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1. February 10: Calin Lazariou

You can call this a Chern-like presentation of the deformation theory of pairs
(X,E), where X is a smooth complex manifold of dimension n and E a holomorphic
vector bundle over X. The joint deformation theory was studied in many ways
by many. Here are some references, not the original ones but some intermediate
repackagings:

(1) L. Huang, On joint moduli spaces, Matt. Ann. 302 (1995) 1, 61–79
(2) a derived version, D. Huybrechts and R. P. Thomas, Deformation and ob-

struction theory for complexes via Atiyah and Kodaira-Spencer classes,
Math. Ann. 346 (2010) 3, 545–569

(3) E. Martinegro, higher brackets on moduli spaces of vector bundles, Ph.D.
thesis, Sapienza, Rome.

(4) K. Chan, Y-H. Suen, A Chern-Weil approach to deformations of pairs and
applications, preprint

The aim is to fit deformations of (X,E) into Manetti’s (Deligne-Kontsevich-Manin’s)
dgla approach.

You have a functor (X,E) → DefX,E , you take a flat family over a polydisk
and a parametric E in any polydisk. You can read about the details in Manetti’s
introductory lectures. This is all à la Kodaira-Spencer. A deformation just means
a flat proper morphism, just the algebro-geometric analog of a fiber bundle.

So you want to factor this assignment into ∆X,E , some sort of dgla, and then you
want a natural equivalence to Def∆X,E

. This idea is old because you could do this
forX. There’s some choice because you only want this up to natural transformation,
you want the natural transformation to itself be natural in (X,E). You can read
this in Manetti’s lectures. Because of the freedom of a natural isomorphism, I have
a choice in terms of ∆X,E .

There’s a huge conjecture that you can do this for more or less any geometric
object, you can start with Poisson manifolds, foliations, anything, and do this.
There are a lot of examples.

Some motivation comes from Kodaira-Spencer theory. For X itself, you have
Ω0,∗(TX), ∂̄TX , [ , ] where the bracket is induced by the bracket of sections of TX
and the product in Ω0,∗(X). So α ⊗ t, α′ ⊗ t′] = (α ∧ α′) ⊗ (t ⊗ t′). Then the
deformation functor is Maurer Cartan elements.

You have a similar story for deformations of E itself, keeping X fixed, and the
dgla is Ω0,∗(End(E)), ∂̄E , [, ], where End(E) is a bundle of Lie algebras. Here again
[α ⊗ t, α′ ⊗ t′] = (α ∧ α′)⊗ [t, t′]. This is sometimes called the linearized Kodaira-
Spencer dgla
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So in both cases you can find these factorizations, you can realize this. Now how
do you realize this for (X,E)?

To quote a famous physicist, this is well-known to those who know it. The
literature isn’t so clear, so that’s why I gave you the references.

There is a realization that is relatively well-known (to Huybrechts and Thomas
and maybe a few others). This is the Atiyah dgla. Let me describe how this works.

First of all, let’s describe the Atiyah extension of TX by End(E). There’s a
short exact sequence

0 → End(E) → D(E)
σ−→ TX → 0

where D(E) is a particularly nice holomorphic vector bundle that has nice proper-
ties.

Definition 1.1. The extension D(E) is the sheaf of locally defined holomorphic
linear differential operators on E having scalar symbol and order at most one.

Having an element of D(E) means that for U ⊂ X, I have an operator DU ,
which should be gU + dU , split into the order zero and order one parts. Then gU is
a local holomorphic section over U of End(E), so a map O(U,E) → O(U,E). The
dU part has an expansion dkU

∂
∂xk where dkU is a holomorphic section of End(E).

If you give me such an operator, it has a symbol σ(DU ) = dkU∂k. In principle,
this is valued in TX ⊗ End(E). We say that DU has scalar principal symbol if

dkU = d̂kU ⊗ idE|U for a holomorphic function d̂kU . So then σ(DU ) ∈ O(U, TX).

Lemma 1.1. (1) Everything is well-defined. D(E) is a well-defined coherent,
locally free sheaf so it is the sheaf of local holomorphic sections of a holo-
morphic vector bundle again D(E). This is trivial to prove, you have to
prove the gluing condition. Coherence is quite trivial.

