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Okay, I’m going to give a lecture in English. The grade will be based on pass or
fail, but as long as you do a few homeworks, that will be fine.

I’m going to talk about some algebraic structures that appear in the topology of
symplectic manifolds. That algebraic structure is quite complex, so it requires more
complicated homological algebra than classical algebraic topology. I’m not going
to talk very much about symplectic manifolds. I’ll talk more about homological
algebra of A∞ structures.

Let me start by motivating where this kind of structure arises. The story begins
with Stasheff or maybe some earlier work, but Stasheff is the one who introduced
the precise concept.

So this is Stasheff’s An structures. In the first few lectures I’m going to explain
what these An structures are about. Everything begins with a peculiar structure
in the based loop space. Let’s say X is a topological space and x0 some base
point. You’re given some distinguished point. Let me denote, we have LX, the free
loop space, paths from the unit interval to X such that the initial and final point
coincide:

L(X) = {γ : [0, 1] → X|γ(0) = γ(1)}

Then I’ll denote by Ω(X) the subset of the free loop space such that the loops start
and end at the basepoint.

Ω(X) = {γ ∈ L(X)|γ(0) = x0}

This is the “based loop space.” It has a product. You can concatenate two loops.

•

β

α

1
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The product ∗ : ΩX × ΩX → ΩX works as follows:

α ∗ β =

{
α(2t) 0 ≤ t ≤ 1

2
β(2t− 1) 1

2 ≤ t ≤ 1

This is not commutative. If you do this with the other order, you will not get the
same loop.

If we have a third loop γ, we could compare (α∗β)∗γ, that’s one way, that gives

=

{
(α ∗ β)(2t) 0 ≤ t ≤ 1

2
γ(2t− 1) 1

2 ≤ t ≤ 1

and this unravels as

=







α(4t) 0 ≤ t ≤ 1
4

β(4t− 1) 1
4 ≤ t ≤ 1

2
γ(2t− 1) 1

2 ≤ t ≤ 1

I divided the unit interval in half and then the left side in half again.
Now we consider α ∗ (β ∗ γ). We get

=







α(2t) 0 ≤ t ≤ 1
2

β(4(t− 1
2 ))

1
2 ≤ t ≤ 3

4
γ(4(t− 3

4 ))
3
4 ≤ t ≤ 1

in general, (α ∗ β) ∗ γ 6= α ∗ (β ∗ γ) as an element in ΩX but thy ar homotopic and
the homotopy can be given by an explicit reparameterization. That is, there exists
a homotopy

Γ : [0, 1]
︸︷︷︸

s

× [0, 1]
︸︷︷︸

t

→ X

such that Γ(0, ·) ≡ (α ∗ β) ∗ γ and Γ(1, ·) = α ∗ (β ∗ γ).
So this is a path in the loop space, and the path is given by connecting the speeds

like this

s

s = 1

s = 0

t

We have s=0 at the top.
Your first homework is to find the explicit formula for Γ(s, ·). The middle interval

of s is given by 1
4 + s

4 ≤ t ≤ 1
2 + s

4 , as a hint.
You can keep doing this with many loops and of course there are many different

ways of taking the product.
This homotopy depends on α, β, and γ and the parameter s. We formalize the

explicit definition of Γ, this homotopy, and definem3 : ΩX×ΩX×ΩX×[0, 1] → ΩX
by m3(α, β, γ, s) = Γ(s, ·).
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Similarly we can try to construct a homotopy of homotopies. Consider four
loops α, β, γ, δ, and consider their quadruple product α ∗ β ∗ γ ∗ δ, and there are
many ways of doing this, to find a parameterized based loop, you need to use some
parentheses, for example

(1) ((α ∗ β) ∗ γ) ∗ δ
(2) (α ∗ (β ∗ γ)) ∗ δ
(3) α ∗ ((β ∗ γ) ∗ δ)
(4) α ∗ (β ∗ (γ ∗ δ))
(5) (α ∗ β) ∗ (γ ∗ δ)

We can see that these each share one set of parentheses with the next one and we
can draw the so-called pentagon. I’ll put each of these quadruple products as a
vertex of the pentagon.

