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1. November 24: De Rham cohomology in characteristic p and
Dieudonné modules

The general title is motivic structures in non-commutative geometry.I’ll explain
what this is more or less today. Today’s lecture is more or less about motivic
structures and what I mean by this, it’s something down to earth. This will be in
the usual algebraic geometry. Today there will be nothing non-commutative. The
algebraic geometry won’t be too advanced.

The point is that some of the things I’ll be talking about today make sense and
are even more natural in non-commutative geometry, so at least for me the non-
commutative setting clarifies what happens in commutative geometry. The second
lecture is about de Rham type cohomology in the non-commutative setting (or
that is, cyclic homology). Then we’ll see how it goes. Today I start with motivic
structures.

So I start with an algebraic variety X, smooth over some k which for now can
be a field. I want to explain what I mean by motivic structures. Usually we have
just one cohomology in geometry. In algebraic geometry we have several competing
cohomology theories. Let me list the main ones

(1) algebraic K-theory of X and related things, Chow groups of cycles. It’s
not easy to compute but it’s completely intrinsic. You define algebraic
subvarieties and so on. You take cycles like what you did in algebraic
topology.

(2) Étale cohomology, this is something, there are versions, but H∗et(X ⊗k

k̄,Q`), there’s something very nontrivial due to Grothiendieck that you
can do that gives you something that looks like cohomology.

(3) Another way to extract some cohomology theory is some kind of de Rham
cohomology. This has some disadvantages, I can’t take coefficients in Z
or Q, but I can do `-adic coefficients for étale cohomology. But here my
coefficients are in k. The definition is to repeat the usual definition almost
literally. You just take the cohomology of X with coefficients in the sheaf
Ω∗ of differential forms. In the usual de Rham forms this sheaf has no
cohomology so you just get something global but here your sheaf might
have cohomology so you have to write H ·(X,Ω·) intead.

(4) To circumvent some difficulties Grothiendieck invented cristalline cohomol-
ogy H ·cris(X). If the characteristic is zero then this is just the de Rham
cohomology. If k is Fq then cristalline cohomloogy is a module over W (k).
This lets you compute points in a way that you can’t using de Rham.
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In these theories (not K-theory) what happens is that, well, cohomology is different
than K-theory, it would be interesting to express one in terms of the other. The
first step toward this is to notice that these cohomology groups have additional
structures. These structures are what is called “motivic” structures. The easiest
example is étale cohomology. The structure is the following. What happens is
that we have the Galois group of k̄/k which acts naturally on Het(X ⊗ k̄,Q`).
One can define étale cohomology of X without going to the algebraic closure, so-
called “absolute étale cohomology” which is H ·(X,Q`), and there will be a spectral
sequence converging to this which starts with H ·(Gal(k̄/k), H ·et(X ⊗ k̄,Q`)).

Let me give an analogy. You have a map of topological spaces X → Y . I can
compute H∗(X) directly or I can compute it in two steps. There is the direct image
functor on sheaves X → Y , so I can compute H ·(Y,R·π∗A), then if π is a fibration
with some fiber F , then these things R·π∗A are a local system on Y . Then you
get a spectral sequence but if we have a fibration, you get the Leray-Serre spectral
sequence which starts from H ·(Y,H ·(F )) and converges to H ·(X).

Here Y = Spec k. This is a stacky-point, a point modulo the Galois group.
Then H∗(Y,A) = H∗(πet1 (Y ), A) and the πet1 (Y ) is Gal(k̄/k).

We have this point which has its own cohomology. Anyway, this thing is not geo-
metric, but it’s closer to K-theory. We have a regulator map K∗(X)→ H∗et(X, ),
I can take a representation valued in roots of unity so I can twist by powers of this
and get a regulator map

Ki(X)→
⊕

H2j−i
et (X,Q`(j))

[example]
So there’s this story for étale cohomology. What happens for de Rham cohomol-

ogy and cristalline cohomology?
For de Rham theory you have X/k, let’s say that k = C, it was a great insight

of Deligne who discovered that there is such a story, the category of mixed Hodge
structures. Right, so we have our de Rham cohomology, defined completely alge-
braically, we can consider the usual cohomology in the topological sense, so there’s
this comparison theorem, H ·dR(X) ∼= H ·(Xan,C). On the right the additional
structure is the following. We can take any coefficients, we can take a sub-ring
inside R, then the right hand side is H ·(Xan, A) ⊗A C. So you have an automor-
phism lifting complex conjugation. Algebraically you don’t see this at all. On the
left you have the Hodge filtration F ·, and the definition is as follows. As I said,
H ·dR(X) = H ·(X,Ω·X). You can consider what Deligne called the “stupid filtra-

tion.” The term F iΩj(X) is ΩjX if j ≥ i and 0 otherwise. You take your de Rham
complex, choose some level, and take everything at that level and above. This
is compatible with differentials for a trivial reason. Whenever you have a filtered
complex and you do something like take cohomology, you get a natural spectral
sequence. This induces a spectral sequence which starts with cohomology of X
with coefficients in ΩjX and converges to HdR(X). Then there is this observation
that at least for X smooth and also projective, this spectral sequence degenerates.
The hardest part of this is the Hodge theory from the 50s. This is a repackaging of
that difficult analytic statement. Later on Deligne and Illusie came up with a proof
that is also algebraic which works for proper varieties that may not be projective.
The target of the spectral sequence, then, gets a filtration, F iHdR(X). This is the
Hodge filtration.
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So we have two structures, complex conjugation and this filtration.

Definition 1.1. Fix A ⊂ R ⊂ C. An A-mixed Hodge structure is the following
triple: 〈VA,W·VA, F ·VC〉 where VA is an A-module, W· is an increasing filtration,
and a decreasing Hodge filtration F ·VC where VC = VA ⊗A C.

For each i we can take the associated groded grWi VC and F induces something
here but we also have complex conjugation. The condition is that

(1) F j ∩ F̄ i+1−j = 0.
(2) grWi VC =

⊕
F j ∩ F i−j.

We’re used to a Hodge grading. Then F j =
⊕

p≥j H
p,q and F̄ i−j =

⊕
q≥i−j H

p,q.

Proposition 1.1. A-mixed Hodge structures form an Abelian category of homolog-
ical dimension one. You can get exts between them. Even for pure Hodge structures
it’s interesting to check the dimensions of Ext groups. If A does not contain Q you
get dimension two for stupid reasons.

Why is this surprising? Filtered vector spaces do not form an Abelian category.
The basic thing that goes wrong is, take k with filtration F 1k = 0 and F 0k = k.
Then renumber this, k[1], F 0k = 0, F−1k = k. There is a map k[1] → k. This
is an isomorphism of vector spaces and has no reasonable kernel or cokernel. In
an Abelian category I expect this to be an isomorphism, but it’s not because an
inverse would have to do forbidden things.

This is typically what happens with filtered vector spaces. But with this condi-
tion, maps like what we said are not allowed any more. The maps have to preserve
both filtrations. It’s not so difficult to prove but the proof is not instructive, really.

Theorem 1.1. (Deligne) For X/C quasiprojective, H ·(X,A) carries a natural A-
mixed Hodge structure.