(2) The map σ is an epimorphism of sheaves whose kernel is End(E). The
kernel means you kill the degree one part dU . To be a sheaf these should
be compatible when you patch and so you get a global section of End(E).
Locally it’s the sheaf of sections.

So what’s the dgla? There’s a bracket on this.

Definition 1.2. The Atiyah dgla is Ω0,∗(D(E)) which is Ω0,∗(X) ⊗ D(E) (here
identifying D(E) with its sections). There’s a natural ∂̄E acting here. The bracket
is given by, it’s enough to define it, for [ω⊗D,ω′⊗D′] where D and D′ are locally
defined scalar symbol differential operators of order at most once, and ω, ω′ are local
sections, the bracket is

ω ∧ ω′ ⊗ [D,D′] + ω ∧ Lσ(D)ω
′ ⊗D − (−1)|ω||ω′|(ω′ ∧ Lσ(D′)ω ⊗D′

Martinegro’s thesis says that

Theorem 1.1. Atiyah’s dgla models the joint deformation theory of (X,E) in the
sense of Manetti.

This is completely categorical. You never see smooth forms, you only see holo-
morphic or antiholomorphic forms. It’s what an algebraic geometer wants to have.
But it’s not what a differential geometer wants, they want a Dolbeault realization
to go back to smooth forms.
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Let me make an observation, the Atiyah class of E is the extension class of the
Atiyah extension in Ext1(TX,End(E)). If you take a Dolbeault resolution, that’s
naturally isomorphic to H1,1(End(E).

Let’s take an auxilliary metric, take the Chern connection, and its curvature.
All of the construction will depend on this metric choice, but a change of metric
induces an isomorphism. So this is defined up to canonical isomorphism. So let h
be an arbitrary Hermitian metric on E and ∇ the Chern connection, the unique
connection compatible with h so that ∇0,1 = ∂̄E . We have ∇F∇ = 0 for F∇ the
curvature of ∇. We have F∇ ∈ H1,1.

It’s simple to prove that this class coincides with the Atiyah class.

Lemma 1.2. The class [F∇] coincides with the image of the Atiyah class in Dol-
beaut cohomology.

You now have this way to represent this sheafy thing in terms of a closed differ-
ential form. It mixes 0, 1 and 1, 0.

So now let’s see what’s the result.

Proposition 1.1. There exists a well-defined isomorphism of smooth vector bun-
dles phih depending on h from D(E) to Endsmooth(E)⊕TX, which I’ll call E. This
is given by:

DU = gU + dkU ⊗ idE|U 7→ gU − dkU ⊗ ∂k⌞h̄−1
U ∂h̄U

where hU is the matrix of h isn a local holomorphic frame of E above U .

[missed a bunch of discussion]
I end up with only some special sections that come from holomorphic sections,

but if I replace D(E) with a smooth version I get everything.

Remark 1.1. We can use ϕh to transport the holomorphic structure of E to a

holomorphic structure ∂̄
(h)
E on E. Then ϕh becomes an isomorphism of holomorphic

vector bundles.

So also, you can use ϕh to transport the bracket, the Atiyah dgla to the bracket
on Ω0,∗(E). Hence the image through ϕh of the Atiyah dgla is an h-dependent dgla

of the form Ω0,∗(E), ∂̄(h)
E , [ , ]h.

Then the main result is

Theorem 1.2. Chan-Suen,
∂̄E has this form on End(E)⊕ TX, restricted to E it’s E → Ω0,1(E), where it’s(

∂̄End(E) β
0 ∂̄TX

)
[had to leave because of time]

2. February 24

I want to sketch the homotopy-theoretic interpretation of (tree-level) Chern-
Simons perturbation theory. That’s already a much larger subject, so I want to
focus on pieces. There are two versions of Chern Simons, two topological versions,
introduced and studied in great detail by Witten, and there is a connection to
open strings. I want in a particular case to focus on this. In general you end
up looking at graphs with trivalent vertices, and you build out of them various
diagrams. There are certain rules, called “Feynman rules” that associate to Γ some
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objects called “amplitudes.” What are these amplitudes mathematically? They
are multilinear functionals on some space of fields which is an infinite dimensional
space. Of course you run into functional-analytic difficulties. You need a nice
completion of this space, you want these to be continuous. I want to suppress all
this, kind of standard in physics.

If you look at these graphs they are one-dimensional CW-complexes, so they
have a genus, which is called the loop order of the perturbation expansion.