((ab)c)d

(ab)(cd)(a(bc))d

(a(b(cd))a((bc)d)

On each edge we can put the explicit homotopy induced by Γ.
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So this defines a loop in Ω(X). Each point on an edge defines an element in
the loop space, and this loop is actually contractible in the loop space. Again, this
can be done with an explicit contraction to the barycenter of the pentagon. I’ll
construct that later, but my claim is that we can construct an explicit piecewise
linear construction.

This pentagon is an example of the Stasheff polytope K4. So for example, K2 is
a point, there’s only one way to multiply. K3 is the unit interval, which is where we
defined the homotopy. K4 is the pentagon there, and generally, they keep going,
and in general, Kn is an (n − 2)-dimensional polytope which will be constructed
inductively by some general properties.

Then, it’s a fact that we have a continuous map mn : (ΩX)n ×Kn → ΩX that
satisfies certain (explicit) properties sometimes called An properties. All of this
will be explained later. Such a space is called an An-space.

Then Stasheff asked the following question. What conditions on a topological
space Y makes it homotopy equivalent to ΩX for some topological space X. It has
a remarkable answer. Stasheff found:

Theorem 1.1. The answer to this question is exactly this An property. A topo-
logical space Y is homotopy equivalent to ΩX for some X if and only if Y is an
A∞-space (an An-space for all n).

This structure appeared in symplectic geometry. Well.
You can now apply a cohomological functor. Recall the loop space product ∗.

Although it is not associative on the space itself, but it induces a coproduct on
cohomology, H∗(ΩX,R) → H∗(ΩX × ΩX,R) ∼= H∗(ΩX)⊗H∗(ΩX), so that loop
product induced this homomorphism, and this is an example of a so-called coprod-
uct. I’ll explain what coproducts mean explicitly next time. That is coassociative,
the dual notion of associative.

In other words, m2 induced a natural coproduct m2 : H∗(ΩX) → H∗(ΩX) ⊗
H∗(ΩX).

Maybe it would be better to work with homology, where we can get a natural
product m2 : H∗(ΩX) ⊗H∗(ΩX). Let’s think about the degree. Let’s look at the
induced homomorphism (mn)# : (H∗(ΩX))⊗n → H∗(ΩX). Consider p1, . . . , pn,
singular chains in ΩX of dimension or degree d1, . . . , dn. Denote αi = [pi]. Then
(mn)#(α1, . . . , αn), to evaluate this you apply to representatives mn(p1, . . . , pn),
and you have an s which comes from Kn, and the dimension of Kn is n − 2, and
so this gives us a map from something of dimension, there is a resulting chain,
that dimension is d1 + · · · + dn + n − 2. Maybe it’s easier to see this on chains.
(mn)#(p1, . . . , pn) = mn(p1, . . . , pn : Kn), so recall that mn is a map from (ΩX)n×
Kn → ΩX. The image of this mn will increase the dimension by n−2. This defines
a chain of dimension

∑
dj + (n− 2). So this is sort of a chain map of degree n− 2.

This (mn)# is a map of degree n − 2. So you regard, well, C∗(ΩX) as a graded
vector space. So C∗(ΩX) =

⊕
C(ΩX). This map satisfies, the An relations induce

certain relations on these. The second fact is that the (mn)# will satisfy certain
quadratic relations called A∞ relations.

From the A∞ relations, we can derive many facts. It induces, for example, an
associative product on H∗(ΩX). This is called an A∞ algebra. The conclusion is
that (H∗(ΩX)) with mn forms an A∞ algebra.

Maybe I can write the quadratic relations. Next time maybe I’ll explain all these
unexplained terminologies. Maybe I’ll finish today’s lecture by saying one word,
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which is that such an A∞ algebra also occurs in symplectic geometry for the Floer
cohomology of Lagrangian submanifolds.