As I said, this is an Abelian category. One can observe slightly more. We
can take tensor products and one checks without much difficulty that the tensor
product gets the same conditions. There is a distinguished invertible object, A(1),
which is 〈A,W·, F ·〉 where is A is concentrated in weight −1 and F−1AC = C while
F 0AC = 0.

Definition 1.2. The absolute Hodge cohomology of X

H ·AH(X,A(j)) = RHom·(A(−j), H ·(X,A))

This is homological dimension one, so this has Hom and a first Ext. This is
completely parallel to Galois cohomology. There I consider representations of the
Galois group. My absolute Galois cohomology with expressed as cohomology of
the group which is like an Ext from the trivial representation. So this, there is
also Deligne cohomology which is close to this but doesn’t quite coincide. Beilinson
corrected this to the given definition.

Even if X is just smooth and proper, still, it’s important to know that you have
these mixed Hodge structures with nontrivial Ext1.

Theorem 1.2. (Beilinson) There is a regulator map

Ki(X)⊗ R→
⊕
j

H2j−i
AH (X,R(j)).
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There are conjectures that predict very precisely the behavior of this map, but
for i ≥ 2 this is expected to be an isomorphism for X of the form XQ ⊗ C for X
smooth projective.

It’s well-known that there is no chance that this is an isomorphism if X is not
defined over Q. The group of cycles will be huge. There are some conjectures
about surjectivity but for injectivity there’s no chance. If your thing is arithmetic
in origin, then, maybe. It’s more interesting K1 and K0 but there the statement is
more complicated.

Do I do a break?
Let me present a third version of the story, not well-known thirty years ago

although it existed, now it’s better known, about cristalline cohomology. Actually,
I now start with a finite field k = Fq, I want to start not over k but over the
p-adic version, the Witt vectors W (k), the unramified extension of Zp of the same
degree as k. I start with X defined over W (k). You can think of something given
by equations with coefficients in this ring, but I think of a scheme mapping to
Spec(W (k)). Sitting inside Spec(W (k)) is Spec(k) and over this is the special fiber
X0. I want everything to be smooth.

As I said cristalline cohomology has a high-tech definition that I don’t want to re-
produce here, but we have a comparison theorem says that this is H ·dR(X), defined
naively, exterior powers of a tangent sheaf, you should symmetrize at some point,
take the quotient and not the invariants. Then for X0 you have the cristalline
cohomology, and the comparison theorem says H ·dR(X) ∼= H ·cris(X0). There are
different lifts but this doesn’t depend on the lift. When you have different de-
formations the cohomology should be the same, and this is a realization of this
idea.

You should think of this comparison theorem as being analagous to the situation
in de Rham cohomology because we have two structures on the two sides and the
interplay is what is interesting. On the left you have F · the Hodge filtration, which
degenerates in the smooth case. On X0 you have the Frobenius automorphism.
This map is very easy. On points it’s identical and every function is raised to the
pth power. So it turns out that the interplay between the two is the interesting
thing.

Let me give you right away the version of this mixed Hodge structure here.

Definition 1.3. A filtered Dieudonné module (FDM for short) is a collection of
the following data:

(1) M a finitely generated W (k)-module,
(2) a decreasing filtration F i(M),
(3) a collection of maps ϕi : F i(M) → M which are Frobenius semi-linear.

What does this mean? There is a lift of Fr on k to W (k). This means that
ϕi(am) = Fr(a)ϕi(m). There is also a condition ϕi|F i+1 = pϕi+1.

(4)
⊕
ϕi :

⊕
F iM →M is surjective.

Proposition 1.2. FDM form an Abelian category (of homological dimension 2).

For example, assume we have M which is torsion, it’s annihilated by p, so pM =
0. This says that ϕi|F i+1 = 0. Then ϕi : griF (M) → M . Then the surjective
map factors through this, gr·F (M) → M . Now M is annihilated by p so it’s a
k-vector space. Since this is finitely generated and surjective it’s injective so it’s an
isomorphism. Take M̃ =

⊕
F iM/(t− p), this is called the Rees object. There’s a
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map t : F i → F i−1, an embedding. There is a natural map from M̃ → M which
will be an isomorphism.

It’s kind of hard to keep track of all this. Filtered vector spaces on the geometric
side should be the same as Gm-equivariant sheaves on A1. This is a graded module
over the base field with one variable of degree one. In this language the associated
graded quotient corresponds to the fiber at 0 ∈ A1 and M is the fiber at 1 ∈ A1.
Sometimes this is called normal cone degeneration. The point is that M̃ is the fiber
at p ∈ A1.

I take such a guy and I want an isomorphism between the fiber at 1 and the
fiber at p.

Anyway, this is a way to memorize all those things.
Now there is a theorem, this definition was introduced by Fontaine-Lafeulle

(1982) and

Theorem 1.3. (Faltings) If X is smooth and proper over W (k) then H ·dR(X) has
a natural FDM-structure.

What does Dieudonné have to do with this? He considers modules over W (k)
which has a Frobenius kind of automorphism. It was known that you had this on
cristalline cohomology, this is a semisimple category, all possible skew fields over
Zp occur (the automorphisms of irreducibles are skew fields). The novelty here is
the filtration.

This is not p-adic Hodge theory. You have the generic fiber Xη and you can
try to compute its étale cohomology. Normally you want ` to be different that p.
But here we have something in characteristic zero, so you can take H ·et(Xη,Qp) or
you can take H ·cris(X0) ⊗ Qp. Then p-adic Hodge theory relates these two to one
another. They are not equal as is. One answer is that in large coefficients, you have
some ring BdR, and tensoring with this you get a canonical automorphism.

There is a more refined story, if you consider the latter as a FDM, you get the
former as a Galois group representation. There is also that story. But I don’t want
to go into this at all. My main interest is not commutative. This is a complicated
story because Gal(Q̄p/Qp) is complicated.

Sometimes you want something like this, having this isomorphism somewhere
can be valuable. If you have two different reductions to characteristic zero, are
these constructions related? We have no other relationship.

Let me show how this comes about under some assumptions. Let me assume
I’m in the situation when the Frobenius of X0 lifts to a Frobenius of X. This is
rare for projective varieties but you always have it locally. Then the structure is

easy to see. The lift F̃ r acts on de Rham cohomology, on the the complex. If you
compute the differential, you have d(fp) = pfp−1 = 0. So on functions there’s a

map, but for one-forms, you have F̃ r
∗
(α) is divisible by p for any one-form α. Mod

p it’s Fr∗(α) which is 0 by this argument. So you can refine this map by saying the

following. Ω1 is a flat module over Zp. Define the new map C−1 which is 1
pi F̃ r

∗

on Ωi. Then I want the differential on the domain to be pd. Then this map is a
quasiisomorphism. Since these are complexes of sheaves, you can do it at a point,
so it’s a computation in local coordinates.

Then one observes that this is equivalent to doing, well, 〈Ω·X , pd〉 is the same as

˜〈Ω, d, F 〉.
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So the left hand side is the same as if I allow 1-forms with 1
p , 2-forms with 1

p2 ,

and so on. Then C−1 induces an isomorphism between H̃ ·dR(X) and H ·dR(X).
You have a little more. In this case ϕi : F iM → M actually lands in F iM . In

general this is not true and you can express the obstructions in terms of the failure
of ϕi to respect the filtration.

