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1. Youngjin Bae: grid diagrams and knot Floer homology, October
15

Let me recall from last week, from a knot K in S3 we can construct a grid
diagram with grid index k. We associate a Heegard system associated to this grid

diagram. This is HΓ which is (T2, α⃗, β⃗, w⃗, z⃗). We can associate to this (ĈF (HΓ), ∂)
where the generators are Tα ∩ Tβ in SymkT2. If I take some points of my grid,
those are the generators. There are k! generators,

∂x⃗ =
∑
y⃗

∑
ϕ∈π2(x⃗,y⃗),µ(ϕ)=1,nw⃗(ϕ)=0=nz⃗(ϕ)=0

#(µ(ϕ)/R)y⃗

Recall that I defined some gradings on X.

(1) the relative M -grading, rM : X ×X → Z. This has rM(x⃗, y⃗) = nx⃗(D) +
ny⃗(D) − 2nw⃗(D). I should let γx⃗,y⃗ be an oriented nullhomologous curve
in T2. Recall that my horizontal lines went from a point in x⃗ to a point
in y⃗ and my vertical lines are the reverse. Then D is a two-chain whose
boundary was γx⃗,y⃗. Then nx⃗(D) =

∑
x∈x⃗ nx(D) where nx(D) = 1

4 if x is on

the corner of D, 1
2 if it’s on the edge, 3

4 if it is on an internal corner, and 1 if
x is in the interior. Claim: rM is independent of the choice of γx⃗,y⃗ and D.
This is because a different D corresponds to adding and subtracting annuli
which have nx⃗(A) = ny⃗(A) = nw⃗(A) = 1. This all should be oriented and
have signs.

Here π2(x⃗, y⃗) is homotopy classes of maps D2 → SymkT2 which take a
specified point to x⃗, another to y⃗, and the rest of the boundary into Tα and
Tβ .

[pictures]
I want to relate this grading to the symplectic grading. For x⃗, y⃗ ∈ X

and ϕ ∈ π2(x⃗, y⃗), then µ(ϕ) = µ′(ϕ) = nx⃗(D(ϕ)) + ny⃗(D(ϕ)). This is the
formal dimension of the moduli space of pseudo-holomorphic maps which
represent ϕ. Then ϕ : D2 → SymkT2 are in one to one correspondence with
k-fold branched covers of D2 mapping to T2.

To prove the lemma, the first step is that when D(ϕ) looks like just a
rectangle with corners x and y, then µ′(ϕ) = 1

2 +
1
2 = 1. Then the complex

to measure µϕ, the moduli space of complex structures with four points on
the boundary.

[Much discussion]
Step two, we already know that µ(ϕ1 ∗ ϕ2) = µ(ϕ1) + µ(ϕ2) where ∗ :

π2(x⃗, y⃗)× π2(y⃗z⃗) → π2(y⃗, z⃗) is concatenation. Then µ
′(ϕ1 ∗ϕ2) can also be

checked to satisfy the same equation, I’ll leave it as an exercise.
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Step three is that if I start with some x⃗ and y⃗ I can make a sequence of
x⃗0, . . . , x⃗n, so that the difference between x⃗i and x⃗i+1 is one of these squares
from step one and at the end x⃗n = y⃗. We have ψ := ϕ0 ∗ · · · ∗ ϕm−1 ∈
π2(x⃗, y⃗) We have D(ϕ) and D(ψ) only differ by adding and subtracting
these same annuli. We have µ′(A) = 2 by inspection and µ(A), well, A can
be decomposed into two rectangles, and so that’s 2 as well. This concludes
the proof.

Up to now we have rM(x⃗, y⃗) = nx⃗(Dϕ) + ny⃗(Dϕ)− 2nw⃗(Dϕ) which we
can interpret as µ(ϕ)− 2nw⃗ϕ.

Proposition 1.1.

⟨∂x⃗, y⃗⟩ = 1

if and only if we have a rectangle in the grid diagram in T2 with no w or z
connecting our x and y, y in the upper left.