2. September 12, 2013

Missed

3. September 24, 2013

Maybe I should briefly remind you what we did last time. Recall that we talked
about ribbon trees and also looked at rooted ribbon trees and actually the way
how we defined ribbon trees is as embedded, you draw this tree but we sort of
regard some extra edges as lying on the disk. We call this a ribbon tree because
you construct this fictitious disk by thickening the tree. You are given the tree and
you can thicken this by gluing several, so, the thickening of trees, what I mean by
this, you look at the edges, instead of edges you replace them with bands, and then
you are given bands like this [picture] and then what you can do is you identify the
thin boundaries by taking the barycenter and then identify the half bands and do
the same thing, and you will get some kind of space which is homeomorphic to the
disk. By this thickening process, you give the flat metric, and since these are flat,
you can identify them, and you will get some singularities, you won’t have a flat
metric at these barycenters. Then when you are given this metric, it canonically
defines a conformal structure. The conformal structure uniquely extends over the
isolated singular points. This is the way we realize this fictitious disk. That’s why
we call these things ribbon trees, these are the ribbons.

Anyhow, the rooted ribbon trees, you identify one distinguished vertex v0 on
the boundary, and all other exterior vertices are outgoing vertices and there is an
automatic orientation on each edge toward v0. We denoted the set of isotopy classes
of stable (no vertices of valence two) ribbon trees (or rooted ribbon trees) by Gn+1

(or Gn,1).
We gave a partial ordering, well, the ribbon tree is an embedding (T, i) of the

tree T into the disk D2 and i−1(∂D2) is the exterior vertices of T . In the rooted
case we have (T, v0), i. Denote by [T, i] or [(T, v0), i] the isotopy class of (T, i) or
((T, v0), i).

We denote for simplicity t as [T, i] or [(T, v0), i]. We say t < t′ if t′ is obtained
by collapsing a sequence of interior edges of t. The maximal element, we call the
unique maximal element a corolla. There are no interior edges. An n-corolla or
n+ 1-corolla or (n, 1)-corolla has no interior edges.

Then we introduced the grafting operation, which I denote as, let t1 be [(T, v0), i]
(or let me skip this i, assume it) and t2 = [(T ′, v′)]. This operation ∗i : G(n1,1) ×
G(n2,1) → Gn1+n2−1,1 occurs by the following picture (this is a little confusing)
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v0v′0

v1

vi

and you glue these together with some renumbering:

v0

v1vi−1

vi

vi+n1−1 vn1+n2−1

vi+n1−1

We now go back to the axioms of the associahedron. We had two, so the third axiom
is that Kn is a CW-complex. The set of cells in Kn is in one to one correspon-
dence with G(n,1). Axiom four is as follows. Denote by F (t) the face associated to
t ∈ G(n,1). Then F (t) is an open cell of codimension (# of internal edges). The
corolla is the generic cell, and if the tree has more interior edges, then the associated
cell has higher codimension. Note that this codimension is the same as the number
of parentheses.

[Darko Milinkovic: What are the faces of a CW complex? Maybe I’m missing
axioms one and two.] Kn is an n − 2 dimensional polyhedron. Kn has a cell
decomposition where each cell is the cone on its boundary.

Axiom five is as follows, maybe this is a proposition, well, given the topology of
Kn, we have the following: The closure F (t′) is

⋃

t≤t′
F (t) and the boundary is

the same except with scrict inequality: ∂F (t′) =
⋃

t<t′
F (t).

There is one more axiom which I’ll state later. But maybe I need to state axiom
six to make this proposition true so I’ll hold off on it.

Proposition 3.1. Kn is homeomorphic to an (n− 2)-cell.

I’ll give the proof of this proposition later, but I’ll give some examples. K2 is a
point. There’s only one isotopy class.

[Some discussion of K1 and K0] Let me give axiom six. There exist maps ◦i :
Kr ×Ks → ∂Kn ⊂ Kn where n+ 1 = r + s. so that the image ◦i(Kr ×Ks) ofrms
a facet of Kn.
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The boundaries of Kn is the union over 2 ≤ s ≤ n − 1 and i from 1 to s of
the closures of ◦i(K(n + 1 − s) ×Ks). These are all possible ways of putting one
parenthesis in a word of length n so that it’s not the whole word.