Now consider the general case, considering only de Rham cohomology modulo
p2. We can choose an affine covering

⋃
Uα of X, and locally you have a lifting

of Frobenius F̃ rα, and they will not match on intersections. On Uα ∩ Uβ , they
do not have to agree. What is the difference between them? In general it’s hard
but modulo p2 it’s a derivation, ξαβ which is a vector field on the intersection, in
H0(Uα ∩ Uβ , T ⊗ Fr∗(?)). So ξαβ(fg) in this twisted setting is fpξαβg + gpξαβf .

Then F̃ r
∗
α = F̃ rα + Lξαβ where Lξαβ = dhαβ + hαβd where hαβ is just iξαβ . So

there is a canonical choice of homotopy between the two things that don’t match up
on the intersection. This gives a genuine map of Cech complexes. You can express
the nontriviality of this in terms of the failure to respect the filtration. There’s a
longer story but this is not going in the direction I want to go anyway.

That’s it for today. Next time we’ll talk about cyclic homology, after proving
that one of the categories is Abelian. The general goal is that thinking about cyclic
homology seriously you get some structure like a FDM fairly naturally. There is no
Frobenius map. In the general construction there is no place where commutativity
simplifies this.

2. November 26

First one proof from last time. Let me recall the statement. Let k be a field
and W (k) the Witt vectors. If you don’t know what that is, let k = Fp and then
W (k) = Zp.

Definition 2.1. A filtered Dieudonné module is

(1) a module M finitely generated over W (k),
(2) a decreasing filtration F ·M
(3) maps ϕi : F iM → M , Frobenius semilinear (linear in the simplified situa-

tion)

which satisfies

• ϕi|F i+1 = pϕi+1,

•
⊕
ϕ̃i :

⊕
F iM →M is surjective.

These form an additive category FDM .

Theorem 2.1. (Fontaine-Lafeille) The subcategory FDMtors of torsion modules
(finite length) form an Abelian category.

Proof. First let me embed it into some other category which is obviously Abelian
and show that it is closed under kernels and cokernels.

So M · is naturally a graded module over W (k)[t] with t of degree −1, where

t : F i+1M → F iM . I can take all the ϕi together by letting M̃ = M ·/(t−p). Then

the conditions are equivalent to saying that there is a natural map ϕ̃ : M̃ → M ,
also surjective.

In this language, by the way, I can take different quotients, M itself is M ·/(1−t)
and M ·/t is the associated graded gr·FM .
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Consider these graded things, dropping all assumptions, so let F̃DM be the
category of graded W (t)-modules equipped with a map ϕ̃ : M̃ →M . Then FDM ⊂
F̃DM and the image consists of guys with the condition (M ·, ϕ̃) is in FDM if and
only if

• t is injective, so that this graded thing comes from a filtered thing, and
• ϕ is injective.

I can put a torsion condition on F̃DM as well. We can say M · ∈ F̃DM tors if all
M i are of finite length, for n� 0 all Mn are zero, and for n� 0, t : Mn →Mn−1

is an isomorphism.

The category F̃DM is obviously Abelian. I take kernels and cokernels as graded
modules and there is no problem here. Then what I need to check is that this
subcategory is closed under kernels and cokernels. For kernels it’s pretty easy,
but for cokernels, that’s the reason that filtered modules don’t form an Abelian
category, you might have failure of injectivity for t.

Lemma 2.1. M ∈ F̃DM tors is inside FDMtors if and only if ϕ̃ is an isomorphism.

But this finishes things because this is stable under taking cokernels. �

Proof of the lemma. Consider t−a : M · →M · where a is an integer. It’s very easy
to see that under these assumptions, the kernel and cokernel have finite length and
moreover, we can define like an index between the two, Index(t−a) = len(coker)(t−
a)− ln(ker(t− a)) does not depend on a. You can see this by setting up a spectral
sequence that relates this, seen as a two term complex, to one with a = 0. Filter
the two term complex by degree of M ·. The first term of the spectral sequence is

obtained by the same complex without a. You start with M ·
t→ M · and then a

affects higher differenitals. In positive degrees we have zero and in negative degrees,
t is an isomorphism so you also get zero. So you get finite length here and the index
doesn’t change under the further differentials.

Now t−1 is always injective; t is injective if and only if t−p is injective. If there
is something annihilated by t you can find something annihilated by t and p. This
is enough; I want to show that t being injective and ϕ̃ surjective is equivalent to ϕ̃
being an isomorphism.

Since t is injective, so is t− p, there is no kernel for t− p. Then the length of the
cokernel M̃ , that is the same as the length of M , the cokrenl of t− 1. Then since
the map M̃ to M is surjective it is also injective.

In the other direction, if ϕ is an isomorphism, then the lengths of M̃ and M are
the same, so there is no kernel, so that t is injective. �

This is roughly how it works. The moral of the story is,

(1) the first moral is that when we work with filtered things, it’s kind of useful
to pass to these kind of Rees objects, and

(2) even when things are not finitely generated, we can consider a triangulated
category, a kind of derived version of FDM , consider M ·/W (k)[t] plus an

isomorphism M̃ →M . But now instead of taking the cokernel we take the
cone of the map p− t. This is obviously a triangulated category, since that
property is preserved under cones and shifts.

To get this you can consider the case without isomorphisms and then check that
being an isomorphism there is preserved, so you can compute in either the small
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category or the big category. I’ll get to a point where I don’t know how to phrase the
condition, but it doesn’t really matter because I can just work in the big category.

So my goal is to have a geometric construction of the same category, and I start
by just considering filtered modules. Let me start with some simple linear algebra
and then I’ll introduce the cyclic category after a break.

Fix a ground ring R and I want to consider the filtered derived category of
R-modules. This has two equivalent definitions.

(1) Take complexes of filteredR-modules and invert filtered quasi-isomorphisms.
By definition these are maps which induce an isomorphism of associated
graded quotients

(2) or equivalently, take graded modules over R(t) with degree of t −1, and
take the usual derived category of these guys. My claim is that both are
the same. There is an embedding from filtered to graded objects. Not every
graded object comes from a filtered object. But we can always replace it
with a resolution.

The functor sends (M,F ·) to
⊕
F iM with t : F iM → F i−1M

[discussion of the history of this notion]
Now there is also a third equivalent construction of the same thing.

3. Maybe people have heard of Koszul duality. The simplest example is the
symmetric algebra in one variable. Apply Koszul duality and see that the
filtered derived category of R is equivalent to the derived category of an
exterior algebra in one variable ε of degree 1 graded degree −1.

If you spell out the definition, it’s the same thing as a bicomplex. So objects in
the category of modules over R[ε] are bicomplexes. TO get a filtered object from
a bicomplex, a bicomplex, a bicomplex corresponds to its total complex, take the
stupid filtration. As a reminder I draw a vertical line, I put zeroes to the left and
keep everything to the right.

When I take the total complex, you can take sum or product, this is delicate. I
can impose conditions on my filtrations, separated, complete, let me ignore them,
which may not be a good idea but let me ignore them. If your complex is finite,
then it’s all irrelevant, but this can’t be the case for cyclic homology, typically one
wants things that are periodic.

