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Thanks to Gabriel for extending the invitation, everyone has been very nice so
far. The title of my talk, more or less, will be “Factorization homology and stratified
spaces.” I’ll talk about work joint with David Ayala and John Francis.

What is factorization homology? There’s the word homology in there. It’s a
generalization of the usual homology. In usual homology, you fix an Abelian group
A and out of this we get an invariant of topological spaces H∗(—, A), and this forms
an invariant of topological spaces. It’s an invariant you can compute with a local
to global sequence. That’s one reason we really like homology. If you’re studying
manifolds that’s not a strong invariant. There exist homotopy equivalent manifolds
that are not diffeomorphic so ordinary homology can’t tell the difference.

Factorization homology lets you pass again from local to global data. Now we
want to construct a homology theory for manifolds. The local data for an n-
dimensional manifold is Rn, so we want to put algebraic data to put on that and
it’ll be an En-algebra A. Then we’ll construct an invariant of n-manifolds. The
kinds of manifolds I’ll consider will be non-compact. So A is what you’d assign to
Rn, which is not compact.

The first thing I should explain. Everyone knows what an Abelian group is. Not
everyone knows what an En algebra is. The definition I’ll give isn’t most standard
but it’s most useful.

Definition 1.1. A framed manifold is a smooth manifold X with a trivialization
φX : TX ∼= X × Rn of its tangent bundle. Every smooth manifold comes with a
tangent bundle but not every one admits a framing. A framed manifold, I mean it
should come equipped with one. For example, the space of maps X → GLn acts on
the space of framings.

Definition 1.2. An embedding of framed manifolds is a pair (j, h) where j is a
smooth embedding between two manifolds and h is a homotopy from the framing of
Y pulled back to X, j∗φY to φX that is the identity on the base.

Let’s give some dumb examples.
Let’s say that your manifold is R with a choice of trivialization φX : TR→ R×R

and that Y is the same with a trivialization φY . Let’s look at the space of framed
embeddings Embfr(X,Y ). So I want to point out that for a manifold as simple
as R an orientation is the same as a framing. I mean the space of framings is
contractible. What is this space of embeddings? It’s homotopy equivalent to a
point.
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More generally, EmbfrqkX,Y ) ∼= Σk (as a torsor, this has no group structure).
The picture of this is that you have k disjoint intervals sitting in R.

Now let me make a definition of a category that you can define now.

Definition 1.3. Diskfrn is the category whose objects are of the form qkX where
k is a finite number (possibly zero) and X = Rn, φ. There are a natural number
worth of objects. The morphisms are framed embeddings.

This category has a symmetric monoidal structure given by disjoint union.
Another thing I want to mention, this doesn’t just have a set of morphisms.

There’s actually a space of morphisms. There’s a topology here.
Now I can define what an En algebra is. Fix (C,⊗), a category enriched over

spaces with a symmetric monoidal structure. An En-algebra in C is a symmetric
monoidal functor (Diskfrn ,q)→ (C,⊗).

The symmetric monoidal functor should respect the topology of morphism spaces.
Let’s do an example. It might seem a little abstract. Let’s let n = 1 and take C

to be the category of vector spaces over k. How is this enriched over spaces? Think
of hom(V, V ′) to be given the discrete topology. Now this won’t be interesting
after n = 2 but it’s instructive to see n = 1 and n = 2. The empty manifold has
to be sent to the monoidal unit k. We have an object R, φ, which is sent to A.
Any k disjoint copies of R goes to A⊗k. There should also be a map from the
space Embfr(Rqk,R) → hom(A⊗k,A) If k = 2, the space of framed embeddings
is homotopy equivalent to two points. You could embed two intervals in order or
out of order. The first one gives you a multiplication map. Associativity will follow
from looking at what happens when you include three disjoint intervals into one.
There are two ways I can factor three intervals including into one, depending on
how I gather things. This is diagram illustrating maps of disjoint intervals. The
two compositions are isotopic. What does the functor do to this diagram? It says

A

A⊗2

m

;;

A⊗2
m

cc

A⊗3

id⊗m
<<

m⊗id

bb

This needs to commute and the upshot is that an E1 algebar is a unital associative
alegbra. The empty manifold is sent to the base field and you get the unital
conditions by chasing diagrams.

