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Thanks for the invitation to give this lecture series here. The plan for the four
lectures in this lecture series is something like the following. I’ll start today with
an introduction about how this fits into a bigger picture. Then I’ll discuss Conley
indices and Thom spaces, and the relation between these, which you could call
stable Morse theory. This is the plan for day one. In day two, I’ll introduce
spectra, which follow naturally, and then say a little bit, I’ll define homology of
spectra and then I’ll say a little bit about why the homology of spectra becomes
Morse homology, I’ll say why it’s better to have the spectrum than its homology. I
want to say something about usefulness of the spectrum versus its homology.

That’s days one and two. On day three, I hope to talk about finite dimensional
approximations of action of a Hamiltonian system in R

2n, then the same in T ∗N .
Then I’ll describe symplectic homology as a spectrum, then Viterbo functoriality.
You can take these as definitions if you haven’t heard of them. This might take
all my time but for now I’ll write day four as parameterized homotopy theory and
some version I will call fiberwise symplectic homology which then has some sort of
applications. I’ll say a little more about the applications at other times but this is
just an outline of the plan.

2. Introduction

First just a little short introduction to Hamiltonian Floer homology, and it will be
very short. This is usually defined as Morse homology of some action A : LM → R.
For LM the loop space of an exact symplectic manifold M . There’s a lot of things
involved in this. You need to perturb, you need to do a lot of things. For those of
you who don’t remember this, you define a chain complex CF∗(A) as generated by
critical points of A and then you have a differential, which counts, well

∂x =
∑

z∈M0(x,y)

ǫ(z).y

where x and y are critical points for A, z is a gradient trajectories of dimension
0, and ǫ is a sign. Even though this sign is important and I’ll have something
interesting to say about Viterbo functoriality, I don’t want to say very much about
it.

What I want to do is to define this in a very different way, using topology, defining
“spaces” or spectra refining this. Here I mean that their homology gives you back
their Floer homology. We’ll only do this in the cotangent bundle. I should say
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about this fact that this refines the notion of Floer homology in cotangent bundles.
One can say it’s motivated by Floer homology, but these were actually there before
Floer homology, these are the motivation for Floer homology. But before no one
has put it into spectra. Using knowledge of spectra to get information out of it is
the new part.

Okay. One result from this is a theorem by me and Abouzaid which says that

Theorem 2.1. For n > 3 odd and 8 not dividing n + 1, there exists Lagrangian
immersions Sn → T ∗Sn which are smoothly isotopic to embeddings (i.e., the zero
section) but not Lagrangian isotopic to Lagrangian embeddings.

This was not known before and comes directly out of the fact that this invariant
of Floer homology is refined by spectra. This is generally for N immersed in T ∗N .
The theorem works generally to find immersion classes with no embedding. When
you have a Lagrangian, there is a K class in the loop space over M . There is a
map to Z × BG which classifies bundles, and that has to be the zero class. A lot
of these K-classes that you can get from immersions. The dimension restrictions
come from the homotopy groups of spheres, they’re where the map on homotopy
groups isn’t zero.

So maybe I should not talk too much about day four, but write down a theorem
and say there is another theorem, parameterized homotopy theory leads to this
theorem of mine from 2011:

Theorem 2.2. Any closed exact Lagrangian in T ∗N is (after lifting to a finite
cover of N) a homology equivalence

Abouzaid had a similar result, but a homotopy equivalence, which is stronger,
but he relied on Maslow index zero. So this is not as strong but more general. We
combined these results to get an even better one but this is what I’ll talk about
here.

Now I’m going to start with some actual proper definitions and build up the
theory.

3. Conley Indices

This is from a survey or lecture notes by Conley. I won’t have all my pictures
in my lecture notes but I’ll hand them out later today. What is this and how is it
defined?

Let M be a manifold without boundary. Let f be a smooth function. A pseudo-
gradient X is a vector field M → TM such that X(f) ≥ 0 and X(f) = 0 only
at critical points. It looks very much like a gradient but it doesn’t come from a
Riemannian structure on the manifold. It’s flexible to do this. One can usually
almost do that instead. Almost any of these guys come from a metric. Since we
might be putting on other metrics, this is more convenient for us.