Let me say, in the Chern character story too, you get a sort of twisted periodic
version of this filtered derived category. Namely,

Definition 2.2. DF per(R) is the category of

(1) M is a filtered complex of R-modules and
(2) M· = M·[2](1), that is, FiMj should be identified with F i+1Mj+2. This

filtered category is a basic version of this motivic category that I had on
Monday.

Let me mention how this appears in terms of bicomplexes as well. In term of
bicomplexes periodic filtered complexes correspond to “mixed complexes,” that is,
complexes (V, d) with another map B in the wrong direction, if d goes down then
B goes up. This anticommutes with d and squares to zero.

This means all my columns are the same and the differential ε gives me this B.
This gives me a periodic bicomplex and the only invariant is what is in the zero
column, and the differential.
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So I get a triangulated category Dmix(R) which is equivalent to DF per(R). Now
we’ll have a break and then introduce the cyclic category.

So I am going to do some category theory. I want to use Connes’ category Λ.
Let me use a presentation that’s slightly less standard than the usual one that will
give me some things I’ll need later. Assume we’re given a category I and a functor
F : I → Set. Then Tot(F ) is a category whose objects are (i ∈ I, f ∈ F (i)).
Morphisms are morphisms i → i′ so that f(α)(f(i)) = f(i′). This is in SGAI,
chapter six. This maps to I and this is a “discrete cofibration.” More restrictively,
you could look at F which lands in the isomorphisms. Then Tot(F ) → I is a
“discrete bifibration.” A map is a discrete bifibration if and only if for each i→ i′

and each object that projects to i, there is a unique map lifting i → i′. The same
should be true in the target. You could also formally invert all maps in I, getting a
groupoid, which is equivalent to, I can take the geometric realization of the nerve,
and then this groupoid is π1(|I|). If this thing is connected, then a functor from
this guy to sets is the same thing as a set with an action of π1(|I|). These are a
very naive analogue of coverings.

Now denote by [1]Λ the category with one object and endomorphisms equal to
nonnegative integers. You can think you have a quiver with a single object with an
arrow to itself and take the path category of the quiver. If I invert all morphisms,
I get all integers, and π1 is just Z, the group of integers. So for every n ≥ 1, I can
consider Z-sets, and amond those I can consider [Z/nZ] as having an action of Z
by left multiplication, so this corresponds to a discrete bifibration on [1]Λ, which I
will denote by [n]Λ. This is a category which the path category of a wheel quiver
with n vertices. Objects are residues mod n and morphisms a→ b are nonnegative
integers ` so that a + ` = b mod n. For every point there is an endomorphism n.
The geometric realization is still a circle. In fact, if you take geometric realization,
this guy is forced to be an n-fold cover.

For every functor f : [n]Λ → [n′]Λ induces a map on π1, so by multiplication by
some number, which I call the degree of f . If I normalize the morphism so that
going around the loop is the generator, then the degree is nonnegative.

Definition 2.3. The map f is non-degenerate if deg f > 0, it’s horizontal if the
degree is 1, and it’s vertical if it’s a discrete bifibration.

Definition 2.4. The cyclotomic category ΛR (I don’t know if there is standard
notation) has objects positive integers [n] and the maps are non-degenerate functors
f : [n]Λ → [n′]Λ.

The cyclic category Λ is, I can take the subcategory of horizontal maps.

You can ask what if I only consider vertical maps. Then what matters, the
category disappears and what matters is the action of Z, this is the category of
finite Z-orbits. In fact, this might be a fancy way to introduce this stuff but it
makes the combinatorics cleaner.

Lemma 2.2. Every map f in ΛR factorizes uniquely as f = V ◦ h.

Proof. Say that ` is the degree of f . For every degree I can take the degree `
discrete bifibration [n′`]Λ → [n′]Λ. I can take a pullback in some category
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I [n′`]Λ

[n]Λ [n′]Λ

discrete bifibration

f

It’s easy to see that pulling back a discrete bifibration is a discrete bifibration. On
fundamental groups, this sholud be multiplication by `. so the map I → [n]Λ is
degree 1 so it splits. Then I can take the map to [n′`]Λ as h. �

Exercise 2.1. Any horizontal functor f : [n]Λ → [n′]Λ has a left adjoint f# :
[n′]Λ → [n]Λ.

Corollary 2.1. The category Λ is equivalent to its opposite by sending f to f#

One third thing which is important for applications, we have the category ∆
which is non-empty finite totally ordered sets.

It has a natural embedding into Λ. Consider the category Λ/[1], which is a pair
[n] with a map [n]→ [1]. So consider the diagram of categories with the pullback

[n]∆ [n]Λ

pt [1]Λ.

I claim that [n]∆ is a finite totally ordered set. One of the maps in [n]Λ goes to the
generator in [1]Λ and the others go to the point.

The category Λ/[1] forgets to Λ so this gives a map ∆→ Λ.
Let me compute the homology and the cohomology of Λ.
For any small category I, I can consider Fun(I,R), the Abelian category of

functors I → R−mod, and by definition homology and cohomology are the derived
functors of direct and inverse limits.

Definition 2.5.

H·(I,−) = L· lim
I→

H ·(I,−) = R· lim
I←

I could take the constant functor.

Proposition 2.1. (1)
H ·(Λ, R) = R[u]

with u in degree 2 for a constant functor.
(2)

H ·(Λ, E)

can be computed by a bicomplex, Ei = E[i+ 1].

I can make this a simplicial R-module, with the standard differential b, an alter-
nating sum of face maps

∑n
i=0(−1)idi. But I can also take b′ =

∑n−1
i=0 (−1)di which

is acyclic but still a differential. So my columns are E with differential b alternating
with differential b′.

These have actions of the cyclic group since Aut([n]) is Z/nZ.
I have σ′ = (−1)i+1σ, and then my horizontal differentials are 1−σ′ alternating

with (1 + σ′ + · · ·σ′n−1). Composition is zero.
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E0 E0 E0

E1 E1 E1

E2 E2 E2

En En En

1 0

1+σ′
b

1−σ′
b′ b

1+σ′+(σ′)2
b

1−σ′
b′ b

1+σ′+···+(σ′)n
b

1−σ′
b′ b

Now Fun(Λ, R) is generated by R[n]([n
′]) = R[Λ([n], [n′])]. It is enough to

consider E = R[n]. So then H·(Z/n′Z, R[Λ([n], [n′])]), the action of Z/nZ is free
so the only cohomology is at degree 0. There we have the R-module generated
by the quotient Λ([n], [n′])/Z/n′Z. So you have the space of all maps, you act by
rotation, and you want to describe the quotient. The answer is that you can see
where any object goes, and every map is uniquely a composition of a map that
sends a prescribed guy to another prescribed guy followed by a rotation.

I can see that ∆op → Λ are the maps which send a prescribed object to a
prescribed object.

So in the end computing cohomology in the horizontal direction, all that is left
is the standard chain complex of ∆n′ .

This was a bit heavy but I can give you the positive side of this.
You can also produce a mixed complex out of this guy, I take the two columns

and take the total complex of, call that K·(E), then I get a map from the other
differential B : K·(E) → K·(E)[−1], which together gives me a mixed complex.
This construction has a sort of converse.