That’s the axioms I’ll use to describe these things.
Let’s go back and consider ∂K3. How many boundaries? This is a zero dimen-

sional set. This will be, r+ s = n+ 1 = 4, and s must be 2. So there are two ways
of putting one parentheses: ((ab)c) or (a(bc)). There should be two points. So let’s
see what ((ab)c) corresponds to in the graph. They should be ◦1(K2 × K2) and
◦2(K2 ×K2).

v1

v2

v0 v1

v0

v2

v1

v2

v0

v3
That’s one. The other is:
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v1

v2

v0 v2

v1

v0

v2

v3

v1

v0
You can think of this as one of these turning ot the other by passing through a

corolla:

Now I’ve done something axiomatic and I want to turn instead to some geometric
realizations of Kn. One could be metric ribbon trees. Let me set some notation.
For a given t = (T, i) ∈ Gn+1, we denote by C0(t) as the set of vertices, C1(t) as
the set of edges, and C0

int(t) and C1
int(t) as the interior vertices and edges. Now
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for t in Gn+1, we associate the open cell

Gr(t) = {ℓ : C ′
int(t) → (0,∞)}

This is homeomorphic to (0,∞)#C1

int(t) = (0, 1)#C1

int(t). Then we let Gr(t) to be
the same thing including lengths zero and infinity:

{ℓ : C ′
int(t) → [0,∞]}

This is homeomorphic to [0, 1]#C1

int(t)

We can make a grafting map for this. We provide a CW-structure on the union
of the isotopy classes of Gr(t). By the definition, Gr(n,1) is the resulting complex,
which is homeomorphic to Kn.

Okay, for the second one, the moduli space M
main

n+1 (D2). Consider n+1 distinct
points on S1 = ∂D2. Denote this by

Confn+1(S
1) = {(z0, . . . , zn) ∈ (S1)n+1|z0, . . . , zn are distinct and arranged counterclockwise}.

Then PSL(2,R) acts on S1. Recall that SL(2,R) is two by two matrices of deter-
minant one and SL(2,R) is PSL(2,R) modulo the relation that a matrix is equal
to its negation.

Identify D2\{1} with the upper half-plane, z ∈ C such that Im z ≥ 0. These
are equivalent via a conformal diffeomorphism.

Then PSL2(R) acts on the upper half-plane by z 7→ az+b
cz+d

if the element of

PSL(2,R) is the class of

(
a b
c d

)

. This action acts the same by an element or

its negation and preserves the upper half plane and the real line union {∞}. For a
given (z0, . . . , zn), we may assume z0 = ∞. Then we arrange z1 < z2 < · · · .

So you can identify z1, . . . , zn around the circle. We can realize, or identify,
these points, in Confn+1(S

1) as a subset, if you put z0 at 1 you still have two
dimensions. You can identify the point as a subset of n points in (0, 1). I’ll make
this more precise next time.

Definition 3.1. We define Mn+1(D
2) = Confn+1(S

1)/PSL(2,R) where PSL(2,R)
acts on (z0, . . . , zn) by (Az0, . . . , Azn).

We identify two points if all coordinates are moved by the same fractional linear
transformation. This quotient space has a natural differential structure and the
dimension is (n + 1) − 3 = n − 2. I’ll explain the cell structure of this which
tells you this is another geometric realization of the Stasheff polytope after you
compactify, next time I’ll talk about compactification.

4. September 26, 2013

Maybe just for those who are interested in looking at more details of what I’m
talking about, here’s a reference, the original paper of Stasheff. This is very explicit
and does not use any machinery for graphs or moduli space. It’s hard to motivate
where these relations come from. This is the most basic reference: Homotopy
Associativity of H-spaces, I and II, in the transactions of the AMS, 1963, volume
108. My presentation is more modern.

Axiom six is a little more involved, which I will explain using the realization of
the Stasheff polytope. This is very much like the relationship between degeneracy
and face maps for the simplex, so this is an analog for Stasheff polytopes.
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There exist a family of maps called face operators. I already introduced these
with another notation, but I want to make this more formal. This is ∂k(r, s), but
I used ◦k before. I want to make every data clearly now. This is a map from
Kr × Ks → Kn, and r + s = n + 1. So s is the only free parameter. n is given
so r is determined. You should think of Kn as being like a simplex. For this case,
there is a map, the face map, in all dimensions. This is the analog of the inclusion
of low dimensional faces into the n-simplex. Here s runs from 2 to n − 1 and k
ranges from 1 to s. This should properly be Ks ×Kr. Maybe the parentheses way
is better:

a1 · · · ak−1(ak · · · ak+r−1)ak+r · · · an

I insert Kr into the kth spot of Ks. This is the spot where you attach the first tree
to the second tree.