A fancy way to say that you get nothing else is that you an E1 operad is just a
model for the A∞ operad.

Now let’s look at the case n = 2. For those following the script, I’ve claimed that
every associative algebra gives you an invariant of 1-manifolds. You can daydream
about the circle.

The claim is that an E2-algebra in vector spaces with the usual tensor product
will be a unital commutative algebra.

Consider two copies of R2, labeled one and two, and one embedding would be
embed them into R2 at some random location. I could shove them in the same
location with their labels swapped. You notice that in R2 these embeddings of R2
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are isotopic. In other words, applying the functor, if we have an E2 algebra, this
diagrams becomes that the following commutes:

A⊗2
m //

σ

��

A

A⊗2 // A

The same argument as before shows this is associative. You can do the same thing
for n ≥ 2.

So the takeway is that V ect has too dumb morphism spaces to see the topology
of embeddings of high dimensional disks. So we should consider categories with
nicer morphism spaces. For instance, we could use spaces.

Say n = 1 and let the category be the category of spaces with ×. Then we fix
a space X with a basepoint x0. Let A be the space of maps (D1, ∂D1)→ (X,x0).
These are maps from D1 → X so that f restricted to the boundary goes to the
basepoint. So I get a loop in X. This is the based loop space of X, ΩX. We learned
early on that this space has an interesting structure if you look at the connected
components, π0 of this is the fundamental group. This has a product but it’s only
associative up to homotopy. That’s what an E1 algebra is in spaces. It has a
product which is associative up to homotopy.

Now for n = 2 and to be adventurous you could imagine n = 18 or whatever you
like. Let A be Maps(Dn, ∂Dn), (X,x0)). The components of this are πn. Let me
make the algebra maps explicit. Given an embedding of many copies of R2 into R2,
we are supposed to get a map from A3 → A. If I’m given some tuplet of functions
from the n-disk into X, I can construct a single map as follows. I’m given this
embedding and can put in the functions on this tiny disk. On the boundary I get
x0 and I can send the rest to x0. So A is the n-fold loop space of X, ΩnX.

There’s another example I won’t do in detail that comes from work of Kevin
Costello and Owen Gwilliam. Given a Lie algebra ≫, you can shove it into a black
box, I could tell you it some other time, and you get a universal enveloping En
algebra of ≫. To transition into the rest of my talk, factorization homology will
give global quantum observables on your framed manifold X of some n-dimensional
topological field theory given by your Lie algebra ≫. I won’t talk about this for
the rest of my talk, if this didn’t make sense.

Now I can get to factorization homology. First I’ll give a slightly abstract defini-
tion, using some properties that I can use to actually compute. The first observation
that we make, how did I define an En-algebra? You might have interrupted me and
asked about other framed manifolds. The first observation is that Diskfrn is a sub-
category of Mfldfrn , whose objects are framed n-manifolds, possibly non-compact,
and the morphosms are the space of framed embeddings. How could we construct
an invariant of framed n-manifolds. If I have an En-algebra A, I have this natural
inclusion to Mfldfrn and this functor to C. If I could extend this to manifolds
universally, that would be great.

If you’re a category theorist, the answer is yes, it’s Kan extension. This functor∫
—
A is the left Kan extension of A along the inclusion of framed n-disks into framed

n-manifolds.
This is probably a term that you don’t need if you’re not a category theorist. I

could describe what it is in part two. Explicitly, you start with an En-algebra A
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and then apply the left Kan extension. This relies on some assumptions on C. It
should have small colimits and also for every object in C, —⊗ C preserves filtered
colimits and geometric realizations.