So we let this be fixed and define ψt as the flow of −X (negative gradient flow).
Note that for a flow line of ψt at a point x in M , we have that ∂

∂t of f is given
by −X(f). If you integrate a vector field to get a local diffeomorphism, it changes
things by the derivative. This is almost by definition.

I want to define, let a < b be regular values and assume that critical points with
values in [a, b] form a compact set. If you do Morse homology you do this as well.
Most of the time this will be taken care of automatically.
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So the most important notion in this entire lecture series is index pairs or Conley
index pairs. Let me write that down.

Definition 3.1. A pair of spaces (A,B) with B ⊂ A ⊂M (this is usual in topology,
this notation) is called an index pair if

I1 The set A−B is contained in f−1(]a, b])
I2 The sets A and B are compact
I3 The set int(A)−B contains all the critical points, and the most important:
I4 For any x ∈ A, the two sets

{t ≥ 0|ψt(x) ∈ A} ⊃ {t ≥ 0|ψt(x) ∈ B}

are either R≥0 and ∅ or two closed intervals with the same maximum. So
you either flow for all time and avoid b or you leave A and never come
back, leaving B at the same time.

B

A

If you know from beforehand what Conley indices are, they’re more general, but
this makes sure that critical flow stays in A.

Here’s an example. LetM be compact with boundary but define f : int(M) → R

by using a collar neighborhood ∂M × [0, 1) with f(x, S) = −1
S . Somehow smoothly

extend to all of M .
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a

We see that A = f−1([a,∞[) and B = f−1(a) is an index pair.
For an index pair (A,B) define the Conoly index Iba(f,X) = A/B. In our

example, we have that the index pair of f,X is A/B, which is M/∂M .
Let’s take another example, using a height function that is reversed, g(x, s) = 1

s .

I’ll let A = f−1(]−∞, a]) and B = f−1(a) = ∅ below all the stuff. What does this
mean?

a

So I(g,X) = A/B = A/∅ = A ⊔ {−∞} ∼=M ⊔ {−∞}.
Let me show the relation to Morse homology before showing this is homotopy

invariant. We have A/B = Z, where Z is a CW complex with a basepoint
[B] and one cell per critical point of f in A. So then the reduced homology
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H̃∗(Z) =MH∗(f[a,b]). I won’t write this down explicitly, but I’ll prove that there’s
an isomorphism from this to a chain complex and then refer to a paper that explains
that this complex gives you the Morse homology MH∗.

Let me prove this important lemma:

Lemma 3.1. Iba(f,X) (as a based space) does not depend on the choice of index
pair up to (essentially unique) homotopy equivalence.

What do I mean by essentially unique? Well, think of it this way. If I were not
constructing spaces, I would want not just an Abelian group but also some sort of
choice of the presentation. The proof is kind of long so let’s take a break.

Let (Ai, Bi) for i = 1, 2 be two index pairs. Let me note that if we take (A,B) =
(A1 ∩ A2, (B1 ∪ B2) ∩ (A1 ∪ A2)), then we still have an index pair but we have
reduced the problem to the case where A2 ⊂ A1 and B1 ∩ A2 ⊂ B2. The difficult
thing to check is I4, but either it stays in a critical point and never hits either B,
or otherwise it hits both.

So now we want to define a homotopy equivalence back and forth between the
two.

A1

A2

B2

B1

Let d : A1 → R be

d(x) = inf{t ≥ 0|ψt(x) ∈ A2 ∪B1}

The map d is bounded by compactness. −X(f) < −k < 0 on the set A1−(A2∪B1).
If you flow for time (b − a)−1k then either you reach A2 ∪ B1 or f(φt(x)) < k.
Similarly, we define e : B2 → R in almost the exact same way:

e(x) = inf{t ≥ 0|ψt(x) ∈ B1}.