There are also degeneracy maps sj : Kn → Kn−1. These range from j from 1 to
n.

You have standard relations between the face maps and the degeneracies in the
simplex. I’ll write down the relations here but they’re much more complicated.

i sjsk = sksj+1 for k ≤ j (I think this is the same as for the simplex).
iia sj∂k(r, s) = ∂k−1(r − 1, s) ◦ (sj × id) for j < k and r > 2. Similarly:
iia’ sj∂k(r, s) = ∂k(r, s− 1) ◦ (1× sj−k+1 for s > 2 and k ≤ j ≤ k + s.
iib sj∂j(n− 1, 2) = sj+1∂j(n− 1, 2) = πj for 1 < j < n;
iib’ s1∂2(2, n− 1) = π2 = sn∂1(2, n− 1)
iii sj∂k(r, s) = ∂k(r − 1, s)(sj−s+1 × id) for k + s ≤ j

The geometric realization makes this very clear. The ribbon graph model makes
this clear.

v1

vn

v0

The degeneracy map is mapping from Gr(n, 1) to Gr(n−1, 1), just by collapsing
the kth exterior edge followed by stabilization (deleting bivalent edges). The face
map ∂k(r, s) : Gr(r,1) × Gr(s,1) → Gr(n,1), which is nothing but the grafting map,
and the image lies in the boundary. Once you know those topologies, the relations
I wrote down are an immediate consequence of the compactification.

I forgot to mention one remark. By definition, the face operator gives a boundary
map and you can see the boundary is

∂Kn =
n−1⋃

s=2

s⋃

k=1

Kr ⋆k Ks

where Kr ∗k Ks := ∂k(r, s)Kr ×Ks.



SYMPLECTIC ALGEBRAIC TOPOLOGY 11

The number of faces is n
n−12− 1. You can count this. The similar realization of

the face operator, well, that’s even easier, remove the jth marked point. That’s a
little bit, maybe I’ll say more about that model later.

Let’s look at some special case. Well, maybe in a little bit. I’m ready to define an
An-space. We say that (Y,m, e) satisfies the An relations [m is a product Y ×Y → Y
and e a basepoint of Y ] if there is a family of maps Mi : Ki×Y i → Y for 2 ≤ i ≤ n
such that (I’ll interchange Y i and Ki factors when it’s convenient for me)

(1) M2(e, y; ∗) = M2(y, e; ∗) = y for y ∈ Y, ∗ ∈ K2. That is, m = M2 makes
(Y,m, e) an H-space.

(2) For ρ ∈ Kr, σ ∈ Ks, r + s = i+ 1, we have

Mi(y1, . . . , yi; ∂k(r, s)(ρ, σ)) = Mr(y1, . . . , yk−1,Ms(yk, . . . , yk+s−1;σ), yk+s, . . . , yi; ρ)

(3) Mi(y1, . . . , yj−1, e, yj+1, . . . , yi; τ) = Mi−1(y1, . . . , yj−1, yj+1, . . . , yi; sj(τ))

We call this collection (Y, {Mi}) an An-space. For homework (from Stasheff),
check that this definition is consistent with the relations between ∂k(r, s) and sj in
Axiom six.

Let me explain what this relation actually means. The first A2-space is nothing
but an H-space. Why is this so? An H-space has M2 which is a map K2×Y 2 → Y
but K2 is a point, so if we set m = M2(∗; ), this is a map Y × Y → Y , it defines
a multiplication. The relation one basically says that m(e, y) = m(y, e) = y so e
plays the role of the identity for this multiplication map.