These conditions are probably not meaningful so let me just give some examples.
You could choose chain complexes over k with the derived tensor product. Another
example is spaces with product. Another example is spectra with smash product.

Most categories you’re happy dealing with can be recipients of factorization
homology.

Let me give some consequences of the definition. Two are obvious and the third
is a theorem that characterizes, more or less, factorization homology.

As I go through these, the chef recommends that you have in your mind the
usual notion of homology.

• Because — ⊗ C commutes with geometric realization,
∫
—
A lifts to be a

symmetric monoidal functor. If you take the tensor product to be the
direct sum, then in the classical case, you get disjoint union going to direct
sum.
• I was doing a Kan extension where we have morphism spaces.

∫
—
A, this

functor, respects topology of hom spaces. What does that mean? If two
embeddings are isotopic, then they are sent to homotopic maps in C. That’s
something we have in usual homology theory. You have to prove that in a
first semester graduate course.
• There’s one property missing, the local to global method. This is a theorem.

In my mind this proves that this is an interesting invariant. Let me make an
observation first. If N = V × R as framed manifolds then N has an E1-algebra
structure. You can draw a picture or you can say that there is a functor from
framed 1-disks to framed n-manifolds by sending an object to that object cross V .

There are also module structures. If M0 is a manifold with a collar, I mean it
has a diffeomorphism of framed manifolds of the region near the boundary with
V ×R. You might have seen this in cobordism theory. You may need the boundary
to look like a product to compose. Then M0 is a module over V ×R. Let me draw
a picture. A module means that you get a map M0 t V ×R→M0. Such a map, I
hope, is obvious.

If I have a functor out of manifolds which respects disjoint union, well, if I have
two things that are like a right module and a left module, I can tensor them and
see what I get, I can start doing algebra. After I state the theorem let’s take a
break or put part two another time.

Theorem 1.1. (Francis, Ayala-Francis-Tanaka) Let M be a framed manifold M0∪
M1 with intersection V × R. Then

∫
M
A ∼=

∫
M0

A⊗∫
V ×R A

∫
M1

A

Let me give an example and then we can call it quits. So for n = 3, let’s fix a
Lie algebra ≫ (the same as in Chern-Simons theory). Let X be a framed copy of
the circle, S1 ×D2, and Y be S3. Can we detect π0Emb

fr(X,Y )? This is one of
the fundamental questions of knot theory. There’s a framing lying around. So the
answer is yes. I’ll attribute this to Costello-Francis. Kevin’s machinery outputs an
E3-algebra. So first create one of these out of ≫. What do I mean? I mean in the
category of chain complexes over a field of characteristic zero.

If you’re given two embeddings from X into Y , what effect do j1 and j2 have on
the homology H∗

∫
X
A and H∗

∫
Y
A? I get two different chain complexes and I can
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ask about the maps on homology. I can compute whether j1 and j2 are isotopic
by seeing if they give the same maps on homology. They can recover Rezhitikhin-
Turaev invariants doing this.

Let me do an easier example. So n = 3 is a bit far. For n = 1 everyone knows
what an associative algebra is. I’ll consider just the circle. What is factorization
homology of a circle with coefficients in an associative algebra? You can think
of factorization homology as giving you an invariant of associative algebras. By
excision, I can write the circle as a union of= three manifolds. If I have a framing
on the circle I can decompose it as two hemispheres where the intersection is two
disjoint lines. By excision, this is the tensor product of two copies of A. The
tensoring is over A ⊗ A but because of the framings this is A ⊗ Aop. So this is
A ⊗A⊗Aop A, which is the Hochschild homology of A. This is one reason this is
called topological chiral homology or higher Hochschild homology.

[Why does this care about smooth structure?]
Whatever invariants you compute are only as strong as point configurations in

X. Using different structure groups you might get something, it’s an open question
how sensitive that is to diffeomorphism.