Again we can bound e. Let c be an upper bound on e and d. Then h12t : A1/B1 →
A2/B2 and h21t : A2/B2 → A1/B1 is defined by

h12t (x) =

{

ψt(x) ψt(x) ∈ A2 −B2, x ∈ A1 −B1

B2 otherwise
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the other direction is:

h21t (x) =

{

ψt(x) ψt(x) ∈ A1 −B1, x ∈ A2 −B2

B1 otherwise

This is well defined if t ≥ c. Because we’re flowing for enough time, we get into
A2 − B2. As an exercise, this is well defined and continuous in t. You have to
check the quotient sets. When you compose h12t ◦ h12t you get ψ2t(x) if ψ2t(x) ∈
A1 −B1, x ∈ A1 −B1 or [B1] otherwise. This is homotopic to the identity because
it is defined for all t ≥ 0 and continouous in t as well. Similarly, you have the same
for the other composition.

If you do this for other ones, you put this together and get a discrete category
with contractible morphism spaces. It doesn’t really matter too much. This is for
people who are really into homotopy theory and topology. This won’t matter for
the result that this is essentially unique. This speaks to some sort of naturality.

Let me give you a class of examples where everything is much easier.

Definition 3.2. A function and pseudogradient (f,X) is called completely bounded
(CB) if

C1 The flow ψt is defined for all x ∈ M and all t ∈ R. This might be called a
complete flow.

C2 The function X(f), which is only zero at critical points, is bounded from
below by a positive constant on the complement of some compact set. If you
remove a small neighborhood of each critical point, you get a uniform lower
bound.

Lemma 3.2. If (f,X) is CB then index pairs exist for any a < b regular.

Proof. I’ll just write down a formula. Let K ⊂ M be compact such that X(f) >
k > 0 on the complement of K. This is C2 from the definition of completely
bounded. Define KT = ψ[0,T ](K) = ∪ψt(K). This is a compact set, because flow
is defined for all finite time (C1).

Define A = f−1([a,∞[) ∩ (f ◦ ψ−T )
−1(]−∞, b]). If you have your function, you

have a big manifold and you are flowing, you have b and a, then f−1(b), f−1(a),
if you flow backwards and then take f , you get something below b, maybe above,
maybe below a. But if T ≥ (b−a)k−1 you’ll get something compact. Why? Fix an
x ∈ A−KT . Then flow for t ∈ [−T, 0], the flow ψt(x) /∈ K. Then ∂

∂tf(ψt(x)) > k
for t ∈ [−T, 0] so flowing gives you f(ψ−T (x))− f(ψ0(x)) > (b− a). So x being in
A−KT gives us f(ψ−T (x)) ≤ b and we get x /∈ A.

Define B = f−1(a) ∩A.
Let me just say at the end today then how one can create a complex similar

to the Morse homology complex out of this data. Maybe I won’t have time for
more than the example I need first. So, example. q : Rn → R is a non-degenerate
quadratic form. We use the usual ∇q as our pseudogradient. Then to make this
easier we realize that we can transform this function without changing the gradient
if we change coordinates in a particular way. By change of coordinate from O(n)
we may assume that q(x1, . . . , xn) is just a sum of λix

2
i . This is an isometry. So

the gradient of q at the point (x1, . . . , xn) is 2(λ1x1, . . . , λnxn).
The most important thing here is that the gradient flow splits on each coordinate.

Solutions to this are of the type γ(t) = (a1e
λ1t, . . . , ane

λnt). Whether this contracts
or expands depends on the size of these guys. So what you see is that, well, let
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λ1 < · · · < λn and m the number of negative λi, then A = Dm × Dn−m and
B = Sn−1 × Dn−m is an index pair. In R

2 the flow is a hyperbolic foliation and
B cuts off the sides of a square in the plane. The point is that this is homotopy
equivalent to Dm × Dn−m/Sm−1 × Dn−m = Sm ∧ (Dn−m

+ ) ∼= Sm with the usual
basepoint. The pair of the square and its sides deformation retracts onto the interval
and its endpoints.

�

4. October 1

[Missed first section]

Lemma 4.1. Let γs, λs be a smooth compact family of deformations with pseu-
dogradients on M which has a good index pair with respect to a < b. Then
Iba(f

s1 , Xs1) ∼= Iba(f
s2 , Xs2) for all s1 and s2 in S. In fact the Conley indices

Iba(X
∗, f∗) defines a based fibration over S.