For general n, consider i = 3. For this, we know K3 is homotopic to the unit
interval, and M3 is a map K3 × Y 3 → Y . So this is a map [0, 1] × Y 3 → Y .
The relations say that M3(y1, y2, y3; ∂k(2, 2)(ρ, σ)) is just a point, this lies in the
boundary of K3 this is either + or −, and so the second relation says that for k = 1,
this is M2(M2((y1, y2;σ), y3; ρ) and for k = 2 it’s M2(y1,M2(y2, y3, ;σ); ρ). So to
simplify the notation here, we denote, well, we can omit ρ and σ since K2 is a point.
So M2(x, y; ∗) as xy. Then this becomes, the above formula becomes

=

{
(y1y2)y3
y1(y2y3)

This is the boundary so what this formula says is that this M3 which is a map from
[0, 1]×Y 3 → Y , obviously this is a homotopy. It’s a homotopy between M3({0}×•)
and M3({1}× •). These two maps are, respectively, (y1y2)y3 and y1(y2y3). So this
M3 provides a homotopy between these two different products. In other words, M3

provides an associating homotopy between these two different triple multiplications.
Let’s do one more, for i = 4. We know K4 is a pentagon and there are five ways

to put a product in four letters in parentheses. So we could have an edge that is a
homotopy from a(b(cd)) to a((bc)d) and the next goes to (a(bc))d. This is treating
bc as one letter. The following one goes from that to ((ab)c)d), then (ab)(cd), and
then back to a(b(cd)). So there is an explicit map, restricted to the boundary we get
this loop. So we have, concatenating this homotopy, we have a map S1 × Y 4 → Y .
That’s provided by the M3. Then the map M4 extends this map which is already
defined by M3 along the boundaries and M4 provides an explicit contraction of that
map, extending it to K4 × Y 4. Of course, K4 is homeomorphic to D2. This is a
homotopy of a homotopy, and the higher things can be regarded as homotopies of
homotopies of homotopies.

There’s a trivial way of constructing these An spaces. An H-space does not have
to be associative. Any associative H-space admits an a trivial An structure for all
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n by setting Mi(y1, . . . , yi;σ) = y1 · · · yi. You don’t need any parentheses because
the product is associative. The product comes from m = M2. This satisfies, you
can check, the An relations. This map does not depend on the Kn element.

Here is the motivating example, of based loop spaces. Let X be a topological
space with x0 a basepoint. Then Y = ΩX = {γ : [0, 1] → X|γ(0) = γ(1) = x0}.
Then ΩX is a (homotopy) H-space. Set the constant loop e and then consider the
standard concatenation as the product given by

γ1 ∗ γ2)(t) =

{
γ1(2t) 0 ≤ t ≤ 1

2
γ2(2t− 1) 1

2 ≤ t ≤ 1

Consider iL, iR : Y → Y × Y defined by iL(Y ) = (e, γ) and iR(γ) = (γ, e). We
want to check that m ◦ iL ∼ id ∼ m ◦ iR as a map Y → Y . So m ◦ iL(γ)(t) is
m(e, γ) = e ∗ γ which is

{
∗ 0 ≤ t ≤ 1

2
γ(2t− 1) 1

2 ≤ t ≤ 1

You remain constant for time 1
2 and then follow γ twice as fast. Similarly, m ◦

iR(γ)(t) follows γ twice as fast and then remains constant for time from 1
2 to 1:

{
γ(2t) 0 ≤ t ≤ 1

2
∗ 1

2 ≤ t ≤ 1

We have an obvious homotopy that I don’t want to write from m◦iL to the identity
given by changing the 1

2 to an s:

H(s, γ)(t) =

{
∗ 0 ≤ t ≤ 1−s

2
γ( 2

1+s
t− 1−s

1+s
) 1−s

2 ≤ t ≤ 1

For the next couple of lectures I’ll prove that (Y,m, e) is an A∞ space. I’ll relate
this based loop space with another type of path space, Z = Θ(X) which is pairs
(r, α)|r ≥ 0, α : [0, r] → X with α(0) = x0 = α(r). This is an associative H-space.
The multiplication map µ : Z × Z → Z is given by the following. The domain side
adds and then we use concatenation. So

µ((r, α), (s, β)) = (r + s), ??

and I’ll continue next time.

