(y + z)(z + x). If t is elsewhere,
then these two conics are smooth.
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So first blow up P2 at four points, then define a 4-to one cover X0 branched
along B1 ∪B2. After blowing up, the intersections become disjoint. Then you have
exceptional divisors Ei and you have Ẽi, inverse images in X0, these are four to
one covers of the projective line branched at two points, with ramification index 4;
they’re irreducible and disjoint. So you take X, branched along these Ẽi, this is an
8-fold cover of the blowup with specified branching.

The claim is that X is a K3 surface. Why? It has a natural map to P1. Then
this passage to X0 is a base change, you cover with P1 by a four to one map. Then
the double cover is taken with respect to four distinct horizontal sections. You have
a conic with four points, so if you take a branched cover with respect to these four
points, you get a genus one curve. The singular fibers, if you count them, come
from the degenerate conics. Then you get, eventually, taking a 4-fold cover, 12
special fibers each of which has two points. So you have 24 points, all of which are
nodes, in an elliptically fibered surface, so it’s K3.

A very general remark on computation of the Picard group. For K3 surfaces,
a Picard group has no [unintelligible]component, and it can be identified with the
singular homology group. You have a surface X and a finite map to smooth Y .
This is how to produce nontrivial divisors of F . Suppose you have a divisor D in
Y . Take the inverse image π−1(D). Try to generate Pic(X) by choosing D with
reducible π1(D). If it’s reducible, meets the branch divisor in a special way, then
this preimage may be useful.

[pictures]
Now let me claim that the subgroup of Pic(X) generated by the components of

π−1E,π−1(Sij), and π−1(Ej) has rank 18.
So let’s write [pictures]
So these components generate a subgroup of rank 18 in Pic(X). So we have

Y − {(x + y)(y + z)(x + z) = 0}, so I write X over Y , for t we have X(ℓ⃗, t). And
sitting in X is Dj , we have a lot of divisors, 4 + 24 + 16 = 44 divisors, but their
intersection matrix does not depend on t. The image of the divisors in the Picard
group of X is constant. This gives you lattice polarized K3 surfaces.

You can compose this classifying map with the locus of six points on t∗. Then
given two conics you have only four bitangents. So Y →M factors throughM0,4+2,
the moduli space of 4 + 2 points on a genus zero curve. You can show that Y →
M0,4+2 is finite so the other map Y →M is finite.

So K3 lattices are U⊕2 ⊕ (−E8) ⊕ (−E8). But you need a sublattice generated
by vectors of norm −2.

This is actually the end of lecture two. So far the GIT quotient was taken for
(ℓ1, . . . , ℓ4, t) in (P2)4 × P̂2 by PGL3 acting on P2 (and its dual).

Now consider (C1,C2, t) where Ci are smooth conics. The moduli space of four
lines has dimension 0. So it’s the same as fixing four lines and varying t.

But two conics have moduli. Now there are a lot of copies of Gn. There are
three families of copies of Gn like this. If you have a point outside of this, then you
can do a similar construction, which is the following: [picture]