Definition 2.6. I had this notation for a category of functors. Let D(I,R) be the
derived category of Fun(I,R). I say that E ∈ D(I,R) is locally constant if for any
morphism α : i→ i′, the corresponding map E(i)→ E(i′) is a quasiisomorphism.

Denote by Dlc(I,R) the full subcategory spanned by locally constant objects.

This is clearly a triangulated subcategory. The cone between locally constant
things is also locally constant

Proposition 2.2.

Dlc(Λ, R) = DF per(R) = Dmix(R)

Such a functor inverts all maps, so it’s a map from the fundamental groupoid.
So since CP∞ has no π1, well, that [unintelligible]

The whole category is generated by the constant R and maps to itself are like R[u]
so you find a generator and show that maps match. I write that it’s a proposition
because it’s conceptually important but the proof is trivial.

The rough program for next week is, I introduced ΛR. In a nutshell, these
extra maps in characteristic p give you ϕ. I have something filtered that is locally
constant, but I need these extra maps ϕ, and the procedure of doing this, you
need more than just maps from ΛR. The something more is some homological
phenomenon which is interesting. There will be two lectures. The first one will be
on Mackey functors. I also have vertical maps ΛRV . There’s a story for any group
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G. There is an interesting category of functor associated to this. On Wednesday
I’ll put things back together to work on Λ.

3. December 1

So the topic today is not related to anything last week and the topics will come
together in the last lecture on Wednesday. Today the topic is Mackey functors.
You can treat this as an exercise in homological algebra.

One starts with a group, let’s say a finite group G, and I denote by ΓG the
category of finite G-sets. I can consider the opposite category. Fix a coefficient
ring R, and then

Definition 3.1. A functor E ∈ Fun(ΓoG, R) is additive iff E(S t S′) → E(S) ⊕
E(S′) is an isomorphism.

This says that the value of the functor is determined by its action on sets with
transitive action, also known as orbits, these are sets of the form [G/H] where H is
some subgroup. Then the category of additive functors is equivalent to the category
of all functors on G-orbits:

Funadd(ΓoG, R) ∼= Fun(OoG, R).

Now consider the category QΓG, whose objects are again finite G-sets but where the
morphisms from S1 to S2 are some kind of correspondences, they are isomorphism
classes S1 ← S → S2 in ΓG.

Definition 3.2. A G-Mackey functor is a functor E ∈ Fun(QΓG, R) such that
E|ΓoG is additive.

I should have said, I have natural embeddings ΓG → QΓG and ΓoG → QΓG.
Denote the category of G-Mackey functors by M(G,R). So Mackey had very

little to do with this definition. This was introduced in 1973 by Dress, and then
further clarified. This definition is due to Lindner. People use this in group the-
ory, pure algebra, and also in algebraic topology, the motivation comes from stable
homotopy theory, G-equivariant stable homotopy theory. You have some X a topo-
logical space with an action of G, and you consider maps between these guys up
to equivariant homotopies. Then for any subgroup H, the space of H-fixed points
are homotopy invariant. Naively you think you get a homological action of G, but
you get more. You can think of this as MapG([G/H], X). So then C∗(X

H , R) for
a complex in Fun(ΓoG, R).

But then when we go to the stable homotopy category, it’s kind of a general
principle that whenever I have a finite cover f , in the stable homotopy category I
get a “transfer map” in the opposite direction. So in the stable theory you should
get maps in both directions. In fact, you get QΓG. This is kind of a long story and
it goes in kind of the opposite direction of the pure algebra I want to do, but as
motivation it’s good to keep in mind.

This category has some structure. If you have H ⊂ G, we can consider [G/H],
and look at AutG[G/H]. This is NH/H, which we’ll denote W , for Weyl. Then we
have a functor ϕH : ΓG → ΓW where X 7→ XH . If you have a fiber product, and
you take fixed points, it’s still a fiber product. So ϕH preserves fibered products.
So we can extend this to Q(ϕH) : QΓG → QΓW . This induces adjoint functors
between the categories of Mackey functors. We have M(G,R) and M(W,R), the
functor from M(W,R) to M(G,R) is called inflation, and it is pullback with respect
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to Q(ϕH). The adjoint functor ΦH , called geometric fixed points, which is Kan
extension Q(ϕH)!. You have to make sure this preserves additivity.

What is nice about this functor, there is a lemma

Lemma 3.1. Consider N ⊂ G a normal subgroup with W = G/N . Then InflN

is fully faithful, and E → InflNΦNE is surjective. So a Mackey functor gets a
filtration indexed by normal subgroups of G.

There is another structure that maybe I don’t even need.

Lemma 3.2. We have this embedding M(G,R) ⊂ Fun(QΓG, R), and this has a
left adjoint additivization, I can just apply Add and make a functor additive.

You can take the product of two G-sets and this gives a functor m : ΓG × ΓG →
ΓG, and this lifts to Q(m) : QΓG ×QΓG → QΓG. This allows us to define a tensor
product.

Definition 3.3. If R is commutative, then

E1 ◦ E2 = AddQ(m)!(E1 � E2)

Then ◦ makes M(G,R) into a symmetric monoidal category. It actually has a
unit object. It’s nice because it doesn’t come directly from representation theory.
The unit object A ∈M(G,Z) is called the Burnside Mackey functor. Its values are
as follows, A([G/H]) = AH , the Burnside ring of H. Take the isomorphism classes
of finite H sets, generate the free Abelian group, and mod out by the relation that
S t S′ = [S] + [S′]. The product is induced by a product of sets. You have some
matrix coefficients for the product. This was introduced by Burnside a long time
ago. This turns out to be the unit object in this category (and indeed be a Mackey
functor).

As I said this is an Abelian category and if I want to work homologically I
can consider its derived category. This Abelian category has been around for 40
years, but it turns out that the derived category D(M(G,R)) is not the right thing
to consider. Some nice theorems start to fail at this level, for instance that the
inflation functor is fully faithful. Also it’s clear why this is the wrong thing to
consider, in Q(Γ) you get isomorphism classes of morphisms, but you expect that
automorphism groups should act and there should be higher group homology. So
the reason is that QΓG is really a 2-category. I want to say that the category of
derived Mackey functors sits inside the derived category D(QΓG, R) (this is the
2-category). There are multiple ways to do this but I’ll use nerves.

Recall that, well, begin with a 1-category. Recall that the nerve N(C) of a small
category C is a simplicial set, a functor ∆o → Sets, one usually says that objects
in ∆o are sets [n], and then [n] is evaluated by the nerve to the diagrams like this
{c0 → · · · → cn} in C. So it’s useful to do a Grothiendieck construction like last
time here, we want to define another category N (C), which is a pair [n] ∈ ∆ and
then a diagram c as before. Morphisms are maps from ([n′], c′)→ ([n], c), the map
g : [n′]→ [n] should satisfy that g∗c = c′.

I also have a natural functor N (C) → C which sends ([n], c) to cn. I have a
pullback

q# : D(C, R)→ D(N(C), R)

Say that a map f in N (C) is special if f(n′) = n. An object is special if E(f) is an
isomorphism for all special f . Then it turn sout that q# is an equivalence to the
full subcategory spanned by special objects.
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This looks pretty useless. But the observation is that if C is a 2-category, this
is still a perfectly good 1-category. Let me write this down. The functor N(C)
is a functor to categories, not sets. But N (C) is still a 1-category. Objects are
pairs 〈[n], c·〉 and morphisms are almost as before, a morphism is given by a map
g : [n′] → [n] between ordinals along with a map α : c′· → g∗c·. The rest goes
through, with special maps. Then you consider the same subcategory and you get
a repleacement for the derived category.