5. October 1

Let me remind you, let (Y,m, e) be an H-space. We say this satisfies the An

relation if there exists a family of maps Mi : Ki × Y i → Y for 2 ≤ i ≤ n satisfying
the axioms (1)–(3) which I do not want to repeat. We looked at some examples.
We considered X a based topological space and denote Y = ΩX and Z = Θ(X).
The lemma was

Lemma 5.1. Z is an associative H-space.

Then we have a natural map. Remember that Z = {(r, α)|r ≥ 0, α : [0, r] →
X with α(0) = x0 = αr}. The product is concatenation without reparameteri-
zation. We have a natural map f : Y → Z which is inclusion. We have a map
g : Z → Y which is rescaling: g(r, α)(t) = α(rt). These maps have the follow-
ing properties. If you compose g ◦ f you get the identity. On the other hand,
f ◦ g(r, α) = f(α(r·)) = (1, α(r·))
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You can easily see that this is homotopic to the identity. What is the homotopy?
Indeed, the homotopy is h : [0, 1] × Z → Z and is given by h(s, (r, α))(t) = ((1 −
s)r + s, α((1− s) + sr)t).

Now h(0, ·) = idZ and h(1, ·) = f ◦ g. Noting this, I’m going to derive the
following theorems in general.

Theorem 5.1. (ΩX,m, e) (e is the constant path and m the concatenation product)
is an A∞ space.

This is an immediate corollary of the following theorem:

Theorem 5.2. Suppose Y is a topological space and let Z be an associative H-space
with multiplication µ : Z × Z → Z. Suppose you are given maps f : Y → Z and
g : Z → Y such that f ◦ g is homotopic to idZ . Define a multiplication m : Y × Y
by m(y1, y2) = g(µ(f(y1), f(y2))). Then (Y,m, e) becomes an A∞-space, where
e = g(eZ) and eZ is the unit in Z.

We are given a multiplication on Z and want to define one on Y , so we do it like
this:

Z × Z
µ // Z

g

��
Y × Y

f×f

OO

m
// Y

.

Proof. Denote by µk the k multiplication map since µ is associative: µk : Z × · · · ×
Z → Z. Furthermore, for simplicity, we denote z1 · · · zk = µ(z1, . . . , zk). This will
make it a little more intuitive. We’ll define using µk, f , g, and the homotopy h, we
define an Mi : Ki × Y i → Y inductively. I’ll describe this precisely up to i = 4.

The M2 case, we know K2 is a point, we define M2 = m = gµ2(f × f). In other
words, M2(y1, y2) = g(f(y1)f(y2)).

Second, let’s see M3. It’s supposed to be K3×Y 3 → Y . We know K3 is the unit
interval [0, 1]. What we’ll do is define M3|∂K3×Y 3 and then extend to the interior.
The inductive process you define first on the boundary and then extend it to the
interior. You’ll recall ∂K3 = K2 ∗1 K2 ∪K2 ∗2 K2 where K2 ∗i K2 is the image of
∂i(2, 2)(K2 ×K2). This lies in the boundary of K3. This is how the face map was
defined.

We already definedM2. There are two boundary points. So we defineM3(x, y, z; 0) =
M2(M2(x, y), z). Similarly M3(x, y, z; 1) = M2(x,M2(y, z)). Now we choose and fix
a homotopy h which I assume to exist from f ◦g to IdZ . This will let us interpolate
these two maps. So h is a map from f ◦ g to idZ , those are h(0) and h(1). So then
we have a map h(t) for time t. So now we interpolate the two maps. Recall how
M2 was defined. The first map is

g( f(g
︸︷︷︸

f◦g

(f(x)f(y)))f(z))

and the second is
g(f(x) f(g

︸︷︷︸

f◦g

(f(y)f(z)))).

Then we replace these with h. So consider first

s 7→ g(hs(f · f) · f).
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At s = 0 this becomes g(f ◦ g(f · f) · f) which is the first boundary map. At s = 1
this becomes g(f · f · f), which you should regard as the central point. Similarly,
the homotopy

g(f · hs(f · f))

connects g(f · f ◦ g(f · f)) to g(f · f · f). So by concatenating these homotopies you
get a homotopy from one to the other.