. . .
Example: Let f : R2 → R be f(x+iy) = −x4+x2−y2. Then Iba(f)

∼= S2∧S2. If
you try to do parallel transport you get holonomy on the reduced homology which
switches the two factors. Have an essentially unique homotopy equivalence between
two fibers means that you have a way to choose paths. So if the s ∈ S in the lemma
comes from contractible S then these are essentially unique.

A sketch of the proof of the lemma. Let s0 ∈ S and (As0 , Bs0) be a good index
pair for (fs0 , Xs0). Then claim, this is a good index pair for (fs, Xs) close to s0.
So the Conley index is locally constant. Why is this true and why did I assume
they were good index pairs?

If you had an index pair then you start with something where you know the flow
exits and never returns. Before going far down, the flow might escape to ∞. There
might be a close but not too close flow that comes in from∞ but this is not the same
flow line. If you perturb things a little bit they might connect up. A lot can happen
out at ∞, it’s difficult to control this. So that might be a flow line after perturbing
and reenter A. This is always only the problem when you deal with Conley indices
of this type. If the manifold is closed, compact, then everything works out fine. So
this can go wrong. But our pair doesn’t look like this, so this will never happen.
The values of s go down, so once you escape from B there’s no way to come back.
The value of f is important, but another thing that’s important, for s close to s0,
we see that Xs is still transversal to the defining equations. Transversality is an
open condition. It’ll still point in and out at the same points. Combining with the
fact that B ⊂ f−1(a) gives you what you want.

Okay. This was why these good pairs were very nice. Now we can talk about
Conley indices’ invariance when changing data.

These structures that I’m going to define now are closely related to Floer ho-
mology. These are inclusions and quotients. To make this discussion as easy as
possible, let a < b < c be regular for f : M → R, X a pseudogradient as usual,
with good pairs for Ica(f,X). I’ll sketch this because I have a drawing I’m going to
change a little bit. We have three pairs, how do they relate?

Let fda = f−1([a, d]) ∩ A. We had Ica(f,X) = f ca/f
a
a and Iba = f ba/f

a
a . Finally,

Icb (f, x) = f ca/f
b
a. These are associated to the triple f ca, f

b
a, f

a
a , so there is a long

exact sequence for the homology of these guys, using reduced homology because
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they’re based.

· · · → H̃∗(I
b
a(f,X)) → H̃∗(I

c
a(f,X)) → H̃∗(I

c
b (f,X)) → H̃∗−1(I

b
a(f,X)) → · · ·

The maps are inclusion, quotient, and a connecting homomorphism.
Now I’ve got some properties that make it easier to connect this to Morse ho-

mology. Let me just write something here. Without going into detail, just recall
that Morse homology was a chain complex for a Morse-Smale system (f,X) where
the most important part is that you get some homology coming out of this data.
How does it fit into this picture precisely? This system has a generator per critical
point of the Morse function. Can we see that there’s a complex like this given its
homology? I’ll show you that this homology here, I’ll motivate why it’s homomor-
phic to Morse homology. I said a little bit about it with CW structures last time
but let me give you a more precise and more direct description.

Let a < b be regular and Morse and let (A,B) be a good index pair for a < b.
I want to construct something that looks like Morse homology. First perturb f so
it takes distinct critical values. Look around a critical point, you can change the
value without changing that it’s a critical point. Next, pick a parttion a = s0 <
· · · < sn = b so thateach interval has one critical value. Then you inductively look
at the long exact sequence. Say we have constructed a MCi

∗(f,X) so that

MCi
∗(f,X) → Ĉ∗(I

si
a (f,X))

which is a homotopy equivalence, with one generator on the left per critical point.
We can make a short exact sequence

0 → C̃∗(I
si
a (f,X)) → C̃∗(I

si+1

a (f,X)) → C̃n(I
si+1

si (f,X)) → 0

and you can look at the one on the right and see it’s Z[mi] and things of this sort
are easy to work with. It’s not difficult, you can work this out so you get the
next step. The reason I’m saying it, one reason is, this is not unique. But Morse
homology is not unique either. Much of that nonuniqueness is also found here in
these choices. I’m not actually sure if it’s actually the same choices. You probably
have to be in dimension at least six to do this. So you need h-cobordism theorems
that work in dimension six and higher. The homology of these Conley indices is a
way of reconstructing Morse homology. If you want to see a complete proof, you
will get the notes later today or tomorrow morning and there’s a reference there.