Proof. We have the left side if and only if we have a 2-chain connecting
these in T2 containing no w or z with µ(ϕ) = 1. We should have D(ϕ)
positively oriented. Then nx⃗(D(ϕ)) ≥ 1

2 and likewise for y, so they are

both 1
2 . Then we have two choices, only one positively oriented.

The other direction is easy. □

Today let me stop here.

2. October 22

To explain Heegaard-Floer efficiently, I need many colors of chalk.
Let me recall, when I consider a knot diagram, we can turn it into a grid diagram

and then associate some data (T2, α⃗, β⃗, w⃗, z⃗), this is the grid diagram ΓK and

then this gives us ĈF (ΛK), ∂). The boundary is something like counting empty
rectangles. The generators of this chain complex are X = Tα ∩ Tβ ⊂ Symg(T)
where g is the grid index of K. I started some gradings.

Definition 2.1. The (relative) Alexander grading is a map rA : X×X → Z where
(x⃗, y⃗) 7→ nz⃗(Dϕ)− nw⃗(Dϕ) where, let me recall the definition of Dϕ.

First, ϕ ∈ π2(x⃗, y⃗). This gives us a map D2 → SymgT2, which is in correspon-

dence with a branched covering D̂2 with a map ϕ̂ to T2. Then Dϕ is the image of

ϕ̂, which is a 2-chain in T2, and there is a well-defined intersection number with
the z⃗ and w⃗. Changing ϕ corresponds to adding or subtracting annuli so since each
annulus has one z and one w, this total index is well-defined.
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Example 2.1. Here is a pair where if the red is x⃗ and the blue is y⃗ then rA(x⃗, y⃗) =
1:

W Z

••

•

��
Z

•ks

W

• +3

Z

•

KS

W

Z

••

W

W

••
Z

Remark 2.1. There is an absolute Maslov grading such that M(x⃗0) = 1− k for k
the grid number and x⃗0 the lower left corner of w⃗. Recall that the relative Maslov
grading rM(x⃗, y⃗) = nx⃗(Dϕ) + ny⃗(Dϕ)− nw⃗(Dϕ).

The boundary preserves the Alexander grading and decreases the Maslov grading
by one. If we count differentials which are empty regions with no w or z then the
difference in relative Alexander grading is zero.

Remark 2.2. There is an absolute grading satisfying ∆K(T ) =
∑

a,m(−1)mrk ĤFKm(K, a)T a

where on the left you have the Alexander polynomial. The m is the Maslov grading.

Theorem 2.1. Let ΓK = (T, α⃗, β⃗, w⃗, z⃗). Then H∗(ĈF (ΓK), ∂) ∼= ĤFK(K)⊗V g−1

where V is a vector space with two generators over Z2, with one generator in (0, 0)
grading and the other in (−1,−1).

Let me give a sketch of the proof. In step one, change our grid diagram into Γ′
K

so that (T2, α′
1 ∪ α⃗′, β′

1 ∪ β⃗′, w⃗, z⃗) so that α′
1 and β′

1 satisfy a condition

α′
1 β′

1

•w1•z1 •z2

and these do not meet any other α or β curves.
[discussion of an example, a heuristic of why this is possible.]
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Claim 2.1. We have

ĤF (Γ′
K) ∼= ĤF (Γ′′

K)⊗ V

where Γ′′
K = (T2, α⃗′, β⃗′, w⃗′, z⃗′); here w⃗′ and z⃗′ start from index 2.

[some argument about whether this is possible without increasing genus]
Let me restrict this to the case where I don’t need to stabilize with genus.

I want to decompose ĈF (Γ′
K), look at the generators. These consist of two parts.

I want X ′ = Tα′ ∩Tβ′ . Then X ′ ×{x} and X ′ ×{y}, where x and y are the points
at the intersection of the Venn diagram above.

Then ĈF x is the sub chain complex generated by X ′×{x} and ĈF y is the same
thing with respect to X ′ × {y}. To justify this notation we need to have that the
boundary operator respects x and y, preserves which piece we are in. Every chain
from x to y contains a marked point.