Finally, well, denote these two homotopies as h1 and h2. So obviously, we define
a concatenation homotopy h from g(f ◦ g(f · f) · f) to g(f · f ◦ g(f · f)) by setting

h(t) =

{
h1(2t) 0 ≤ t ≤ 1

2
h2(2− 2t) 1

2 ≤ t ≤ 1

Pictorially, K3 is Gr3,1 . You should think of this as looking like

where you think of the two endpoints as being K2 ∗1 K2 on the left and K2 ∗2 K2

on the right, with the center point.
We can then look at one more, M4 : K4 × Y 4 → Y . Recall that K4 is the

pentagon

(a(bc))d

((ab)c)d

(ab)(cd)

a(b(cd))a((bc)d))

•v
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Here we first define M4|∂K4×Y 4 using the given homotopy h. We denote by m the
midpoint of an edge and v the barycenter of the K4.

(a(bc))d

((ab)c)d

(ab)(cd)

a(b(cd))a((bc)d))

•

m

v

• •

••

•

We connect m to v and define M4(·, ·, ·, ·,m), which is, say, at the midpoint between
((ab)c)d and (a(bc))d, equal to g(f ◦ g(f · f · f) · f). We have a similar product
explicitly given for each midpoint. We get rid of the f ◦g and put g(f ·f ·f ·f) at the
center point v, which corresponds to the corolla graph. Now using the homotopy
h from f ◦ g to idZ , we define M4 on the segment connecting each midpoint m
to v. So for instance, M4|[m,v]×Y 4 sends s to g(hs(f · f · f) · f). In this way we
have defined M4 restricted to the line segments of this subdivision [ed: the pair
subdivision]. Now for any other λv for λ ∈ ∂K4, we interpolate linearly M4(· · · ;λ)
and M4(· · · , v).

I’m using an axiom of a pentagon. Ki is the cone on its boundary. On each line
segment I use the homotopy h to interpolate the two maps. The explicit formula
is a little bit complicated but that’s the idea. For higher Mi we just repeat this
process inductively.

The way this was constructed, the An relations are automatic. These relations
say what happened to the restriction of Mi to the boundary of Ki. But by construc-
tion thisMi satisfies the relations for any n. The An relation is nothing but the rela-
tion between, well, Mi(y1, . . . , yi; ∂k(r, s)(ρ, σ)) = Mr(y1, . . . , yk−1,Ms(yk, . . . , yk+
s− 1;σ), yk+s, . . . , yi; ρ) for r + s = i+ 1. But r and s are already defined. That’s
how our inductive construction was defined. �

Corollary 5.1. Then applying the theorem to Y = ΩX,Z = ΘX, we have proved
that ΩX is an A∞ space.

Not every space carries an A∞ structure, only those homotopic to a based loop
space do. Now applying the cohomology functor to this space we’ll get an A∞

algebra. Let’s apply the cohomology functor to the An space (Y, {Mi}
n
i=1) So

Mi : K × Y i → Y . Say the coefficients for cohomology is R. Then mi = (Mi)
∗ :

H∗(Y ) → H∗(Ki × Y i). Now Ki is contractible so this is canonically isomorphic
to H∗−(i−2)(Y ) [some discussion, there’s a comment that an explanation will be
forthcoming] by integration over the fiber. This integration over the fiber can be
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defined. If Y is integrated over the fiber, well, we define a shifted complex, the
cohomology ring is a graded Abelian group so denote A∗ = H∗(Y )[1] by defining
Ak = Hk+1(Y ). This is the standard notation. Then define m′

k, well, I have a map
A∗ → H∗+1Y , and well, I want to rewrite mi as m′

i : H
∗(Y )[1] → (H∗(Y )[1])⊗i.

The original mi has degree i − 2 but the degree shifting gives all mi degree 1 for
all i. In this business, the keeping track of signs is a complicated matter, very
confusing, but if you shift the degree in this way, keeping track of the degree will be
much easier because the sign rule will satisfy the Koszul sign. This degree shifting
is very important.