So much for Morse homology, but let me just remind you that last time I made
this picture that said if you have A and B then you can construct a CW complex
by attaching cells. If you go from si to si+1 then you’re adding a handle. If
you didn’t know this, then one way of constructing Morse homology is to think
of this as the reduced CW complex of some complex you construct. You count
degrees of attaching maps for these cells onto each other for Morse homology. Morse
homology is really CW homology in the finite world. It’s just thought of in a
different perspective.

4.1. Thom Spaces. Let (A,B) be a pair and let E → A be a metric vector bundle
over A. Then define

(A,B)E = (DEA, SEA ∪DEB)

and define

(A,B)E/ = (DEA/SEA ∪DEB .
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Sometimes people define this differently with one-point compactifications. This
doesn’t work on noncompact spaces. Why is this important? Let f,X, a, b, (A,B)
be as before, maybe the pair doesn’t need to be good. Let E → M be any vector
bundle, metric again. Let q be a function on this vector bundle, q(x, v) = −||v||2.
This generalizes to a quadratic form. Fiberwise this is just a negative definite
quadratic form. I’ll define some stuff and leave some checking and an exercise.
First define f+q = π∗f+q which means (f+q)(x, v) = f(x)−||v||2. I’ve defined a
function on a bigger manifold. I want to relate the Conley index here to the Conley
index on the lower manifold. I need a pseudogradient for this. Define X1/X⊕∇fq.
The ⊕ is a splitting associated to some compatible connection. I mean this is
compatible with the metric. It gives us a way to define horizontal vectors. The
inner product of the norm is preserved so the norm is preserved. You can check
as an exercise that X ′ is a pseudogradient for f + q and (A,B)E is an index pair.
I’m going to draw this and geometrically motivate it. It’s not difficult to do the
exercise after seeing these pictures.

[at this point I had to leave]

5. October 2

So first I just wanted to set this record straight. Somehow there’s direct limits,
also called, well, they sit in colimits, and there are also inverse limits, which are a
kind of limit. There’s a general thing in category theory and limits lead to products
while colimits lead to coproducts. The reason why these are upside down is because,
well, they’re easier to handle. Direct limits make sense. The names are also used,
but it’s colimit and limit. I changed the notes to say limits, which I shouldn’t have
done. Either change them in your notes or wait for them to be changed in the
whole set.

I said I’d begin today with finite dimensional approximations. Because people
might not have experience with spectra or like these limits, I’ve decided it’s proba-
bly better to do more of these examples of spectra today. I’ll say a little more before
continuing, starting with an example that’s an extension of an example from yester-
day. Let X be a based space. Define the spectrum Σ∞X called the suspension spec-
trum of X by letting (Σ∞X)k = ΣkX. I have to give you a sequence of (structure)
maps σk : ΣΣkX → Σk+1X, and these are equal, so I’ll just use the identity map.
This also means that we get that H∗(Σ∞X) = lim H̃∗(X) → H̃∗+1(ΣX) → · · · )
but when you have a limit of isomorphisms, you have H̃∗(X).

This is a functor from based spaces to spectra, Σ∞ and this fits into a diagram
using homology to graded Abelian groups

based spaces
Σ∞

//

H̃∗ ))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

spectra

H∗

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

graded Abelian groups

Let me note a couple of points. For a spectrum X = [Xk, σk], forgetting the first
i spaces does not change the equivalence class. One way to see this is that if you
start with your sequence X0, X1, . . . , Xi, Xi+1, . . ., you’re just replacing the first i
with points {∗}, {∗}, . . . , {∗}, Xi+1, . . .. Remember that an equivalence was a map
that commuted, and these are just the inclusion of basepoints. Only remembering
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a subsequence Xki
and the maps σ