The boundary operator on ĈF x is ∂′|X′×{x} and likewise for y. This only cares
about the region outside the Venn diagram. Then we have ∂′|X′×{x} = ∂′′ ⊗ id{x}
and likewise for y. Then we have the tensor. That’s everything except the grading
and I do not want to do the grading. By induction, there, well, we may need to put
additional curves and destabilization. So by induction we conclude our theorem. If

we drop to one z and one w then we get ĤFK(K). So that’s the theorem.
Let’s take a break.
Let me talk about a variation in the link case. For the (relative) Alexander

grading for ℓ-component oriented links, here the relative Alexander grading rA :

X ×X → Zℓ, and rA(x⃗, y⃗) =
∑k1

j=1 nzi,j (Dphi)− nwi,j (Dϕ) for i = {1, . . . , ℓ}.
If I go vertically from w to z and horizontally from z to w like usual, with an

oriented link, ki is the number of z in the ith component.

Proposition 2.1. We have the same, well, if ΓL⃗(Σ, α⃗, β⃗, w⃗, z⃗) is a (2k)-poitned

Heegaard diagram for L⃗ then

ĤF (ΓL⃗)
∼= ĤFK(L⃗)⊗ (

ℓ⊗
V

⊗(ki−1)
i ).

I want to end this talk by mentioning the Maslov index and branched covering
issue. Last week, we talked about, if we consider ϕ : D2 → SymkT2, then this

corresponds to the following data, D̂2 ϕ̂−→ T2. If we consider just a two-fold branched
cover of D2, it has many choices, many configurations. The one branched point, it
looks like a disk, with three it has one genus, and with five branching points two
genus, and so on.

There was some comment, maybe given by Calin, we need to care about the
equivalence relation between these coverings. So when I choose ϕ ∈ π2(x⃗, y⃗), it’s a
homotopy class of this map, we need to care about the equivalence class, we can
say something about the relation between these things. Actually it was given by
Byung Hee’s comment. If I consider the chain given by the genus one surface with
three special points, if I consider the involution given by rotating with respect to
the plane. In this homotopy situation, we can homotope two of the points close,
and the corresponding branched cover becomes a pinched torus. Then also by a
homotopy, we can pull it apart, so this is the same as the branched cover with only
one point. We cannot distinguish the higher genus branched cover from the cover
with just one point. That is the argument.
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So by this argument, if there is higher genus we can pinch them and all the
higher genus branched cover can be reduced into the disk case. That’s all. Then
I’m done.

3. November 19: Seonhwa Kim, knot Floer homology and knot genus

Why do I want to study knot homology (Khovanov homology, knot Floer ho-
mology)?

• Knot homology is obtained by categorification of quantum invariants such
as the Jones polynomial and Alexander polynomial. These polynomial
type invariants, my main playground is the Volume conjecture and this is
a relation between quantum invariants and hyperbolic geometry.

My question in some sense is whether the relation between knot, well, the volume
conjecture says that asymptotics of quantum invariants give classical geometric
invariants. My question is what about the asymptotics of link homology. Until
now, there is no conjecture between knot homology and certain asymptotics.

lim
N→∞

1

N
log |JN (k, q = e

2πi
n )| = vol(S3\K).

Here we can think that N is the dimension of a representation. In Khovanov
homology, there is one for each N . Anyway, this is just a dream but this is the
motivation. The first target is knot Floer homology. I’m not familiar with knot
Floer homology, so I want to know about the practical properties of this thing. So
for instance knot Floer homology detects knot genus, so detects fiberedness. My
curiosity is about how we can detect knot genus by knot Floer homology. The
background of my curiosity is:

Remark. The knot genus problem in a general 3-manifold is NP -hard.

If some guy says some problem, given a three manifold and a knot, what is the
genus of the knot, that problem is algorithmically hard. That is the reason I wonder
how knot Floer homology detects knot genus.