If you look at g = 0 then you look at tree-level perturbation theory. In that
case you end up with trivalent trees. You know from general results that this is
related to A∞ algebras. So tree level topological Chern-Simons has to do with A∞
algebras. So make this precise.

There’s also a non-perturbative side of things which doesn’t go through trees like
this. Physicists don’t have a complete theory or definition in the non-perturbative
case.

For me the version I’m interested in is either deformations of holomorphic vector
bundles (B-model) or deformations of flat vector bundles on special Lagrangians of
some Calabi-Yau (A-model).

We’re really interested in pairs (X,E) where X is a Calabi-Yau and E is in some
derived category.

You won’t just get an A∞ algebra, you’ll get a strictly cyclic minimal A∞ al-
gebra (up to functional-analytic subtleties) describing the tree-level Chern-Simons
perturbation theory (tree-level effective potential), the D-brane superpotential. As
you will see, ensuring strict cyclicity is subtle.

In the simplest case, we’ll need a Calabi-Yau manifold and we’ll need the Calabi-
Yau metric which in a certain sense breaks topological invariance.

Let me explain mathematically the framework. It’s a very simple algebraic frame-
work. You can take this as a definition up to functional analytic subtleties of “cubic
string field theory.” This is a certain formulation of the string field theory of open
strings.

Take a strictly unital differential graded algebra (H, Q) where |Q| = +1, so Z-
graded. Also, this is strictly cyclic with respect to a non-degenerate chain-map
pairing ⟨ , ⟩ : H × H → C. This comes from a trace ⟨u, v⟩ = tr(uv) for some
nondegenerate tr : H → C. You can give this a degree, I’ll do the simplest case
where the degree is −3, which corresponds to a Calabi-Yau 3-fold.

Take this as a definition, an abstract definition of string field theory á la Witten,
in the case |tr| = −3. This means tr(uv) = 0 unless |u|+ |v| = 3.

So how to do perturbation theory? What’s the definition? I’ll behave as if H is
finite dimensional for simplicity. It goes like this.

So what is gauge fixing? I’ll choose auxilliary data. I’ll take a Hermitian scalar
product H×H → C, antilinear in the first variable. Then let Q† be the Hermitian
conjugate of Q.

Define an operator c : H → H by h(u, v) = ⟨cu, v⟩. Then the degree of |cu| =
3− |u| and you find ⟨c2u, v⟩ = ⟨u, c2v⟩.

All is fine when c2 = id. This cancels certain anomaly. You have to prove in
your precise model that c2 = id. This can be proved in the cases that I’ll consider
by using a Calabi-Yau metric. If you don’t have this condition some things will
break.
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How do we do perturbation theory under these assumptions, when c2 = id? You
can define a propagator H = [Q,Q†] = QQ†+Q†Q, where [, , ] denotes the graded
commutator. You can consider the kernel of Q, the kernel of Q† ∼= (imQ)⊥. Define
K = kerQ ∩ kerQ† = kerH. You have kerQ = K ⊕ imQ, KerQ† = K ⊕ ImQ†,
and H = K ⊕ imQ ⊕ imQ†. This provides a homological splitting of H, Q. So
define πQ = Q 1

HQ† and πQ† = Q† 1
HQ where 1

H is the inverse of H on K⊥. Then

if you define G as 1
H (πQ + πQ†) is a Green operator, it gives HG = 1 − P , where

P = 1− πQ − πQ† is the orthoprojector on K. Then you define the propagator as

Q†G = 1
HQ† = 1

QπQ.

Now I’ll associate a minimal model of my differential graded algebra using these
things.

There’s a recursive definition of the A∞ products that you can write down, but
applying the Kontsevich-Soibleman construction to (H, Q, ·) with trivalent trees
gives a minimal A∞ algebra which is homotopy equivalent to (H, Q). This is not
surprising, but the proposition is that c2 = id implies that the A∞ algebra is strictly
cyclic with respect to ⟨, ⟩.

What do I mean by strictly cyclic? I mean that ⟨u1, rn(u2, . . . , un+1)⟩ = (−1)n(|u2|+1⟨u2, rn(u3, . . . un+1, u1)⟩.
Now we can define the effective potential.