ki+1

ki
: Σki+1−kiXki

→ Xki+1
is enough to recon-

struct the spectrum uniquely. I can write two sequences, you can give basepoints
until Xk0

and then ΣiXk0
until I get to Xk1

. Then you continue with the idea. So
you fill things up with the suspension of what went before. We won’t define every
single space in the sequence, only the nth space in the sequence. The inclusions
that make the diagram commute are σk0+i

k0
. Remember I assumed these maps were

inclusions.
It was also mentioned yesterday about formally inverting suspensions. So what

you do is set X = [Xk, σk] and define Xk = ∗ when k < 0. So you could
think of them as starting in negative numbers. So then you could think of X =
[ΣdXk−d,Σ

dσk−d]. The reduced suspension of the basepoint is the basepoint. This
is the example d = 2:

{∗}

��

{∗}

��

Σ2X

��

X0 X1 X2 X3

Here’s an example, let Xk = ∧k
i=0S

i. So k = 3 it’ll be a 1-sphere, a 2-sphere, and
the 3-sphere. Then all of the spheres go one up in dimension and the span of the
homology gets wider and wider, so H∗ of this guy is in fact Z when ∗ ≤ 0 and 0
otherwise.

So define Σ−d as the equivalence class of [Xk−d, σk−d] and define ΣdX as [Xk+d, σk+d].
So if you pass to homology complexes it’s just a grading shift.

And now for something, I’ve talked about spectra and their homology, but I
want a tool that tells me that they are better than their homology.

Definition 5.1. Let X = [Xk, σk]. Then π∗(X) is the limit of homotopy groups

π∗(X) = colimπ∗+k(Xk)

So what maps do I use? π∗+k(Xk) → π∗+k+1(ΣXk). What is this map? If
f : Sn → Xk, then Σf : Sn+1 → ΣXk. So the map sends [f ] to [Σf ]. It’s not
in general an isomorphism but we can use it to compute anyway. This limit is
not as nice as the other one, but there’s something similar to the isomorphisms
we had. So π∗(Σ

∞X) is known as the stable homotopy groups of X. You’ve
probably heard about this. They relate to unstable homotopy groups. On some
groups π∗+k(Xk) → π∗+k+1(Xk+1) will be an isomorphism. Let me concentrate
on spheres, where πn+k(S

k) → πn+k+1(S
k+1) is an isomorphism for k > n + 1.

If you’ve computed stable ones, you’ve computed some unstable ones. They also
show up here. They’re easier to compute because the structures of the category of
spectra almost look like an Abelian category.

If Xk become more and more connected, then this stabilizes, but the example
with infinitely negative things never stabilize. You’re not going to get anything.
You could replace this with a low dimensional thing that doesn’t stablize.

Let me define now what a map of spectra is.
A map of spectra f : X → Y is an equivalence class of

• Representatives for X and Y
• a sequence of maps fk : Xk → Yk
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such that the structure maps commute:

ΣXkfk
Σ

//

σk

��

ΣYk

σk

��

Xk+1
fk+1

// Yk+1

The equivalence relation is generated by restricting to smaller representatives Y ′
k ⊂

Yk and X ′
k ⊂ Xk such that fk(X

′
k) ⊂ Y ′

k. This is why it’s important for the
subsequences to fill out the spectrum. If you have two different sequences and you
try to restrict them to something smaller and they’re equal.

If you have a sequence of Abelian groups, it’s defined, maps from this into
something is easy, but it’s hard to map into this. If you want to map between
two of these, that’s messy. It’s not even maps that go over and forward. If you
assume finitely generated, then each of the A1 will be realized after a finite step.
Then there’s a Bi1 that accepts a map of A1. This will be a map of limits in the
finitely generated case. In the compact case the same is true for us. What you
could have said instead was, take a different representative inside each of these.
These represent the same limit if you put the right restriction on. That’s why we
use this equivalence class. Now the maps can go directly between these guys.