Definition 3.4.

D(C, r) := Dsp(N (C), R)

Why is this right? You can take an alternative cumbersome approach, take the
geometric realization of the nerve of Z[C(c, c′)] for C a 2-category. If you do things
carefully enough, you can make this an A∞ category, and then prove that this gives
the same answer.

This is unpleasant to work with because you need all the A∞ relations. Another
motivation is that in the literature, people always work like this, Segal spaces or
whatever. This is the only thing that you could conceivably do.

I want not just any 2-category, I want QΓG. We can consider N (QΓG), but then
diagrams will be like

S01 · · · Sn−1,n

S0 S1 · · · Sn

We can also use a smaller thing, C has fibered products, so you can do this

Definition 3.5. SC has objects c0 → · · · → cn and morphisms are 〈g, α where
g : [n′]→ [n] and α : g∗c· → c′·.

So you get something like this:

c′0 · · · c′n′

cg(0) · · · cg(n′)

α α

So you get a bunch of squares and the condition is that the diagram

c′i c′j′

cg(i)cg(j′)

α α

is Cartesian so they’re all determined by the last one.
I say that a map g, α is special if g(n′) = n and α is an isomorphism.

Definition 3.6. I let DS(C, R) in D(SC, R) is the full subcategory spanned by
special objects

Lemma 3.3. DS(C, R) ∼= Dsp(N (QC), R).

If those diagrams had no automorphisms, I could take the one-categorical version
but in general you can’t do that.

Let me give the definition of derived Mackey functors and then we’ll take a break
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Definition 3.7. A derived Mackey functor is an object E ∈ DS(ΓG, R) such that
restricting it to ΓoG ⊂ SΓG, e∗E ∈ D(ΓoG, R) is additive.

Okay, so example. Let’s take the simplest group one can think of, Z/p where
p is prime. There are only two orbits. They are [G/G] and [G/e], where e is the
trivial subgroup. What is a G-Mackey functor? It should have an R-module EG

and an R-module Ee which is an R[G]-module. Let σ be a generator. Then there
is an automorphism σ of Ee of order p. There is one map V : (Ee)Sσ → EG,
and a map the other direction F : EG → (Ee)σ. There is a compatibility because
the composition of V and F will decompose as a union of p copies of itself, so
F ◦ V = Id+ σ + · · ·+ σp−1. For every finite group there is a map coinvariants to
invariants given by averaging over the group. That’s this map.

What about derived Mackey functors? I won’t prove this but let me give an
answer. Now Ee· and EG· are complexes, and now instead of invariants and coin-
variants we get

C·(Z/pZ, Ee· )
V−→ EG·

F−→ C ·(Z/pZ, Ee· )
with the same condition. You can choose a model for Ee· which is injective or
projective, so that one of the two sides of this collapses, but you can’t find a
simultaneous choice so that both of them collapse. This is the reason that the
categories are different.

Let me do the following trick, giving a different description of the same data. As
my objects I chose these two guys and got these structure maps, but I can instead
look at ĒG· , which is Cone(V ). SO then I can take 〈Ee· , ĒG· , and now what I need
is ϕ : ĒG· → Č·(G,Ecdot

e), the Tate cohomology complex, the cone of the trace
map Id+ σ + · · ·+ σp−1.

This is somehow more effective because the Tate cohomology is often zero.
This can be rephrased as follows. One way to compute Tate cohomology, take

a projective resolution of Z in Z[G] −mod, let P̃ be the cone of this, · · · → P1 →
P0 → Z. Then Č·(G,E) = limC ·C ·(G,E ⊗F `P̃ ). This means that DM(G,R) can
be described as dg-modules over: (

R[G] P̃·
0 R

)
This R[G] is finite dimensional, but its modules have infinite dimension, this means
that you get things that are acyclic but not contractible. You could take a field,
dual numbers, and the same thing. You’ll get two things that are quasiisomorphic
but with different categories of dg-modules.

Morally this next part is known but I couldn’t find it in the literature

Maximal Tate cohomology. Let G be a finite group and let Dind(G,Z) ⊂
Db(G,Z) be the smallest triangulated subcategory containing indHG (E·) for E· ∈
Dbfg(G,H), H ( G.

Consider the quotient D̄(G,Z) = Db(G,Z)/Dind(G,Z). The observation is that
sometimes this is not the whole thing.

Definition 3.8. The maximal Tate cohomology groups Ȟ ·max(G,E) are Hom·D(G,Z)
(Z, E·).

Definition 3.9. A complex P̃ is maximally adapted, P0 = Z if

(1) Pi is induced for all i, and

(2) P̃·|H is contractible.
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For example, if H is just the trivial group, then P is projective and contractible.
The first condition becomes weaker and the second stronger as you add subgroups.

Then Ȟ ·max(G,E) = limH ·(G,E ⊗ F `P̃ ) for a maximally adapted P̃ .

Definition 3.10. For E a complex of R[G]-modules, Čmax(G,E) = limC ·(G,E ⊗
F `P̃ ).

Consider DM(G,R), the statement is true as in the ordinary Mackey functor

case, that InflN is fully faithful for N a normal subgroup of G.
Before I had ΦN , the fixed points, this was a W -Mackey functor. I can take

its value on the free orbit. Let me define Φ̄N (E) as ΦN (E)([W/e]), which sits in
D(R[W ]). One shows it has a right adjoint Infl : D(R(W )) → DM(G), and this
guy is also fully faithful.

For commutative groups where all subgroups are normal, the images of these
generate the whole derived category. If the group is non-commutative, I can define
Φ̄H and its adjoint is still fully faithful, the whole category has a filtration by this.

I can also descibe the extension data. Being fully faithful is equivalent to saying

that if I take Φ̄H ◦ Infl
H ∼= Id. What if I take fixed points with respect to one group

but inflate with respect to another? What’s Φ̄G ◦ Infl
e

: D(R[G]) → D(R). The
claim is

Proposition 3.1. This is isomorphic to Č ·max(G,E).

I gave you this category. Aside from general interest, I believe this is useful to
give counterexamples and so on.

One final thing I want to say today that I will need for applications on Wednes-
day. There are two. We’ll need the group Z and everything I’ve said has been
about finite groups. I’ll talk about that next time. Now let me make some com-
ments about Z/nZ for some n. Let’s consider the arbitrary case.

It turns out I can have a rather explicit description of the category. It’s pretty
similar to this coalgebra. Roughly speaking, it’s difficult because you have a coal-
gebra with an upper triangular shape but with arbitrary coefficients. The maximal
Tate cohomology is zero unless you have prime coefficients. You turn out not to
need anything A∞.

Denote by In the groupoid of finite G-orbits and isomorphisms between them.
For any L, let me denote by pt` the point with automorphisms Z/`Z. Then In is
the disjoint union of these over divisors.