W =
∑
n≥2

1

n+ 1
(−1)

n(n+1)
2 ⟨ϕ, rn(ϕ⊗n)⟩

where ϕ ∈ H1. The equation ∂ϕW is equivalent to the Maurer-Cartan equation∑
n≥2

(−1)
n(n+1)

2 rn(ϕ
⊗n) = 0

This is very abstract, let me give some applications.
Let X be a smooth compact Calabi-Yau 3-fold. Let E be a holomorphic vec-

tor bundle over X. Take H as Ω0,∗(End(E)), of course we should take an (L2)
completion.

The differential Q is ∂̄E . I pick a Hermitian metric. Let h be induced by any
Hermitian metric on E. If I pick one, then h(u, v) =

∫
X
volg(u, v)E .

We can define c by ∗̄EU = Ω ∧ cu. I don’t choose just any Kähler metric, I
choose the Calabi-Yau metric. Then c2 = 1 if g is the Calabi-Yau metric.

The trace of u is
∫
X
Ω ∧ trEu.

3. March 10

4. Examples of higher order contributions in Chern Simons theory

This has been done in two ways, the B model and the A model. In my approach
I’ll work with a Calabi-Yau three-fold X with a graded (in the sense of Seidel)
special Lagrangian L and E a graded flat vector bundle over L.

I want to wrap some A-type branes of different degree, lift the Maslow degree
from Z/2 to Z. I put all these branes on top of each other. You want to do some
Lagrangian intersection theory in the ordinary Fukaya category. I can do a little
displacement and then I don’t have to worry about multiple Lagrangian cycles. I
can put a higher rank vector bundle over L. What I’m going to do is to put an
arbitrary rank flat graded vector bundle, where flat means in the sense of a flat
superconnection. As far as I know this hasn’t been much studied. It’s not obvious
that you can do the displacement.
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If L is a line bundle then H1(End(L) is in correspondence with infinitesimal
deformations of L. So I can deform my line bundle and do ordinary intersection.

So I think that working in higher rank bundles is a richer theory. Because it is
Z-graded and not just Z/2-graded it has coherent higher order corrections.

How do I construct such a theory? I take E a Z-graded vector bundle, write it
as E =

⊕
En, and I consider a flat graded superconnection of total degree one ∇.

Because of the off-diagonal conditions I’ll have twisting where En maps to En+1

and so on. This is a way to package the enhanced triangulated category of flat
vector bundles over L.

You can think of such (E,∇) pairs as providing a model for the ∞-Calabi-Yau
3-category of flat vector bundles over L.

So I’m going to let d be the differential twisted by ∇.
The objects are classical topological A-branes. This leads to a graded string field

theory, a graded Chern-Simons theory on L. Three are two directions to go, the
categorical and the one-object version (where you pick an object and look at its
endomorphisms).

We only look at deformations of E with L fixed. That’s similar to open string
field theory. You can also do open-closed string field theory and consider defor-
mations of the pair (L,E) inside X. If you do this, already you have a number
of mathematical questions. What is the analogue of the Atiyah complex governing
deformations of (L,E)? In the B-model I have joint deformations, this should be
describable, what is the analog of the Atiyah differential graded Lie algebra?

What am I going to do? I take this bundle, I take V =
∧∗

(T ∗L)⊗End(E) where
End(E) has Hom(Em, En) in degree n − m. Then V has a grading combinining
the degree in End(E) and the rank in

∧
T ∗L.

Then there’s a product on sections of V and then V is Z-graded. Then H :=
C∞(L,V), well (H, •, 1, d = d∇) is a unital differential graded algebra.

In particular the associated differential graded Lie algebra governs deformations
of E where L is fixed. That’s why this is open string field theory. You’ll get
obstructions if you want to simultaneously deform L.

All of the framework I gave before is satisfied. We have a trace
∫
L
str(), where

this really only acts on the End(E) part. The super trace lands in
∧
T ∗L.

Only with this I can define the toplogical Chern-Simons theory. You have an
action functional S : H1 → C, so ϕ ∈ H1 is called the string field and the functional
is

S(ϕ) =

∫
L

str[
1

2
ϕdϕ+

1

3
ϕ3].

This is graded and has a superconnection, so two twists. Note that this is Z-graded.

Claim 4.1. This is the correct theory in this case.

I’m really interested in when X is compact. As far as I know, Z/2-graded Chern-
Simons theory is not useful.