I’ve defined maps of spectra now and it makes perfect sense to define homotopy
of maps which is just crossing every step of the way with an I and mapping in.
Then you can use homotopy equivalences and so on, and these start to look like
spaces. The thing that looks different is just that the objects and the maps are
encoded in these sequences. Most of what works for spaces works for spectra as
well. Let me give an example for why spectra are better than chain complexes.
Let’s look at Σ−3S ∧ Σ4S. Let me concretely define this as

Xk =

{

Sk+4 k ≤ 2
Sk−3 ∧ Sk+4 k ≥ 3

We see that H∗(X) is Z in dimensions −3 and 4 and 0 in other degrees. The wedge
product in spectra behaves like direct sum in chain complexes. It has the same
formal properties.

A fact, you can think about this, is that any chain complex with this homology
is chain homotopic to Z[−3]⊕Z[4] with zero differential. This means that all chain
complexes that look like this are essentially equivalent. But now you’ll see, I’ll
construct a different spectrum with this homology and you’ll see it’s different.

Define Y = [Yk, σk] by the following. I’ll still have one cell of each dimension like
this, but I’ll do a non-trivial extension of the two. I put the four-cell on very early,
but I need the other cell to put it on in a non-trivial way. Let me define Yk as the
basepoint for k ≤ 20. Let me write the first k explicitly, it’s S18 ∪φ D

25 but this
φ is going to attach, it’s a map from S24 → S18. Now these are classified up to
homotopy, and [φ] ∈ π24(S

18) is in the stable range, this is in π6(S) then. So we’ve
attached a cell and we’re in a stable homotopy group, you can do Sk−3∪Σ21−kφD

k+4.
What do we end up seeing? Beyond this level, when we suspend we go to the exact
same homology. The limit of something that starts out being zero and then becomes
this homology A∗ at twenty-one, and we just get a sequence of isomorphisms. This
is what is meant by stabilizing. So it’s just going to be A∗. It has the right
homology. How do we see that it doesn’t have the right homotopy type? We can
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think of this as, if you take a long exact sequence of homology, you see that you
don’t detect it. But stable homotopy groups have long exact sequences, but they’re
nontrivial for spheres in many dimensions. Looking at the long exact sequence for
stable homotopy groups, we see that π6(Y ) 6= π6(X) which in fact tells us we get
this element of φ. It becomes a quotient modulo this image. The important thing is
that homotopy groups detect that they’re not the same. What does this say about
Conley indices? If something is homotopy equivalent to the wedge of two spheres,
there’s nothing stopping you from moving the one critical value below the other. If
the attaching map is nontrivial then you can’t move the one below the other. This
is one of the main motivations for using spaces instead of their homology.

One more theorem I want to talk about is the Hurewicz theorem, slightly refor-
mulated. If f : X → Y is a map of spectra which induces a homology isomorphism,
then it induces a homotopy group isomorphism. I won’t prove this, but it looks so
much nicer here than for spaces, where you need an assumption about π1. Basi-
cally, it’s because you can take [Xk, σk] which is equal to [Σ2Xk−2,Σ

2σk−2] which
has no fundamental group. What does this tell us? That X and Y as constructed
above have no maps X → Y inducing the homology equivalence. This is a little
more about how these maps are different. So having maps of spectra is something
strong.

That’s all I wanted to say about spectra now. Now I want to go to finite approx-
imations, which is very different. The Morse theory will only show up at the very
end of the discussion. Let me start in R

2n and let me shorten finite dimensional
approximation to FDA.

First let me explain quickly what I want to approximate. Let H : R2n → R be
a smooth Hamiltonian. Then we have an associated Hamiltonian flow φt, which is
the flow of XH , ω0(XH , ) = dH or ±J0∇H = XH [ed: some discussion about
the sign, some disagreement] Then you have an action on loops S1 → R

2n:

A(γ) =

∫

γ

λ0 −Hdt

Here λ0 = pdq where ω0 = −dλ0
[What is your notation for the standard symplectic form?] You have xi + iyi as

a basis for R2n = C
n and say this is dxi ∧ dyi or dq ∧ dp.

Okay assume H is equal to H0(z) = ||z||2 outside a compact set. We want
something to keep the critical points from escaping.