For p let Ipn bet the subcategory where p|` (with embedding i). We have two
projections, we can go π : Ipn → In where ptp` → pt`, since there’s a quotient map
Z/p`→ Z/`. Let I ·n = tpIpn. Then there are two projections, i or π to In. We can
consider the category of functors (I ·n,Z), this is just a collection of representations
of cyclic groups. Fix a projective resolution P· of Z ∈ Fun(I ·n,Z), and as before let

P̃ be the cone of this augmentation map.

Theorem 3.1. The category DM(Z/nZ, R) ∼= {(E·, α)|E· ∈ Fun(In, R);α : i∗E· →
π∗E· ⊗ P̃}, let me denote this by Dα(In, P,R). It does not depend on the choice of
P , and it’s equivalent to the DM(Z/nZ, R).

This is basically the same as what I was doing before. Normally for a coalgebra
there should be a condition where composing with itself gives itself. Here the
coalgebra is so trivial that you don’t need this. The basic reason this works is that
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you can show that maximal Tate cohomology of Z/nZ is trivial unless n is a prime.
So we only get nontrivial gluing between pieces which differ by a prime.

In the next lecture I’ll plug in the cyclic category. When the coefficient ring is
p-local, we’ll get something familiar. But there will be a version with Z. That’s for
next time.

4. December 3

Today I want to bring things together, combine the Mackey functors from last
time with the cyclic categories of last week. But first I should say what to do
for Mackey functors for infinite groups. In the topological setting they normally
consider compact Lie groups. That’s kind of orthogonal, I want to consider infinite
discrete groups.

Formally I don’t need to do anything. The theory works. I could consider ΓG,
the category of finite G-sets. I need this because otherwise things become zero.
But this replaces G with its profinite completion.

There is an alternative even here. Enlarge your category of G-sets. Say a G-set
is admissible if

(1) for any s ∈ S, the stablizer of s is finite, and
(2) for all cofinite H, the fixed points of H is finite.

So S is a disjoint union of orbits [G/H] where for N a normal cofinite subgroup,
there are only a finite number of indices where Hi contains N .

Denote by Γ̂G the category of admissible G-sets.

Definition 4.1. E in Fun(Γ̂G, R) is additive if

E(tSi)→
∏

E(Si)

is an isomorphism.

I can still take fibered products, look at QΓ̂G, and ŜΓG.

Definition 4.2. A G-Mackey profunctor is a functor E : QΓ̂G, R) such that E|Γ̂oG
is additive. These are denoted M̂(G,R).

A derived G-Mackey profunctor is E ∈ DS(Γ̂G, R) such that E|Γ̂oG is additive.

These are denoted D̂M(G,R).

We have all the fixed point functors. Now for normal cofinite N we have this

inflation functor InflN : DM(G/N,R) → D̂M(G,R) which is fully faithful. For
every M , we can take the limit with respect to normal subgroups. You need to
derive this, this has to be defined in a precise way. This is lim InflNΦNM . If M is

a bounded above as D̂M(G,R) and G is finitely generated (really what you need is
for any cardinality, there are only many finitely many quotients of that cardinality),
then this is an isomorphism.

Strangely, you need to go to the derived version, you have a right exact, an
exact, and something left exact. The composition is not a derived functor. I could
maybe construct an example where if you remove the derived stuff this is not true.

But that’s a technicality. If you want to consider D̂M
−

(G,R), you might as well
consider this system over normal subgroups.

To understand the difference between ΓG and Γ̂G, let me consider AZ, which
is generated by all orbits, which are numbered by integers, so this is Z[ε1, ε2, . . .]
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where εn corresponds to Z/nZ. Then εnεm = nm
{n,m}ε{n,m} where {n,m} is least

common multiple.
Then ÂZ = Z[[ε1, ε2, . . .]]. By definition this is spanned by admissible things

modulo relations and [missed]. This is better than AZ because for example, if I
take R to be p-local for some prime, so everything prime to p is invertible, then
elements 1

nεn is idempotent in the Burnside ring. We have commuting idempotents.

In ÂZ you can transfer them to orthogonal idempotents, for p - n, they can be
simultaneously diagonalized. The Burnside Mackey functor is in the center of the
category and acts on all the objects in the category. In this case that gives:

Proposition 4.1. If R is p-local, then M̂(Z, R) ∼=
∏
p-n M̂(Zp, R[Z/nZ]).

This can be called a “p-typical decomposition” because this ÂZ is the Witt
vectors of Z.

In the interest of full disclosure I should say this is lifted from p-adic represen-
tations.

Now let’s do the plug in the cyclic part of things. When I defined the cyclic
category I used a strange definition that people were unhappy with but now there’s
the payoff.

Definition 4.3. A small category I is admissible if I = tS [ns]Λ with [ns] ≥ 1 such
that for all n ≥ 1 there is only a finite number of s such that n = ns (or divides
or is less than, all of these give the same definition). When I have such a disjoint
union, what is a functor between two of these? I should have a map f : S → S′,
and then for every s there is a map fs : [ns]Λ → [n′f(s)]Λ. Any functor is of this

shape.

Definition 4.4. I say that (f, {fs}) is nondegenerate if the degree of fs is nonzero,
that it is horizontal if the degree is 1 for every fs and f is invertible. We say it is
vertical if fs is a discrete bifibration.

Definition 4.5. Let Λ̂R be the category of admissible categories and non-degenerate
functors.

When I introduced the cyclotomic category last week I used the same thing but

without disjoint union. So ΛR ⊂ Λ̂R. The vertical maps in ΛRv are orbits. Now

in Λ̂R the vertical maps are Γ̂Z.

Lemma 4.1. (1) any f in Λ̂R can be uniquely factorized as f = v ◦ h.
(2) any diagram

I2

I1 I

v

f

extends to a Cartesian diagram

Ik I2

I1 I

v v

f
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I don’t really need the first thing but I need the second. Because of it, I can play

the same game and define QΛ̂R to have the same objects but maps the isomorphism
classes of diagrams

I

I1 I2

v

Now let SΛ̂R be the same as SC with objects compositions of vertical maps I0
v−→

I1
v−→ · · · v−→ In

Definition 4.6. A cyclotomic derived Mackey profunctor is an object E ⊂ DS(Λ̂R,R)
such that E(I) is isomorphic to

∏
S E([ns]) for every I which is admissible.

These for the category D̂M(ΛR,R).

This category is what will contain the filtered Dieudonné-modules. You take
the subcategory where horizontal maps induce isomorphisms. I need some other
model which will be much smaller. What I want to do here is the same thing I did
with cyclic groups last time. The answer for what Mackey functors were had two
answers, a Koszul dual description. The same description is possible here.

Let me explain what this is.
I need to start with something like the groupoid of all orbits.

Definition 4.7. For any n ≥ 1 let Λn be the category whose objects are vertical
maps [mn]→ [n] in ΛR of degree n and morphisms are diagrams

[m,n] [m]

[m′, n] [m′]

v

h v

v

There are maps Λ
i←− Λn

π−→ Λ, there are some extra automorphisms. So for
example we could have |Λn| = CP∞ and i is an isomorphism but π is induced by
the n-fold cover of the circle. So the fiber of this map is the classifying space for a
finite group. This realizes this picture categorically.

Okay, fine. If you consider only vertical maps you get groupoids of orbits and
it’s exactly the picture from last lecture.