A conjecture is that an unknot recognition algorithm is P , but we don’t know.
We have the conjecture that the Jones polynomial detects the unknot, but this is
just a conjecture.

Theorem 3.1. Computing the Jones polynomial is #P .

I want to study how to detect genus using knot Floer homology.
Knot Floer homology is a categorification of the Alexander polynomial and the

Alexander polynomial gives a lower bound on knot genus.
Today’s goal is to explain this last statement. First I should understand why

the Alexander polynomial gives a lower bound.

Theorem 3.2. (Seifert) Every knot in S3 is a boundary of an orientable surface
in S3. We call such a surface a Seifert surface.

Definition 3.1. The knot genus g(K) is the minimal genus of all Seifert surfaces.

There are various names of this knot genus. It’s also called the orientable genus.
Another notion of genus is the “canonical” or “projection” or “Seifert” genus, which
is related to the proof of the theorem. Seifert provided an algorithm to get a Seifert
surface from a diagram. This other genus is the minimal genus provided by the
algorithm over all diagrams.
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for all n, we have a genus 1 knot with gS(K) = m.
If you consider a diagram, fix an orientation. Take a smoothing for each crossing

using the orientation. Then we can get a diagram consisting of simple closed curves.
Attach a twist at each crossing.

This always gives an orientable surface. Oszvath-Szabo use Seifert genus to mean
knot genus but that is not standard terminology. When I first read the paper, this
was confusing.

Remark. For alternating links, gS(K) = g(K).

We want to know about Seifert surfaces. So let’s talk about the universal Abelian
covering of the knot complement. If you want to define the Alexander polynomial,
the most classical way is by using such a covering. You take X̃, this cover, which
is Abelianization of π1, which is Z in the case of a knot. The π1 comes from the
Wirtinger presentation of the knot diagram. The generators come from the arcs and
the relations from the crossings. In the case of the trefoil, we get three generators
and then conjugation relations. [pictures for Wirtinger presentation]

So let’s make this Abelian cover for the trefoil. We can make Seifert surface for
the trefoil and we can construct the cover using the surface. The meridian action
moves us to another sheet in X̃. We split using this surface.

So in the Abelian covering, we get a kind of S1 × R where the real line is the
meridian and the S1 the longitude.

We think of X̃ as having an action of Z[Z], the group ring.

The torsion polynomial, the homology of X̃ with coefficients in the local coeffi-
cient system which is this group ring, is the Alexander polynomial.

We want to calculate an actual example. [Pictures]
In our example, we have

H1(X̃,Z) = ⟨tiα, tiβ|ti−1(β − α) = −tiα;−ti−1β = ti(α− β)⟩.
As a Z[t, t−1]-module, it is

H1(X̃,Z[t, t−1]) = ⟨α, β|β − α = −tα,−β = t(α− β)⟩.
If we subsitute for β we get (t2 − t+ 1)α = 0

The next subject will be knot Floer homology detecting knot genus.

4. Seonhwa Kim, December 3

First I think I need to change the title of this seminar to the learning seminar
on basic knot theory.

Anyway, last time I said that the Alexander polynomial gives a lower bound for
knot genus,

deg︸︷︷︸
max−min

∆K(t) ≤ 2g(K).

The reason is that the degree of ∆K is less than or equal to the number of generators
of H1 of a Seifert surface, which is two times the genus. If you take a minimal genus
surface, this gives the inequality.

Let’s remember the goal, which is to see how knot Floer homology determines
knot genus.

I need to make a correction. Last time I said that the knot genus problem in
a general 3-manifold is NP-hard. This is also contained in NP. So the problem is
NP-complete.
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So as you expect, I think knot Floer homology calculations are NP-complete. I
think, this is my curiosity, is knot Floer homology NP-complete or not? I surveyed
some results about the Alexander polynomial.

So ĤFK determines the Thurston norm. This is the main part of showing that

ĤFK determines knot genus.

(1) In H2(M,Z) pick an element a representing embedded surface S. Set
χ−(S) = max{0,−χ(S)}. Define x(a) as the minimum of χ−(S) for all
[s] = a.