Now look at critical points for AH , these are 1-periodic orbits of φt. Now look at
AH0

. Now the flow φt associated withXH0
is rotation with angle t, so multiplication

in C
n by e2πit. It’s not surprising that you integrate a vector field and get an

exponential function. This means that 1-periodic orbits are in fact just given by
γ(s) = 0. It’s rotation, but if you take a rotation then you get the only fixed point
as zero. One can check that this is a non-degenerate critical point and make sense
of Floer homology, and then get to the conclusion that Floer homology of AH0

is
isomorphic to Z in degree 0 and 0 otherwise.

There’s a big machinery to do this correctly, because things are infinite dimen-
sional, you need Gromov compactness, transversality, perturbations, independence
of perturbations. FDAs will let us avoid some of this machinery.

This is not a conclusion but something one can prove: this is well-defined for all
such H. This means FH∗(H) = FH∗(H0) and so these have the aforementioned
homology, so any H like this has a 1-periodic orbit. If it didn’t have a periodic orbit
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then you’d already be Morse-Smale and then you don’t have any critical points so
you don’t have a generator.

Now let me define a finite dimensional approximation of this action. Fix a large
natural number r ∈ N. We define ΛrR

n = {q0, . . . , qr−1 ∈ R
n}. The cotangent

bundle of this is {(q0, p0), . . . , (qr−1, pr−1) ∈ T ∗
R

n}. I’ll shorten notation and have
~q = (q0, . . . , qr−1), ~p = (p0, . . . , pr−1), and ~z = (~q, ~p).

A paper from the early 80s does this (in a slightly different notation), let me
just write it down. We have these points. I don’t have the condition that they
are close to each other. It’s going to be a big mess when they’re not close. Now
define γj : [0, 1r ] → R

2n and γj(t) = φt(zj), using Hamiltonian flow. Also define

z−j = γj−1(
1
r ). Cyclically, we let z−0 = γr − 1( 1r ).

Now I can write down a finite dimensional approximation Sr : T ∗LrR
n → R.

Sr(~z) =
r−1
∑

j=0

∫

γj

(λ0 −Hdt) + p−j (qj − q−j )

We have these points and curves and we’re integrating. It’s unnatural for symplectic
area to integrate something to give you symplectic area if it’s not even closed. The
other factors are there to make the area by closing up the curve in a particular
canonical way, first real then imaginary. Why am I not just going directly? You
don’t get Conley index pairs. I’ll explain that a different time. I’ll be able to explain
what goes wrong later.

Proposition 5.1. For r ≫ 0 (depending on H) the critical points are in corre-
spondence with critical points of AH with the same critical value. Further, Sr,∇Sr

is completely bounded (CB).

This gives you good index pairs so you get the same thing up to homotopy.
I won’t prove this because I only have six minutes left but let me draw a sketch

and say something about the proof here. If you look at zj , you have some flow line
γj , then the connector that goes real, imaginary, and then the next flow line, think
about it. If you want to take the gradient with respect to zj , we only care about
this local part. If you move the point zj in some direction, you take the dual to get
the gradient, the first thing that happens is that zj+1− moves. If r is large it moves
in roughly the same direction. So the differential of φ1/r is practically the identity.

So approximately, z−j+1 = zj +
1
rXH . This picture looks almost like having these

guys [gesture]. Let me say it like this. There’s a calculation of the action of a curve
like this. But we only care about the endpoints, which we want to push into where
the symplectic value is bigger. It just wants to maximize the are underneath. Both
of these have something to do about the symplectic area, the x and y motions too.
The gradient, you get after a lot of work, is approximately equal to

∇zjSr = (p−j − pj , qj − q−j ) + o(||pj − p−j ||
2 + ||qj − q−j

We get that critical points for Sr, eventually, are points where pj = p−j and likewise
for q. This is the flow lines making a closed curve. So you get an actual flow curve.
When qj = q−j , in our integral we get the regular flow. The parts that don’t come
from the gradient look almost like a quadratic form, and those if notndegenerate
are CB. In fact, in many cases this IS a quadratic form. If you scale this by a factor,
you get the same flow factor, and the things change by the square. So that’s sort
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of, this same argument works again for H0. Let me stop there and say how to turn
these things into spectra the day after tomorrow.