[some discussion of the super-trace]
Okay, so it’s a gauge theory, but the gauge transformations are of Kontsevich

type, the gauge group is the group of units of H (of degree 0.) Then ϕ 7→ ϕg =
gϕg−1 + gdg−1. But the gauge group is very complicated. But S(ϕ) is invariant
only if g belongs to the connected componentn of the identity.

Consider the 1-loop determinant, correcting the vacuum expectation. This is
always ill-defined but it’s well understood how to define it, so in zeta function
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regularization, where the volume of the kernel of the kinetic operator (the kernel
of the Laplacian) is regularized by the resolvent method (this is always an eta
function).

To compute this, you choose gauge fixing data, any metric on L and any Her-
mitian metric on E (because L is special Lagrangian).

The result is the following:

Theorem 4.1.

Z̃scl =
|| ||HL
|| ||RS

Where || ||RS is the graded [unintelligible] norm, defined by E,∇. The theorem is
that this is independent of the metrics and depends only on the topological class of
E,∇, only on the element in the triangualated category.

That’s a generalization to the graded case. What does this give you for a Lens
space? It’s a new invariant. What is it?

5. March 17

I’ll give more detail at Gabriel’s request.
Let me give an example first, I was told that this gauge group is simple.
Already the group of automorphisms of a complex vector bundle of rank r over

L a three-manifold, that is, sections from L to the automorphisms of E, this is a
complicated group. It’s infinite dimensional and depends on the topology of L. I
was talking about gauge groups, which are generally considered complicated. This
plays a crucial role in ordinary Chern-Simons theory.

You find some compact form of this infinite dimensional Lie group. It’s hard to
study stabilizers for flat conections on E.

A stabilizer of a flat connection depends in subtle ways on the choice of A. The
problem of classifying these stabilizers is not solved. For rank one it’s trivial. It
will obviously depend on π1 and you get pretty complicated things, because it’s a
global thing.

I have similar problems in graded Chern-Simons, if you think for a moment, there
is a derived category of flat connections, Db(L), think of them as pairs (E,A), where
E is a graded vector bundle and A is a flat superconnection of total degree 1. You
can take this not just for dimension three.

This can be constructed directly as an enhanced triangulated category, analogous
toDbCoh(X), the derived category of coherent sheaves. You start getting an insight
from here that this will not be a trivial extension.

There’s Grothiendieck–Riemann–Roch. You write it for morphisms of algebraic

varieties X
π−→ Y . There are pushforward, pullback, upper and lower shriek things

associated to this.
Now the question is, what is the analogue of this in the flat world? There should

be relations between Rπ∗, Lπ
∗, Rπ!, and Lπ!. You get ordinary Riemann Roch for

a point or something. The analogue is what Bismutt and Lott wanted to do. They
have a fibration in the smooth category, where π is a fibration, locally a submersion
with isolated points where it is not. You want this to be almost locally trivial.
Then you can associate to this these derived categories Db

flat(X) and Db
flat(Y ) and

you have these π-associated functors. My claim, never proven, is that there should
exist a version of relative Riemann–Roch in this setting.
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My claim is that the work of Bismutt–Lott does a small part of this. This is a
suggestion for why this might be interesting.

I want to talk again about graded Ray–Singer torsion. So what’s ordinary Ray–
Singer torsion? So L is an n-manifold, take it closed for simplicity. E is an ordinary
vector bundle, flat, with a flat connection A. By using the spectral theory of the

Laplacian ∆ = d†AdA+dAd
†
A deppending on a choice of Hermitian metric on L. This

operator can be completed to ∆̄A L2 sections from L to End(E). This has a nice
spectrum. If you have a trivial bundle, then there’s a beautiful relation between
the geometry of the underlying manifold and the spectrum. Clearly somehow this
spectrum reflects the topology of (L,E,A). So you can construct things that should
be invariant under the choice of metric.

I chose a metric on E and a metric on L. So one such construction is T (L,A),
the Ray–Singer torsion, which they proved to be independent of the two metrics.
More precisely the norm is independent.

In the case (this is general background) when you take E trivial and A trivial,
this reduces to the ordinary Reidemeister torsion of L.

This can be formulated using the singular chain complex twisted by a non-
Abelian local system of A.

Let me just give you an expression. What do I have in this paper?

(1) You can generalize the definition of T (L,A) to the case when A is a graded
superconnection of total degree 1 on E a graded vector bundle on L.