If there are nontrivial sphere, torus, disk, or annulus representing any a
(we could also work in H2(M,∂M,Z). Then this is a semi-norm.

There are certain results about this norm using the Alexander polynomial.
McMullen (98) defined the Alexander norm. Today’s main topic is about these

things. To do this, we need some definition. He defined the Alexander polyno-
mial for a finitely generated group and ϕ a homomorphism G → F , a surjective
homomorphism to a free Abelian group. This is Zb. In this setting he defines an
Alexander module, any subgroup H, m(H) ⊂ Z[G] is defined as ⟨(h− 1) : h ∈ H⟩,
the augmentation ideal.

The Alexander module Aϕ(G) is defined as m(G)/m(kerϕ)m(G). This is a G-
module and also an F -module.

Let me give another definition. Let (X, p) be a pointed CW-complex with
π1(X,π) = G and tildeX → X the Galois covering corresponding to ϕ, with deck

transformations F . Then Aϕ(G) := H1(X̃, p̃,Z), which has a natural action of F
coming from deck transformations.

This F acts on the cell structure so H1 gets an F -module. I didn’t understand
why these two definitions coincide. So let’s see.

Choos a pase point ∗ in the lift of p. Then (g− 1) ∈ m(G) is obtained by lifting

the loop g ∈ π1(X, p) to a path in X̃ running from ∗ to g∗. I had some trouble but
maybe it was just a typo in the book, an upper instead of a lower index.

Then there are similar but different notions of Alexander modules, Alexander

ideals, this is defined by taking first the free resolution Z[F ]r M−→ Z[F ]n → A→ 0.
Then M is an n× r matrix and if we take Ei(A), an ideal in Z[F ], no be generated
by (determinants of) (n − i) × (n − i)-minors of the matrix M . Call this the ith
Alexander ideal. It turns out to be independent of the resolution. The proof was
done by Fox.

I think there is a higher language proof but I don’t know it.
The Alexander polynomial is the greatest common divisor of the elements of

the Alexander ideal Iϕ(G) := E1(Aϕ(G)), generates the smallest principal ideal
containing Iϕ(G). [Some discussion about what the smallest principal ideal means.]

Let me talk about twisted gounp cohomology. Let MA → M be a covering
space with Abelian Galois group A. Then A acts on H1(MA,C). We can try to
decompose this action into irreducible pieces.

Consider “crossed homomorphisms” f from G to a G-module B by f(gg′) =
f(g)+gf(g′). So f form an additive group Z ′(G,B) of 1-cocycles on G with values
in B.

So the coboundaries B1(G,B) are those f given by f(g) = ab−b for some b ∈ B.
The first cohomology group of G is H1(G,B) = Z1(G,B)/B1(G,B).
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So HomG(Aϕ(G), B) ∼= Z1(G,B) for any F -module B considered as a G-module
via ϕ : G→ F , h : Aϕ(G) → B where f(g) = h(g − 1).

We can calculate

f(gg′) = h(gg′ − 1) = h(g − 1) + g(g′ − 1)) = h(g − 1) + gh(g′ − 1) = f(g) + gf(g′)

so f is a cocycle.
The Abelianization ab(G), we can say C[ab(G)] = Z[ab(G)]⊗ C, the coordinate

ring of the character variety âb(G) = Hom(ab(G),C∗) ∼= (C∗)b1G.
Any character ρ : ab(G) → C∗ determies a multiplicative action of G on C.
I should skip.
The Alexander norm on H1(M,Z) has ||ϕ||A = supϕ(gi − gj) where gi ranges

over the group elements in H1 for which ∆M has a nonzero coefficient. Here M is
a connected compact orientable manifold with torus boundary.

We finally have the inequality, using Poincaré duality

||ϕ||A ≤ ||ϕ||T + 0

if b1M ≥ 2 or
||ϕ||A ≤ ||ϕ||T + 1 + b3(M)

if b1(M) = 1 and H1(M,Z) = Zϕ.