Let Λ = tpΛp and choose a resolution P· of the constant functor Λ→ Z. Then

Definition 4.8. A cyclotomic complex is a pair (E·, α) where E· is some complex

in cyclic objects, E is a complex in Fun(Λ, R). Then π∗E
α−→ P̃ ⊗ i∗E. Here P̃ is

the cone of the augmentation P → Z.

I have a feeling that last time I made a mistake and had this map going in the
other direction, but this is how it should go.

These are cyclotomic complexes. Inverting quasi-isomorphisms, you obtain a
category that should be denoted DΛR(R) with some P but it doesn’t depend on
P .

Theorem 4.1.

D̂M
−

(ΛR,R) ∼= DΛR(R).

This is again an exercise in Koszul duality. Now is a good time for a break.
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Definition 4.9. A generalized filterd Dieudonné module over R is 〈M,F ·, ϕpi,j
where ϕpi,j : F iM → M/pjM for i, j ∈ Z and p a prime. I want the colimit of

F−iM to be M and also the limit of M/F iM .
I should also have ϕpi,j = ϕpi,j+1 modulo pj and ϕpi,j |F i+1 = ϕpi+1,j.

Effectively you just replace these with ϕpi : M → M̂p which is the limit of
M/piM . This combines structures for all p that don’t talk to each other. If M is
p-local, then M/qjM vanishes except for q = p. Then the only thing that survives
is ϕpi and I recover filtered Dieudonné modules.

There is a fine point. I should get derived 2-periodic filtered modules, not fil-
tered modules on the nose. Denote by Dper(gFDM) the twisted 2-periodic de-
rived category of gFDM . So we should have a complex of M with an equivalence
M· ∼= M·[2](1). Here (1) is the twist.

Theorem 4.2. The category Dper(gFDM) ∼= DΛRblc(Z). Here lc means locally
constant and b means bounded.

In order to do this I need to revisit the correspondence between these two and
make it more precise.

I could use whatever resolution P I want but I’ll choose one which makes things
simple. Already if you consider Z ∈ Fun(Λ,Z), there is one kind of preferred one
which is periodic. We have u ∈ H2(Λ,Z) and this can be represented by Yoneda
by a certain complex

0→ Z→ P1 → P0 → Z→ 0

Think of a circle, think of Pi([n]) = Ci(S
1[n],Z). There are n zero-cells and n-one

cells. They are free Z[Z/nZ]-modules of rank one. The cohomology of S1 does not
depend on the decomposition.

In fact, I can cook up a complex

→ P1 → P0
d0−→ P1

d1−→ P0

This will be the standard 2-periodic resolution of the trivial representation, for
every [n].

Now let me observe one thing about this complex right away.

Lemma 4.2. You have these maps π and i from Λn to Λ. I can take π∗i
∗Pi and

the claim is that this is still Pi. The differential d1 is still d1 and π∗i
∗d0 is nd0.

The differentials are 1−σ and 1 +σ+ · · ·+σm−1. You have 1 +σ+ · · ·+σmn−1

which is the same as (1 + σ + · · ·+ σm−1) (1 + σm + · · · )︸ ︷︷ ︸
n

Let me make it clear that α gives those maps ϕi. Consider periodic filtered
complexes V , the direct limit of F−iV and also the inverse limit of the quotients
V/F iV . Periodic means I have this identification V ∼= V [2](1). It’s convenient to
consider Rees objects. We have V·,·/R[t] where the degree of t is one. I need to
impose the inverse limit condition, which says that V·,· is t-adically complete. So
V·,·/t

i is an isomorphism.
Okay. Now let me define a functor, cyclic expansion, from filtered modules to

cyclic objects which works like this.

Exp(V·,·) = (V0,· ⊗ P1)[1]⊕ (V0,· ⊗ P0)
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The differential d is the sum of dV ⊗ id and{
Id⊗ d1

Id⊗ d0

So if I took the stupid filtration,

Example 4.1. Let V = Z. Then Exp(V·) is Z ∈ Fun(Λ,Z) represented by this
resolution P·.

Proposition 4.2. The functor Exp is an equivalence between DF per(R) and Dlc(Λ, R).

The proof is basically the same as last week. All the locally constant functors
are just constant, and you just need to check that you get an isomorphism on Ext.

The statements, now, are like this.

Definition 4.10. For any filtered complex V·, with Rees object V·,·, its nth subdi-
vision Divn(V1) is V·,· where t acts by nt.

There is one twist. I can formally do this, but I want my guys to be t-adically
complete and after multiplying by n this may not be true any more. So I need to
take again the completion.

I’ll give another definition and then an example.

Definition 4.11. The stabilized subdivision Stabn(V·) =
lim−−→ Divn(V ).

Example 4.2. Take V = Z with F 1 = 0 and F 0 = Z. Let n = p. The Rees object
is

0→ 0→ Z t−→ Z t−→ Z t−→ Z.
I multiply by p:

0→ 0→ Z pt−→ Z pt−→ Z pt−→ Z.
now I need to take the limit, and I get Divp(V ) = Z[ 1

p ] and Stabp(V ) = Qp.

Inside here F iQp = piZp

Lemma 4.3. For any M , Stabp(M) is M̂p ⊗Qp with filtration F i = piM̂p.

We’re almost done, now let’s compare this business with the definition of cyclo-
tomic complexes.

Lemma 4.4. (1)

π∗i
∗Exp(V·) = Exp·Divp(V·)

(2)

Exp(Stabp(V·)) = limπ∗(i
∗(V·)⊗ F 2`i∗P̃·)

This means that for every `, we have F 2` is just Z[2`] (this is the stupid
filtration). This is the same as taking subdivision and twisting by `.

Now this proves the theorem, to construct a functor. The lemma identifies
DΛRblc(R) with DF per(R) via α : π∗E· → i∗E· ⊗ P̃ which is the same as ϕ :

E → π∗(i
∗E ⊗ P̃ ). Then ϕ : V· → Stabp(V·) with ϕi : F i(V·) → (V̂·)p with

ϕi|F i+1 = pϕi+1.
Okay this is bizarre but this is how things work. Just some final observations.
I completely dropped the condition that things should be isomorphisms that

give a nice category. I do this packaging differently than in normal FDMs. There
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I had a map ϕ̃ : M̂ → M which I wanted to be an isomorphism, but here I
have ϕ : M → StabpM . I don’t know how this repackaging affects this being an
isomorphism.

[example where you don’t expect an isomorphism].
In this case F iZp = piZp and the maps ϕi are the identity map. Going one level

down I should get divisibility by p. I can take the identity map at every step of the
process. I cannot truncate because the collection is surjective. Each of the ϕi is an
isomorphism but ϕ̃ is not an isomorphism, torsion but huge. This is an example
of the things that come up. This corresponds to so-called topological Hochschild
cohomology, cristalline cohomology, slightly bigger. There are two worlds, one
where characteristic p things live and the other for things that lift to Zp. I’m going
to think more about this.

My final remark was that all of this was in characteristic p. The packaging I
would also like for Hodge structures. This looks not as bad as the original definition,
you don’t need to specify p, you don’t need to guess. I’d like some singular notion
that would incorporate Hodge structure but I don’t know. It’s not a well-posed
question. In any case it’s pure linear algebra, too simple, but still it would be nice
to have.