Observation 5.1. To define a Reidemeister versino of what I will do, you
need to have a notion of holonomy of a graded superconnection. In 2007,
Igusa explained how to do this using Chen’s iterated integrals. Then there’s
a paper of Abbas that showed an interpretation in ∞-categories. Combining
them you can get an interpretation in Db

flat of what Igusa did.

My definition of T (L,A) is

N+2∏
q=1−N

[det′reg∆(q)]
(−1)qq

2 = e−
1
2

∑N+2
q=1−N (−1)qqζ′

∆(q)(0)

where N is the bound on the grading in my bundle.
Pick a metric g on L and a Hermitian metric gE on E.

Then the degree of the Laplacian d†AdA + dAd
†
A is zero, and thus it preserves

Ωq(L,End(E)). So ∆(q) is the restriction of the Laplacian to Ωq.
In general, let A be any strictly positive (the spectrum is positive) self-adjoint

operator on a seperable Hilbert space, densely defined, not bounded. Assume for
simplicity that the spectrum of A is discrete.

Then ζA(z) is defined to be, for Re z ≫ 1,

ζA(z) =
∑

λ∈σ(A)

nλ

λz

where nλ is the multiplicity of λ. It’s easy to prove that ζA has an analytic con-
tinuation to a meromorphic function defined on C with poles on the negative real
axis. So ζ ′(0) makes sense.

Perturbation theory asks to find the spectrum σ(A = A0 +K) in terms of the
spectrum of A0. So K is a differential operator of order 1. When K is compact,
this is easy.
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The regularized determinant is

detregA = e−ζ′
A(0).

If A is semipositive, then we define det′regA to be detreg restricted to the comple-
ment of (kerA). We have good closedness properties.

So then the result which is just based on Ray–Singer

Proposition 5.1. There is a Ray–Singer norm || ||L,A, which is essentially T (L,A)

improved by a factor which depends on the choice of an auxilliary metric on H
(q)
dA

(L,End(E))
is independent of g and gE.

So for example,

Zscl = c
|| ||HS

|| ||L,A

where the left hand side is the semiclassical partition function for graded Chern–
Simons theory. The full partition function is Zscl(1 + o(λ)). Witten did this in the
ungraded case and asked what these new, higher Chern–Simons invariants are, they
have some relationship to intersection theory in the flat local system determined
by A.

You can play the same game here, and even these things, not so much is known
about them.

All this generalizes to the graded case.
All of this was proved for arbitrary finite rank vector bundles. So the decompo-

sition of E is finite and each constituent bundle is finite.
If you think of this sequence from Z → N we have finite support. You can

certainly generalize this by improving the space of functions. Compactness will fail
and you will have to be careful, the spectrum may not be countable, you need to
define a zeta function as an integral with respect to the spectral measure. In general
it’s not a sum of point measures. In general you have for a positive operator that
the measure has support in the positive reals.

ζA(z) =

∫
dµA

1

λz
.

You can still prove that this converges for Re z ≫ 1 and this has an analytic
continuation as before.

This takes care of everything. In general you have operator theory telling you
that this is a continuous piece, an essential piece, plus a discrete piece.

6. March 24

Let’s look at a simple example. Let L be a 3-manifold, compact, connected,
smooth, everything smooth. Take E to be the sum of two guys E0 ⊕ E1 and I’ll
build a superconnection from these. E0 is a flat vector bundle of rank r0 over L
with specified flat connection d0. And E1 is the same, rank r1 and flat connection
d1.

Let’s choose a morphism φ0 : E0 → E1, a smooth section of the bundle of
morphisms. I want to view these as concentrated in grading 0 and 1 respectively.
The degree of φ0 is then 1. I want to construct a superconnection using these
two connections and φ. Let d = dφ = d0 + d1 + [φ, ], where this is the graded
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commutator. So this is

(
d0 0
φ0 d1

)
, well, let me call this d and it’s a connection

on E. It’s a derivation of total degree 1.
It’s easy to see that d2 = 0 is equivalent to d(0)φ0 + φ0φ0 = 0 where d(0) is the

diagonal action of d0 and d1. I guess I really mean d1 ◦ φ0 −φ ◦ d0, the differential
induced by the flat connections—

[some discussion; I stopped taking notes at this time.]


